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Abstract Context: Engineers in large-scale software development have to manage

large amounts of information, spread across many artifacts. Several researchers have

proposed expressing retrieval of trace links among artifacts, i.e. trace recovery, as an

Information Retrieval (IR) problem. Objective: The objective of this study is to pro-

duce a map of work on IR-based trace recovery, with a particular focus on previous

evaluations and strength of evidence. Method: We conducted a systematic mapping of

IR-based trace recovery. Results: Of the 79 publications classified, a majority applied

algebraic IR models. While a set of studies on students indicate that IR-based trace

recovery tools support certain work tasks, most previous studies do not go beyond

reporting precision and recall of candidate trace links from evaluations using datasets

containing less than 500 artifacts. Conclusions: Our review identified a need of in-

dustrial case studies. Furthermore, we conclude that the overall quality of reporting

should be improved regarding both context and tool details, measures reported, and

use of IR terminology. Finally, based on our empirical findings, we present suggestions

on how to advance research on IR-based trace recovery.
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1 Introduction

The successful evolution of software systems involves concise and quick access to infor-

mation. However, information overload plagues software engineers, as large amounts

of formal and informal information is continuously produced and modified (Olsson,

2002; Cleland-Huang, Chang, and Christensen, 2003). Inevitably, especially in large-

scale projects, this leads to a challenging information landscape, that includes, apart

from the source code itself, requirements specifications of various abstraction levels,

test case descriptions, defect reports, manuals, and the like. The state-of-practice ap-

proach to structure such information is to organize artifacts in databases, e.g. doc-

ument management systems, requirements databases, and code repositories, and to

manually maintain trace links (Gotel and Finkelstein, 1994; Huffman Hayes, Dekhtyar,

and Sundaram, 2006*)1. With access to trace information, engineers can more effi-

ciently perform work tasks such as impact analysis, identification of reusable artifacts,

and requirements validation (Antoniol et al., 2002*; Winkler and Pilgrim, 2010). Fur-

thermore, research has identified lack of traceability to be a major contributing factor

in project overruns and failures (Gotel and Finkelstein, 1994; Dömges and Pohl, 1998;

Cleland-Huang, Chang, and Christensen, 2003). Moreover, as traceability plays a role

in software verification, safety standards such as ISO 26262 (International Organization
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1 We use an asterisk (’*’) to distinguish primary publications in the systematic mapping
from general references.
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for Standardization, 2011) for the automotive industry, and IEC 61511 (International

Electrotechnical Commission, 2003) for the process industry, mandate maintenance of

traceability information (Katta and St̊alhane, 2011), as does the CMMI process im-

provement model (Carnegie Mellon Software Engineering Institute, 2010). However,

manually maintaining trace links is an approach that does not scale (Heindl and Biffl,

2005). In addition, the dynamics of software development makes it tedious and error-

prone (Dömges and Pohl, 1998; Huffman Hayes, Dekhtyar, and Sundaram, 2006*; Fa-

lessi, Cantone, and Canfora, 2010).

As a consequence, engineers would benefit from additional means of dealing with

information seeking and retrieval, to navigate effectively the heterogeneous information

landscape of software development projects. Several researchers have claimed it feasible

to treat traceability as an information retrieval (IR) problem (Antoniol et al., 2002*;

Marcus and Maletic, 2003; De Lucia et al., 2004*; Huffman Hayes, Dekhtyar, and

Sundaram, 2006*; Lormans and Deursen, 2006*). Also, other studies have reported

that the use of semi-automated trace recovery reduces human effort when performing

requirements tracing (Huffman Hayes, Dekhtyar, and Sundaram, 2006*; Natt och Dag,

Thelin, and Regnell, 2006*; De Lucia et al., 2006b; De Lucia et al., 2007*; De Lucia,

Oliveto, and Tortora, 2009*[a]). The IR approach builds upon the assumption that

if engineers refer to the same aspects of the system, similar language is used across

different software artifacts. Thus, tools suggest trace links based on Natural Language

(NL) content. During the first decade of the millennium, substantial research effort has

been spent on tailoring, applying, and evaluating IR techniques to software engineering,

but we found that a comprehensive overview of the field is missing. Such a secondary

analysis would provide an evidence based foundation for future research, and advise

industry practice (Kitchenham and Charters, 2007). As such, the gathered empirical

evidence could be used to validate, and possibly intensify, the recent calls for future

research by the traceability research community (Gotel et al., 2012), organized by

the Center of Excellence for Software Traceability (CoEST)2. Furthermore, it could

assess the recent claims that applying more advanced IR models does not improve

results (Oliveto et al., 2010*; Falessi, Cantone, and Canfora, 2010).

We have conducted a Systematic Mapping (SM) study (Kitchenham, Budgen, and

Brereton, 2011; Petersen et al., 2008) that clusters publications on IR-based trace

recovery. SMs and Systematic Literature Reviews (SLR) are primarily distinguished

by their driving Research Questions (RQ) (Kitchenham, Budgen, and Brereton, 2011),

i.e. an SM identifies research gaps and clusters evidence to direct future research, while

an SLR synthesizes empirical evidence on a specific RQ. The rigor of the methodologies

is a key asset in ensuring a comprehensive collection of published evidence. We define

our overall goals of this SM in three RQs:

RQ1 Which IR models and enhancement strategies have been most frequently applied

to perform trace recovery among NL software artifacts?

