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Abstract—Several researchers have proposed creating after-
the-fact structure among software artifacts using trace recov-
ery based on Information Retrieval (IR) approaches. Due to
significant variation points in previous studies, results are not
easily aggregated. We provide an initial overview picture of the
outcome of previous evaluations. Based on a systematic mapping
study, we perform a synthesis of published research. Our results
show that there are no empirical evidence that any IR model
outperforms another model consistently. We also display a strong
dependency between the P-R values and the input datasets.
Finally, our mapping of Precision and Recall (P-R) values on
the possible output space highlights the difficulty of recovering
accurate trace links using naı̈ve cut-off strategies. Thus, our work
presents empirical evidence that confirms several previous claims
on IR-based trace recovery and stresses the needs for empirical
evaluations beyond the basic P-R “race”.
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ity; information retrieval; secondary study

I. INTRODUCTION

Software engineering is a knowledge-intensive activity,
generating much information that needs to be maintained dur-
ing software evolution. One state-of-practice way to structure
software artifacts is to maintain traceability, defined as “the
potential for traces to be established and used” [10] where
a trace (or trace link) is “an association forged between two
artifacts”, representing a relation such as overlap, dependency,
contribution, evolution, refinement, or conflict. To support
maintenance of trace links, several researchers have proposed
tool support for semi-automated trace recovery, i.e. proposing
candidate trace links among existing artifacts. One well-studied
category of tools are based on Information Retrieval (IR)
approaches [7].

Traditional IR evaluation consists of three main elements:
a document collection, a set of information needs (typically
formulated as queries), and relevance judgments telling what
documents are relevant to these information needs, i.e. a gold
standard. The TREC conference1 has been driving the state-of-
the-art in traditional IR by providing large-scale evaluations.
The most common way to report the effectiveness of an IR
model is to use the measures precision and recall, which
also applies to IR-based trace recovery. The outcome is often
visualized as a Precision-Recall (P-R) curve where the average
precision is plotted at fixed recall values.

We have previously conducted a Systematic Mapping (SM)
study on IR-based trace recovery [4]. Our comprehensive
study, conducted according to the guidelines by Kitchenham
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and Charters [12], contains 79 publications and the correspond-
ing empirical data from a decade of research effort. The SM
shows that evaluations on IR-based trace recovery has been
dominated by technology-oriented experimentation, and are
often limited to reporting P-R values.

In this paper we synthesize results from technology-
oriented primary studies identified in the SM, and provide
an empirical overview. Our work is guided by the following
research question “Based on the published empirical data
from technology-oriented experiments, what can we conclude
regarding IR models and datasets?”

II. METHOD

We used our previous SM on IR-based trace recovery, con-
taining studies until 2011, as input to this secondary study. The
SM identified two principally different experimental setups
to conduct technology-oriented evaluations of IR-based trace
recovery tools, query-based and matrix-based evaluation [4].
Query-based evaluation implies that a number of queries are
executed on a document set, and each query results in a ranked
list of search results. In matrix-based evaluations, the result is
reported as one single ranked list of candidate trace links, and
the outcome is a candidate traceability matrix.

Furthermore, the primary studies differ by which sets
of P-R values are reported. In addition to the traditional
way of reporting precision at fixed levels of recall, different
strategies for selecting subsets of candidate trace links have
been proposed, i.e. different cut-off strategies. While there are
significant variation points in previous evaluations, taking a
step back to view previous results from a new perspective
might reveal general trends.

We synthesize the empirical evaluations in two separate
ways. First, regarding publications comparing multiple under-
lying IR models, we aggregate the conclusions of the original
authors. We apply unweighted vote counting analysis [13]
to explore which IR models have been considered the most
successful in previous research. As a second approach to data
synthesis, we aggregate P-R values extracted from previous
studies.

While IR-based trace recovery is an IR application with its
own unique characteristics, we extract P-R values that cover
what is standard procedure in the general IR field. In line with
what is reported at TREC, we report precision at ten recall
levels from 0.1 to 1 (referred to as PR@Fix). However, while
TREC established the cut-off levels 5, 10, 15, 20, 30 and 100,
evaluations on IR-based trace recovery have typically not been
reported at such a level of detail. As a consequence, we report



Fig. 1. Twenty-five empirical comparisons of IR models in trace recovery.
Squares show algebraic models, circles represent probabilistic models, dia-
monds show other models. Edges point toward the better model.

P-R values from only the cut-off levels 5, 10 and 100 (referred
to as PR@N).