RQ2 Which types of NL software artifacts have been most frequently linked in IR-

based trace recovery studies?

RQ3 How strong is the evidence, wrt. degree of realism in the evaluations, of IR-based

trace recovery?

This paper is organized as follows. Section 2 contains a thorough definition of

the IR terminology we refer to throughout this paper, and a description of how IR

2 www.coest.org
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tools can be used in a trace recovery process. Section 3 presents related work, i.e. the

history of IR-based trace recovery, and related secondary and methodological studies.

Section 4 describes how the SM was conducted. Section 5 shows the results from the

study. Section 6 discusses our research questions based on the results. Finally, Section 7

presents a summary of our contributions and suggests directions for future research.

2 Background

This section presents fundamentals of IR, and how tools implementing IR models can

be used in a trace recovery process.

2.1 IR background and terminology

As the study identified variations in use of terminology, this section defines the ter-

minology used in this study (summarized in Table 1), which is aligned with recently

redefined terms (Cleland-Huang, Gotel, and Zisman, 2012). We use the following IR

definition: “information retrieval is finding material (usually documents) of an un-

structured nature (usually text) that satisfies an information need from within large

collections (usually stored on computers)” (Manning, Raghavan, and Schutze, 2008). If

a retrieved document satisfies such a need, we consider it relevant. We solely consider

text retrieval in the study, yet we follow convention and refer to it as IR. In our inter-

pretation, the starting point is that any approach that retrieves documents relevant to

a query qualifies as IR. The terms Natural Language Processing (NLP) and Linguistic

Engineering (LE) are used in a subset of the mapped publications of this study, even

if they refer to the same IR techniques. We consider NLP and LE to be equivalent and

borrow two definitions from Liddy (2001): “NL text is text written in a language used

by humans to communicate to one another”, and “NLP is a range of computational

techniques for analyzing and representing NL text”. As a result, IR (referring to a pro-

cess solving a problem) and NLP (referring to a set of techniques) are overlapping. In

contrast to the decision by Falessi, Cantone, and Canfora (2010) to consistently apply

the term NLP, we choose to use IR in this study, as we prefer to focus on the process

rather than the techniques. While trace recovery truly deals with solutions targeting

NL text, we prefer to primarily consider it as a problem of satisfying an information

need.

Furthermore, a “software artifact is any piece of information, a final or inter-

mediate work product, which is produced and maintained during software develop-

ment” (Kruchten, 2004), e.g. requirements, design documents, source code, test speci-

fications, manuals, and defect reports. To improve readability, we refer to such pieces

of information only as ‘artifacts’. Regarding traceability, we use two recent definitions:

“traceability is the potential for traces to be established and used” and “trace recovery is

an approach to create trace links after the artifacts that they associate have been gener-

ated or manipulated” (Cleland-Huang, Gotel, and Zisman, 2012). In the literature, the

trace recovery process is referred to in heterogeneous ways including traceability link

recovery, inter-document correlation, document dependency/similarity detection, and

document consolidation. We refer to all such approaches as trace recovery, and also use

the term links without differentiating between dependencies, relations and similarities

between artifacts.
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In line with previous research, we use the term dataset to refer to the set of artifacts

that is used as input in evaluations and preprocessing to refer to all processing of NL

text before the IR models (discussed next) are applied (Baeza-Yates and Ribeiro-Neto,

2011), e.g. stop word removal, stemming and identifier (ID) splitting names expressed

in CamelCase (i.e. identifiers named according to the coding convention to capitalize

the first character in every word) or identifiers named according to the under score

convention. Feature selection is the process of selecting a subset of terms to represent a

document, in an attempt to decrease the size of the effective vocabulary and to remove

noise (Manning, Raghavan, and Schutze, 2008).

To support trace recovery, several IR models have been applied. Since we identified

contradicting interpretations of what is considered a model, weighting scheme, and

similarity measure, we briefly present our understanding of the IR field. IR models

often apply the Bag-of-Words (BoW) model, a simplifying assumption that represents

a document as an unordered collection of words, disregarding word order (Manning,

Raghavan, and Schutze, 2008). Most existing IR models can be classified as either al-

gebraic or probabilistic, depending on how relevance between queries and documents

is measured. In algebraic IR models, relevance is assumed to be correlated with sim-

ilarity (Zhai, 2007). The most well-known algebraic model is the commonly applied

Vector Space Model (VSM) (Salton, Wong, and Yang, 1975), which due to its many

variation points acts as a framework for retrieval. Common to all variations of VSM

is that both documents and queries are represented as vectors in a high-dimensional

space (every term, after preprocessing, in the document collection constitutes a dimen-

sion) and that similarities are calculated between vectors using some distance function.

Individual terms are not equally meaningful in characterizing documents, thus they are

weighted accordingly. Term weights can be both binary (i.e. existing or non-existing)

and raw (i.e. based on term frequency) but usually some variant of Term Frequency-

Inverse Document Frequency (TF-IDF) weighting is applied. TF-IDF is used to weight

a term based on the length of the document and the frequency of the term, both in the

document and in the entire document collection (Singhal, 2001). Regarding similarity

measures, the cosine similarity (calculated as the cosine of the angle between vectors)

is dominating in IR-based trace recovery using algebraic models, but also Dice’s co-

efficient and the Jaccard index (Manning, Raghavan, and Schutze, 2008) have been

applied. In an attempt to reduce the noise of NL (such as synonymy and polysemy),

Latent Semantic Indexing (LSI) was introduced (Deerwester et al., 1990). LSI reduces

the dimensions of the vector space, finding semi-dimensions using singular value decom-

position. The new dimensions are no longer individual terms, but concepts represented

as combinations of terms. In the VSM, relevance feedback (i.e. improving the query

based on human judgement of partial search results, followed by re-executing an im-

proved search query) is typically achieved by updating the query vector (Zhai, 2007).

In IR-based trace recovery, this is commonly implemented using the Standard Rocchio

method (Rocchio, 1971). The method adjusts the query vector toward the centroid vec-

tor of the relevant documents, and away from the centroid vector of the non-relevant

documents.

In probabilistic retrieval, relevance between a query and a document is estimated

by probabilistic models. The IR is expressed as a classification problem, documents

being either relevant or non-relevant (Singhal, 2001). Documents are then ranked ac-

cording to their probability of being relevant (Maron and Kuhns, 1960), referred to

as the probabilistic ranking principle (Robertson, 1977). In trace recovery, the Binary

Independence Retrieval model (BIM) (Robertson and Jones, 1976) was first applied
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to establish links. BIM näıvely assumes that terms are independently distributed, and

essentially applies the Näıve Bayes classifier for document ranking (Lewis, 1998). Differ-

ent weighting schemes have been explored to improve results, and currently the BM25

weighting used in the non-binary Okapi system (Robertson and Zaragoza, 2009) con-

stitutes state-of-the-art.

Another category of probabilistic retrieval is based on the model of an inference

process in a Probabilistic Inference Network (PIN) (Turtle and Croft, 1991). In an in-

ference network, relevance is modeled by the uncertainty associated with inferring the

query from the document (Zhai, 2007). Inference networks can embed most other IR

models, which simplifies the combining of approaches. In its simplest implementation, a

document instantiates every term with a certain strength and multiple terms accumu-

late to a numerical score for a document given each specific query. Relevance feedback

is possible also for BIM and PIN retrieval (Zhai, 2007), but we have not identified any

such attempts within the trace recovery research.

In the last years, another subset of probabilistic IR models has been applied to

trace recovery. Statistical Language Models (LM) estimate an LM for each document,

then documents are ranked based on the probability that the LM of a document would

generate the terms of the query (Ponte and Croft, 1998). A refinement of simple LMs,

topic models, describes documents as a mixture over topics. Each individual topic is

then characterized by an LM (Zhai, 2008). In trace recovery research, studies applying

the four topic models Probabilistic Latent Semantic Indexing (PLSI) (Hofman, 2001),

Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan, 2003), Correlated Topic Model

(CTM) (Blei and Lafferty, 2007) and Relational Topic Model (RTM) (Chang and Blei,

2010) have been conducted. To measure the distance between LMs, where documents

and queries are represented as stochastic variables, several different measures of dis-

tributional similarity exist, such as the Jensen-Shannon divergence (JS). To the best

of our knowledge, the only implementation of relevance feedback in LM-based trace

recovery was based on the Mixture Model method (Zhai and Lafferty, 2001).

Several attempts are made to improve an IR model, in this paper referred to as

enhancement strategies. Apart from the already described relevance feedback, one of

the most common approaches in IR is to introduce a thesaurus. A thesaurus is a tool

for vocabulary control, typically defined for a specific subject area, such as art or bi-

ology, formally organized so that a priori relationships between concepts are made

explicit (Aitchison, Bawden, and Gilchrist, 2000). Standard usage of a thesaurus is to

provide an IR system with preferred and non-preferred terms, restricted vocabularies of

terms that the IR system is allowed to, or not allowed to, use for indexing and search-

ing, and semantic relations, relations between terms such as synonymy and hyponymy.

Another enhancement strategy in IR is phrasing, an approach to exceed indexing ac-

cording to the BoW model (Croft, Turtle, and Lewis, 1991). A phrase is a sequence

of two or more words, expected to be more accurate in representing document content

than independent words. Detecting phrases for indexing can be done using either a

statistical analysis of term frequency and co-occurrence, or by a syntactical approach,

i.e. analyzing grammatical structure using a parts-of-speech tagger. Yet another en-

hancement strategy is clustering, based on the hypothesis that “documents relevant

to a query tend to be more similar to each other than to irrelevant documents and

hence are likely to be clustered together” (Charikar et al., 1997). Clustering can be

used for different purposes, e.g. presenting additional search results or to structure the

presentation of search results.
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Retrieval Models Misc.
Algebraic Probabilistic Statistical Weighting Similarity Enhance-
models models language schemes measures / ment

models distance strategies
functions

Vector Binary Language Binary Cosine Relevance
Space Independence Model similarity feedback
Model Model (LM)
(VSM) (BIM)
Latent Probabilistic Probabilistic Raw Dice’s Thesaurus

Semantic Inference Latent coefficient
Indexing Network Semantic
(LSI) (PIN) Indexing

(PLSI)
Best Match 25 Latent Term Frequency Jaccard Phrasing

(BM25)a Dirichlet Inverse Document index
Allocation Frequency
(LDA) (TFIDF)

Correlated Best Match 25 Jensen- Clustering
Topics (BM25)a Shannon
Model divergence
(CTM) (JS)

Relational
Topics
Model
(RTM)

a Okapi BM25 is used to refer both to a non-binary probabilistic model, and its weighting
scheme.