Moreover, neither PR@Fix nor PR@N cover all P-R
reporting styles in the primary publications. Thus, we also
extracted P-R values beyond standard TREC practice. As
several previous publications report P-R values corresponding
to a set of candidate trace links with a cosine similarity ≥ 0.7
(cosine similarity is a standard way of quantifying textual
similarity [14]), we extracted the corresponding P-R values
(PR@Sim0.7). Finally, to ensure that all primary publications
reporting P-R values contributed to our synthesis, we also
report from an inclusive aggregation of all encountered P-
R values (referred to as PR@Tot). This final aggregation of
data shows the entire span of reported P-R values, not taking
any evaluation variations into account, and thus displays an
inclusive snapshot of the output space of an active research
field.

III. RESULTS AND DISCUSSION

Among the 79 publications in the SM, 25 compare the
output accuracy of trace recovery when applying different IR
models. Figure 1 depicts the outcomes of the comparisons,
based on the original authors’ conclusions. An edge represents
a comparison of two implemented IR models on a dataset,
thus a single publication can introduce several arrows. The
direction of an edge points at the IR model that produced the
most accurate output, i.e. an arrow points at the better model.
Accordingly, an undirected edge (dotted) shows inconclusive
comparisons. Finally, an increased edge weight depicts multi-
ple comparisons between the IR models, also presented as a
label on the edge. For descriptions of the various IR models,
we refer to the SM [4].

VSM and LSI are the two IR models that have been
most frequently evaluated in comparing studies. Among those,
and among comparing studies in general, VSM has presented
the best results. On the other hand, implementing language
models and measuring similarities using Jensen-Shannon di-
vergence [5] has been concluded as a better technique in
four studies and has never underperformed any other models.
As it has been compared to VSM in three publications, it
appears to perform trace recovery with a similar accuracy [1],

[15], [9]. Also conducting retrieval based on B-splines and
swarm techniques has not been reported to perform worse
than other models, but has only been explored in two primary
publications. Notably, one of the commonly applied IR models,
the probabilistic inference network, has not been explicitly
studied in comparison to other IR models within the context
of trace recovery. Traceability to individual publications is
provided on the accompanying website2.

Figure 2 gives a general idea of the accuracy of candidate
trace links from previous work, aggregating results from the
48 papers in the SM reporting P-R values. In the upper right
corners of figures, constituting the ideal output accuracy of an
IR-based trace recovery tool, we show intervals representing
‘Excellent’, ‘Good’, and ‘Acceptable’ as proposed by Huffman
Hayes et al. [11]. The quality intervals were developed as
an attempt to “draw a line in the sand”, based on infor-
mal industrial experiences rather than solid empirical studies.
While it is unclear in several publications whether a query-
based or matrix-based evaluation style has been used, it is
apparent that a majority of the P-R values in PR@5/10/100
originate from query-based evaluations, and that the P-R
values in PR@Sim0.7/Fix/Tot are dominated by matrix-based
evaluations. The P-R values reported in this section correspond
to the following approaches: constant cut-point (PR@N) 12
publications, constant threshold (PR@Sim0.7) 11 publications,
fixed levels of recall (PR@Fix) 10 publications, and other
approaches in 24 publications (presented, together with the
other approaches, in PR@Tot).

Figure 2 shows P-R footprints from trace recovery evalua-
tions with constant cutpoints at 5, 10, and 100 candidate trace
links respectively. Evaluations on five datasets (LEDA, CM-
1, Gedit, Firefox, and ArgoUML) are marked with separate
symbols, as shown in the legend. Especially for PR@5 and
PR@10, the primary publications contain several empirical
results from trace recovery on these datasets. The P-R values
in PR@5, PR@10 and PR@100 represent evaluations using:
LDA (24 results), LSI (19 results), BM25 (18 results), VSM
(14 results), LM (12 results), BIM (7 results), PLSI (6 results),
and SDR (6 results).

No clear pattern related to the IR models can be observed
in Figure 2. Instead, different implementations performed sim-
ilarly when applied to the same datasets. This is particularly
evident for evaluations on LEDA, for which we could extract
several P-R values (shown as squares in Figure 2). In the
footprint PR@5, nine P-R values from four different research
groups implementing VSM, BIM, and LSI cluster in the lower
right corner. Also, the footprint PR@10 shows five results
from evaluations on LEDA, clustered in the very right corner,
corresponding to P-R values from three different research
groups implementing VSM, BIM, and LSI. In line with the
results on LEDA, PR@5/10/100 show clustered P-R values
from trace recovery using different configurations of BM25 on
the Firefox dataset (diamonds) and Gedit (triangles). Similar
results can be seen regarding evaluations on CM-1 (circles) in
PR@5 and ArgoUML (pluses) in PR@100. However, results
on CM-1 in PR@10/100 and ArgoUML in PR@5/10 are less
clear as they display lower degrees of clustering.