Table 1 A summary of fundamental IR terms applied in trace recovery. Note that only the
vertical organization carries a meaning.

Finally, a number of measures used to evaluate IR tools have been defined. Ac-

curacy of a set of search results is primarily measured by the standard IR-measures

precision (the fraction of retrieved instances that are relevant), recall (the fraction of

relevant instances that are retrieved) and F-measure (harmonic mean of precision and

recall, possibly weighted to favour one over another) (Baeza-Yates and Ribeiro-Neto,

2011). Precision and recall values (P-R values) are typically reported pairwise or as

precision and recall curves (P-R curves). Two other set-based measures, originating

from the traceability community, are Recovery Effort Index (REI) (Antoniol et al.,

2002*) and Selectivity (Sundaram et al., 2010*). Secondary measures aim to go fur-

ther than comparing sets of search results, and also consider their internal ranking.

Two standard IR measures are Mean Average Precision (MAP) of precision scores for

a query (Manning, Raghavan, and Schutze, 2008), and Discounted Cumulative Gain

(DCG) (Järvelin and Kekäläinen, 2000) (a graded relevance scale based on the position

of a document among search results). To address this matter in the specific application

of trace recovery, Sundaram et al. (2010*) proposed DiffAR, DiffMR, and Lag to assess

the quality of retrieved candidate links.

2.2 IR-based support in a trace recovery process

As the candidate trace links generated by state-of-the-art IR-based trace recovery typ-

ically are too inaccurate, the current tools are proposed to be used in a semi-automatic
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process. De Lucia et al. (2012) describe this process as a sequence of four key steps,

where the fourth step requires human judgement. Although steps 2 and 3 mainly apply

to algebraic IR models, also other IR models can be described by a similar sequential

process flow. The four steps are:

1. document parsing, extraction, and pre-processing

2. corpus indexing with an IR method

3. ranked list generation

4. analysis of candidate links

In the first step, the artifacts in the targeted information space are processed and

represented as a set of documents at a given granularity level, e.g. sections, class files

or individual requirements. In the second step, for algebraic IR models, features from

the set of documents are extracted and weighted to create an index. When also the

query has been indexed in the same way, the output from step 2 is used to calculate

similarities between artifacts to rank candidate trace links accordingly. In the final step,

these candidate trace links are provided to an engineer for examination. Typically, the

engineer then reviews the candidate source and target artifacts of every candidate trace

link, and determines whether the link should be confirmed or not. Consequently, the

final outcome of the process of IR-based trace recovery is based on human judgment.

Concrete examples, put in work task contexts, are presented in Section 3.4.

A number of publications propose advice for engineers working with candidate trace

links. De Lucia et al. have suggested that an engineer should iteratively decrease the

similarity threshold, and stop considering candidate trace links when the fraction of

incorrect links get too high (De Lucia, Oliveto, and Sgueglia, 2006*; De Lucia, Oliveto,

and Tortora, 2008*). Based on an experiment with student subjects, they concluded

that an incremental approach in general both improves the accuracy and reduces the

effort involved in a tracing task supported by IR-based trace recovery. Furthermore,

they report that the subjects preferred working in an incremental manner. Working

incrementally with candidate trace links can to some subjects also be an intuitive ap-

proach. In a previous experiment by Borg and Pfahl (2011*), several subjects described

such an approach to deal with tool output, even without explicit instructions. Cover-

age analysis is another strategy proposed by De Lucia, Oliveto, and Tortora (2009*[b]),

intended to follow up on the step of iteratively decreasing the similarity threshold. By

analyzing the confirmed candidate trace links, i.e. conducting a coverage analysis, De

Lucia et al. suggest that engineers should focus on tracing artifacts that have few

trace links. Also, in an experiment with students, they demonstrated that an engineer

working according to this strategy recovers more correct trace links.

3 Related work

This section presents a chronological overview of IR-based trace recovery, previous

overviews of the field, and related work on advancing empirical evaluations of IR-based

trace recovery.

3.1 A brief history of IR-based trace recovery

Tool support for the linking process of NL artifacts has been explored by researchers

since at least the early 1990s. Pioneering work was done in the LESD project (Lin-
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guistic Engineering for Software Design) by Borillo et al. (1992), in which a tool suite

analyzing NL requirements was developed. The tool suite parsed NL requirements

to build semantic representations, and used artificial intelligence approaches to help

engineers establish trace links between individual requirements (Bras and Toussaint,

1993). Apart from analyzing relations between artifacts, the tools evaluated consis-

tency, completeness, verifiability and modifiability (Castell et al., 1994). In 1998, a

study by Fiutem and Antoniol (1998) presented a recovery process to bridge the gap

between design and code, based on edit distances between artifacts. They coined the

term “traceability recovery”, and Antoniol et al. published several papers on the topic.

Also, they were the first to clearly express identification of trace links as an IR prob-

lem (Antoniol et al., 2000). Their milestone work from 2002 compared two standard

IR models, probabilistic retrieval using the BIM and the VSM (Antoniol et al., 2002*).

Simultaneously, in the late 1990s, Park et al. (2000*) worked on tracing dependencies

between artifacts using a sliding window combined with syntactic parsing. Similarities

between sentences were calculated using cosine similarities.

During the first decade of the new millennium, several research groups advanced

IR-based trace recovery. Natt och Dag et al. (2002*) did research on requirement depen-

dencies in the dynamic environment of market-driven requirements engineering. They

developed the tool ReqSimile, implementing trace recovery based on the VSM, and later

evaluated it in a controlled experiment (Natt och Dag, Thelin, and Regnell, 2006*). A

publication by Marcus and Maletic (2003), the second most cited article in the field,

constitutes a technical milestone in IR-based trace recovery. They introduced Latent

Semantic Indexing (LSI) to recover trace links between source code and NL documen-

tation, a technique that has been used by multiple researchers since. Huffman Hayes et

al. (2004*) enhanced VSM retrieval with relevance feedback and introduced secondary

performance metrics. From early on, their research had a human-oriented perspective,

aimed at supporting V&V activities at NASA using their tool RETRO (Huffman Hayes

et al., 2007*).

De Lucia et al. (2005*) have conducted work focused on empirically evaluating

LSI-based trace recovery in their document management system ADAMS. They have

advanced the empirical foundation by conducting a series of controlled experiments

and case studies with student subjects (De Lucia et al., 2006*; De Lucia et al., 2007*;

De Lucia, Oliveto, and Tortora, 2009*[a]). Cleland-Huang and colleagues have pub-

lished several studies on IR-based trace recovery. They introduced probabilistic trace

recovery using a PIN-based retrieval model, implemented in their tool Poirot (Lin et

al., 2006). Much of their work has focused on improving the accuracy of their tool by

enhancements such as: applying a thesaurus to deal with synonymy (Settimi et al.,

2004*), extraction of key phrases (Zou, Settimi, and Cleland-Huang, 2010*), and us-

ing a project glossary to weight the most important terms higher (Zou, Settimi, and

Cleland-Huang, 2010*).

Recent work on IR-based trace recovery has, with various results, gone beyond the

traditional models for information retrieval. In particular, trace recovery supported

by probabilistic topic models has been explored by several researchers. Dekhtyar et

al. (2007*) combined several IR models using a voting scheme, including the prob-

abilistic topic model Latent Dirachlet Allocation (LDA). Parvathy, Vasudevan, and

Balakrishnan (2008*) proposed using the Correlated Topic Model (CTM), and Geth-

ers et al. (2011*) suggested using Relational Topic Model (RTM). Abadi, Nisenson, and

Simionovici (2008*) proposed using Probabilistic Latent Semantic Indexing (PLSI) and

utilizing two concepts based on information theory, Sufficient Dimensionality Reduction
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(SDR) and Jensen-Shannon Divergence (JS). Capobianco et al. (2009*[b]) proposed

representing NL artifacts as B-splines and calculating similarities as distances between

them on the Cartesian plane. Sultanov and Huffman Hayes (2010*) implemented trace

recovery using a swarm technique, an approach in which a non-centralized group of

non-intelligent self-organized agents perform work that, when combined, enables con-

clusions to be drawn.

3.2 Previous overviews on IR-based trace recovery

In the beginning of 2012, a textbook on software traceability edited by Cleland-Huang,

Gotel, and Zisman (2012) was published. Presenting software traceability from several

perspectives, the book contains a chapter authored by De Lucia et al. (2012) specifically

dedicated to IR-based trace recovery. In the chapter, the authors thoroughly present an

overview of the field including references to the most important work. Also, the chapter

constitutes a good introduction for readers new to the approach, as it describes the

basics of IR models. Consequently, the book chapter by De Lucia et al. is closely related

to our work. However, our work has different characteristics. First, De Lucia et al.’s

work has more the character of a textbook, including enough background material on

IR, as well as examples of applications in context, to introduce readers to the field as a

stand-alone piece of work. Our systematic mapping on the other hand, is not intended

as an introduction to the field of IR-based trace recovery, but requires extensive pre-

understanding. Second, while De Lucia et al. report a large set of references to previous

work, the method used to identify previous publications is not reported. Our work

instead follows the established guidelines for SMs (Kitchenham and Charters, 2007),

and reports from every phase of the study in a detailed protocol.

Furthermore, basically every publication on IR-based trace recovery contains some

information on previous research in the field. Another good example of a summary of

the field was provided by De Lucia, Oliveto, and Tortora (2009*[a]). Even though the

summary was not the primary contribution of the publication, they chronologically

described the development, presented 15 trace recovery methods and 5 tool imple-

mentations. They compared underlying IR models, enhancing strategies, evaluation

methodologies and types of recovered links. However, regarding both methodological

rigor and depth of the analysis, it is not a complete SM. De Lucia, Fasano, and Oliveto

(2008) have also surveyed proposed approaches to traceability management for impact

analysis. They discussed previous work based on a conceptual framework by Bianchi,

Fasolino, and Visaggio (2000), consisting of the three traceability dimensions: type of

links, source of information to derive links, and their internal representation. Apart

from IR-based methods, the survey by De Lucia et al. contains both rule-based and

data mining-based trace recovery. Also Binkley and Lawrie (2010) have presented a

survey of IR-based trace recovery as part of an overview of applications of IR in soft-

ware engineering. They concluded that the main focus of the research has been to

improve the accuracy of candidate links wrt. P-R values, and that LSI has been the

most popular IR model. However, they also report that no IR model has been reported

as superior for trace recovery. While our work is similar to previous work, our review

is more structured and goes deeper with a more narrow scope.