In the footprint PR@Sim0.7 in Figure 2, showing P-R

2sites.google.com/site/tracerepo/



Fig. 2. P-R footprints for IR-based trace recovery tools. The figures to the left show P-R values at the constant cut-offs PR@5, PR@10 and PR@100. The
figures to the right show P-R values representing a cut-off at the cosine similarity 0.7 (PR@Sim0.7), precision at fixed recall levels (PR@Fix), and an aggregation
of all collected P-R values (PR@Tot). The figures PR@Fix and PR@Tot also present a P-R curve calculated as an exponential trendline.



values corresponding to candidate trace links with a cosine
similarity of ≥ 0.7, P-R values are located in the entire P-
R space, displaying its inappropriateness as a generic cut-
point. In PR@Fix, the expected P-R tradeoff is evident as
shown by the trendline. Several primary publications report
both ‘acceptable’ and ‘good’ P-R values. Six P-R values are
even reported within the ‘excellent’ zone, all originating from
evaluations of trace recovery based on LSI. However, all
six evaluations were conducted on datasets containing around
only 150 artifacts, CoffeeMaker (5 results) and EasyClinic (1
result).

In PR@Tot, we show 1,076 P-R values from 48 publica-
tions. In total, we extracted 270 P-R values (25.2%) within the
‘acceptable’ zone, 129 P-R values (12.0%) in the ‘good’ zone,
and 19 P-R values (1.8%) in the ‘excellent’ zone. The average
(balanced) F-measure for the P-R values in PR@Tot is 0.31
with a standard deviation of 0.07. As this average F-measure is
higher than the F-measure of the lowest ‘acceptable’ P-R value
(0.24, corresponding to recall=0.6, precision=0.2), this reflects
the difficulty in achieving reasonably balanced precision and
recall in IR-based trace recovery. Also, among the 100 P-R
values with the highest F-measure in PR@Tot, 69 have been
reported when evaluating trace recovery on the EasyClinic
dataset, extracted from 9 different publications.

Our synthesis of 25 comparative studies on IR-based trace
recovery show that there is no empirical evidence that any IR
model outperforms another consistently, wrt. the accuracy of
the candidate trace links. Hence, our results confirm previous
findings by Oliveto et al. [15] and Binkley et al. [3]. Instead,
our results suggest that the classic VSM performs better or
as good as other models. Our findings are also in line with
the claim by Falessi et al. [8], that simple IR techniques are
typically the most useful. Thus, as also pointed out by Ali
et al. [2], there appears to be little value for the traceability
community to continue publishing studies that solely hunt
improved P-R values without considering other factors that
impact trace recovery, e.g. the validity of the dataset and the
specific work task the tools are intended to support.

The synthesized P-R values highlights the evident chal-
lenge of reaching ‘acceptable’ precision and ‘acceptable’ re-
call, as it is only achieved in about a quarter of the reported
P-R values. Some published results are ‘acceptable’, a few
are even ‘good’ or ‘excellent’, while a majority of the results
are ‘unacceptable’. While the appropriateness of the proposed
quality levels cannot be validated without user studies, we
acknowledge them as a starting point for the synthesis of
empirical results. On the other hand, as Cuddeback et al.
[6] rather controversially highlighted, human subjects vetting
entire candidate traceability matrices do not necessarily benefit
from more accurate candidate trace links. Thus, there is a need
for more empirical work on how humans interact with the
tool output to validate the quality levels proposed by Huffman
Hayes and Dekhtyar [11], and to understand in which contexts
they are applicable.

IV. SUMMARY

We have synthesized the empirical results from a pre-
viously conducted SM on trace recovery between software
artifacts, using IR approaches. We identified that there are

two principally different evaluation approaches, query-based
and matrix-based evaluations. Also, there are a significant
number of variations regarding which P-R values on model
performance are reported. Based on the primary studies from
our previous SM, vote counting shows that there is no evidence
of any IR model consistently outperforming another. On the
contrary, we see a clear interaction between IR model and
the data used for the empirical evaluation. Further, the general
level of P-R values is rather low, which may or may not be
critical, depending on the use situation of the recovered traces.
As a consequence, we propose that further research on trace
recovery should be conducted in more realistic use situations,
rather than hunting small improvements in the “race” for P-R
values on synthetic benchmarks.
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