Another set of publications has presented taxonomies on IR techniques in software

engineering. In an attempt to harmonize the terminology of the IR applications, Can-

fora and Cerulo (2006*) presented a taxonomy of IR models. However, their surveyed
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IR applications are not explicitly focusing on software engineering. Furthermore, their

proposed taxonomy does not cover recent IR models identified in our study, and the

subdivision into ‘representation’ and ‘reasoning’ poorly serves our intentions. Falessi,

Cantone, and Canfora (2010) recently published a comprehensive taxonomy of IR tech-

niques available to identify equivalent requirements. They adopted the term variation

point from Software Product Line Engineering (Pohl, Bockle, and Linden, 2005), to

stress the fact that an IR solution is a combination of different, often orthogonal, design

choices. They consider an IR solution to consist of a combination of algebraic model,

term extraction, weighting scheme and similarity metric. Finally, they conducted an

empirical study of various combinations and concluded that simple approaches yielded

the most accurate results on their dataset. We share their view on variation points,

but fail to apply it since our mapping study is limited by what previous publications

report on IR-based trace recovery. Also, their proposed taxonomy only covers algebraic

IR models, excluding other models (most importantly, the entire family of probabilistic

retrieval).

Concept location (a.k.a. feature location) is a research topic that overlaps trace

recovery. It can be seen as the first step of a change impact analysis process (Marcus

et al., 2004). Given a concept (or feature) that is to be modified, the initial information

need of a developer is to locate the part of the source code where it is embedded. Clearly,

this information need could be fulfilled by utilizing IR. However, we distinguish the

topics by considering concept location to be more query-oriented (Gay et al., 2009).

Furthermore, whereas trace recovery typically is evaluated by linking n artifacts to m

other artifacts, evaluations of concept location tend to focus on n queries targeting a

document set of m source code artifacts (where n << m), as for example in the study

by Torchiano and Ricca (2010). Also, while it is often argued that trace recovery

should retrieve trace links with a high recall, the goal of concept location is mainly to

retrieve one single location in the code with high precision. Dit et al. (2011) recently

published a literature review on feature location.

3.3 Related contributions to the empirical study of IR-based trace recovery

A number of previous publications have aimed at structuring or advancing the re-

search on IR-based trace recovery, and are thus closely related to our study. An early

attempt to advance reporting and conducting of empirical experiments was published

by Huffman Hayes and Dekhtyar (2005a). Their experimental framework describes the

four phases: definition, planning, realization and interpretation. In addition, they used

their framework to characterize previous publications. Unfortunately, the framework

has not been applied frequently and the quality of the reporting of empirical evalu-

ations varies greatly (Borg, Wnuk, and Pfahl, 2012). Huffman Hayes, Dekhtyar, and

Sundaram (2006*) also presented the distinction between studies of methods (are the

tools capable of providing accurate results fast?) and studies of human analysts (how

do humans use the tool output?). Furthermore, they proposed assessing the accuracy

of tool output according to quality intervals named ‘acceptable’, ‘good’, and ‘excellent’,

based on Huffman Hayes’ industrial experience of working with traceability matrices

of various qualities. Huffman Hayes et al.’s quality levels were defined to represent the

effort that would be required by an engineer to vet an entire candidate traceability

matrix.
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Fig. 1 The Integrated Cognitive Research Framework by Ingwersen and Järvelin (2005), a
framework for IR evaluations in context.

Considering empirical evaluations, we extend the classifications proposed by Huff-

man Hayes, Dekhtyar, and Sundaram (2006*) by an adapted version of the Integrated

Cognitive Research Framework by Ingwersen and Järvelin (2005). Their work aimed

at extending the de-facto standard of IR evaluation, the Laboratory Model of IR Eval-

uation, developed in the Cranfield tests in the 60s (Cleverdon, 1991), challenged for

its unrealistic lack of user involvement (Kekäläinen and Järvelin, 2002). Ingwersen and

Järvelin argued that IR is always evaluated in a context, referred to the innermost

context as “the cave of IR evaluation”, and proposed a framework consisting of four

integrated contexts (see Figure 1). We have adapted their framework to a four-level

context taxonomy, tailored for IR-based trace recovery, to classify in which contexts

previous evaluations have been conducted, see Table 2. Also, we add a dimension of

study environments (university, proprietary, and open source environment), as pre-

sented in Figure 12 in Section 5. For more information on the context taxonomy, we

refer to our original publication (Borg, Runeson, and Brodén, 2012).

In the field of IR-based trace recovery, the empirical evaluations are termed very

differently by different authors. Some call them ‘experiments’, others ‘case studies’,

and yet others only ‘studies’. We use the following definitions, which are established in

the field of software engineering.

Case study in software engineering is an empirical enquiry that draws on multiple

sources of evidence to investigate one instance (or a small number of instances)

of a contemporary software engineering phenomenon within its real-life context,

especially when the boundary between phenomenon and context cannot be clearly

specified. (Runeson et al., 2012)

Experiment (or controlled experiment) in software engineering is an empirical enquiry

that manipulates one factor or variable of the studied setting. Based in random-

ization, different treatments are applied to or by different subjects, while keep-

ing other variables constant, and measuring the effects on outcome variables. In

human-oriented experiments, humans apply different treatments to objects, while

in technology-oriented experiments, different technical treatments are applied to

different objects. (Wohlin et al., 2012)

Empirical evaluations of IR-based trace recovery may be classified as case studies,

if they evaluate the use of, e.g. IR-based trace recovery tools in a complex software en-

gineering environment, where it is not clear whether the tool is the main factor or other

factors are at play. These are typically level 4 studies in our taxonomy, see Table 2.

Human-oriented controlled experiments may evaluate human performance when using
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Level 1: The most simplified context, referred to Precision, recall, Experiments on
Retrieval as “the cave of IR evaluation”. F-measure benchmarks,
context A strict retrieval context, performance possibly with

is evaluated wrt. the accuracy of a set simulated
of search results. Quantitative studies feedback
dominate.

Level 2: A first step towards realistic applications Secondary measures. Experiments on
Seeking of the tool, “drifting outside the cave’. General IR: benchmarks,
context A seeking context with a focus on how MAP, DCG. possibly with

the human finds relevant information Traceability specific: simulated
in what was retrieved by the system. Lag, DiffAR, DiffMR. feedback
Quantitative studies dominate.

Level 3: Humans complete real tasks, but in an Time spent on Controlled
Work task in-vitro setting. Goal of evaluation is task and quality experiments
context to assess the casual effect of an IR tool of work. with human

when completing a task. A mix of subjects.
quantitative and qualitative studies.

Level 4: Evaluations in a social-organizational User satisfaction, Case studies
Project context. The IR tool is studied when tool usage
context used by engineers within the full

complexity of an in-vivo setting.
Qualitative studies dominate.

Table 2 A context taxonomy of IR-based trace recovery evaluations. Level 1 is technology-
oriented, and level 3 and 4 are human-oriented. Level 2 typically has a mixed focus.

two different IR-tools in an artificial (in vitro) or well-controlled real (in vivo) environ-

ment, typically at level 3 of the taxonomy. The stochastical variation is here primarily

assumed to be in the human behavior, although there of course are interactions be-

tween the human behavior, the artifacts and the tools. Technology-oriented controlled

experiments evaluate tool performance on different artifacts, without human interven-

tion, corresponding to levels 1 and 2 in our taxonomy. The variation factor is here the

artifacts, and hence the technology-oriented experiment may be seen as benchmarking

studies, where one technique is compared to another technique, using the same arti-

facts, or the performance of one technique is compared for multiple different artifacts.

The validity of the datasets used as input in evaluations in IR-based trace recovery

is frequently discussed in the literature. Also, two recent publications primarily address

this issue. Ali, Guéhéneuc, and Antoniol (2012) present a literature review on charac-

teristics of artifacts reported to impact trace recovery evaluations, e.g. ambiguous and

vague requirements, and the quality of source code identifiers. Ali et al. extracted P-R

values from eight previous trace recovery evaluations, not limited to IR-based trace

recovery, and show that the same techniques generate candidate trace links of very

different accuracy across datasets. They conclude that research targeting only recovery

methods in isolation is not expected to lead to any major breakthroughs, instead they

suggest that factors impacting the input artifacts should be better controlled. Borg,

Wnuk, and Pfahl (2012) recently highlighted that a majority of previous evaluations

of IR-based trace recovery have been conducted using artifacts developed by students.

The authors explored this potential validity threat in a survey of the traceability com-

munity. Their results indicate that while most authors consider artifacts originating

from student projects to be only partly representative to industrial artifacts, few re-

spondents explicitly validated them before using them as experimental input.
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3.4 Precision and recall evaluation styles for technology-oriented trace recovery

In the primary publications, two principally different styles to report output from

technology-oriented experiments have been used, i.e. presentation of P-R values from

evaluations in the retrieval and seeking contexts. A number of publications, including

the pioneering work by Antoniol et al. (2002*), used the traditional style from the

ad hoc retrieval task organized by the Text REtrieval Conference (TREC) (Voorhees,

2005), driving large-scale evaluations of IR. In this style, a number of queries are

executed on a document set, and each query results in a ranked list of search results

(cf. (a) in Figure 2). The accuracy of the IR system is then calculated as an average of

the precision and recall over the queries. For example, in Antoniol et al.’s evaluation,

source code files were used as queries and the document set consisted of individual

manual pages. We refer to this reporting style as query-based evaluation. This setup

evaluates the IR problem: “given this trace artifact, to which other trace artifacts

should trace links be established?” The IR problem is reformulated for each trace

artifact used as a query, and the results can be presented as a P-R curve displaying

the average accuracy of candidate trace links over n queries. This reporting style shows

how accurately an IR-based trace recovery tool supports a work task that requires

single on-demand tracing efforts (a.k.a. reactive tracing or just-in-time tracing), e.g.

establishing traces as part of an impact analysis work task (Antoniol et al., 2002*; Li

et al., 2008*; Borg and Pfahl, 2011*).

In the other type of reporting style used in the primary publications, documents

of different types are compared to each other, and the result from the similarity- or

probability-based retrieval is reported as one single ranked list of candidate trace links.

This can be interpreted as the IR problem: “among all these possible trace links,

which trace links should be established?” Thus, the outcome is a candidate traceability

matrix. We refer to this reporting style as matrix-based evaluation. The candidate

traceability matrix can be compared to a gold standard, and the accuracy (i.e. overlap

between the matrices) can be presented as a P-R curve, as shown in b) in Figure 2.

This evaluation setup has been used in several primary publications to assess the

accuracy of candidate traceability matrices generated by IR-based trace recovery tools.

Also, Huffman Hayes, Dekhtyar, and Sundaram (2006*) defined the quality intervals

described in Section 3.3 to support this evaluation style.

Apart from the principally different meaning of reported P-R values, the primary

publications also differ by which sets of P-R values are reported. Precision and recall

are set-based measures, and the accuracy of a set of candidate trace links (or candi-

date trace matrix) depends on which links are considered the tool output. Apart from

the traditional way of reporting precision at fixed levels of recall, further described

in Section 4.3, different strategies for selecting subsets of candidate trace links have

been proposed. Such heuristics can be used by engineers working with IR-based trace

recovery tools, and several primary publications report corresponding P-R values. We

refer to these different approaches to consider subsets of ranked candidate trace links

as cut-off strategies. Example cut-off strategies include: Constant cut point, a fixed

number of the top-ranked trace links are selected, e.g. 5, 10, or 50. Variable cut point,

a fixed percentage of the total number of candidate trace links is selected, e.g. 5% or

10%. Constant threshold, all candidate trace links representing similarities (or prob-

abilities) above a specified threshold is selected, e.g. above a cosine similarity of 0.7.

Variable threshold, a new similarity interval is defined by the minimum and maximum

similarities (i.e. similarities are normalized against the highest and lowest similarities),

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[D
RAFT]



15

Fig. 2 Query-based evaluation vs. matrix-based evaluation of IR-based trace recovery.

and either a percentage of the candidate trace links are selected or a new constant

threshold is introduced.

The choice of what subset of candidate trace links to represent by P-R values reflects

the cut-off strategy an imagined engineer could use when working with the tool output.

However, which strategy results in the most accurate subset of trace links depends on

the specific case evaluated. Moreover, in reality it is possible that engineers would not be

consistent in how they work with candidate trace links. As a consequence of the many

possibly ways to report P-R values, the primary publications view output from IR-

based trace recovery tools from rather different perspectives. For work tasks supported

by a separate list of candidate trace links per source artifact, there are indications

that human subjects seldom consider more than 10 candidate trace links (Borg and

Pfahl, 2011*), in line with what is commonplace to present as a ‘pages-worth’ output

of major search engines such as Google, Bing and Yahoo. On the other hand, when

an IR-based trace recovery tool is used to generate a candidate traceability matrix

over an entire information space, considering only the first 10 candidate links would

obviously be insufficient, as there would likely be thousands of correct trace links to

recover. However, regardless of reporting style, the number of candidate trace links a

P-R value represents is important in any evaluation of IR-based trace recovery tools,

since a human is intended to vet the output.

The two inherently different use cases of an IR-based trace recovery tool, reflected

by the split into matrix-based and query-based evaluations, also call for different evalu-

ations regarding cut-off strategies. The first main use case of an IR-based trace recovery

tool is when one or more candidate trace links from a specific artifact are requested

by an engineer. For example, as part of a formal change impact analysis, a software

engineer might need to specify which test cases to execute to verify that a defect report

has been properly resolved. This example is close to the general definition of IR, “to

find documents that satisfy an information need from within large collections”. If the

database of test cases contains overlapping test cases, it is possible that the engineer

needs to report just one suitable test case. In this case precision is more important

than recall, and it is fundamental that the tool presents few false positives among the
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top candidate trace links. Evaluating the performance of the IR-based trace recovery

tool using constant cut points is suitable.

The second main use case of an IR-based trace recovery tool is to generate an

entire set of trace links, i.e. a candidate traceability matrix. For instance, a traceability

matrix needs to be established between n functional requirements and m test case

descriptions during software evolution of a legacy system. If the number of artifacts is

n + m, the number of possible trace links (i.e. the number of pair-wise comparisons

needed) to consider is n ∗ m, a number that quickly becomes infeasible for manual

work. An engineer can in such cases use the output from an IR-based trace recovery

tool as a starting point. The generation of a traceability matrix corresponds to running

multiple simultaneous queries in a general IR system, and typically recall is favored

over precision. There is no natural equivalent to this use case in the general IR domain.

Furthermore, when generating an entire traceability matrix, it is improbable that the

total number of correct trace links is known a priori, and consequently constant cut-

points are less meaningful. A näıve cut-off strategy is to instead simply use a constant

similarity threshold such as the cosine similarity 0.7. More promising cut-off strategies

are based on variable thresholds or incremental approaches, as described in Section 2.2.

Typically, the accuracies of traceability matrices generated by IR-based trace recovery

tools are evaluated a posteriori, by analyzing how precision varies for different levels

of recall.

4 Method

The overall goal of this study was to form a comprehensive overview of the existing re-

search on IR-based trace recovery. To achieve this objective, we systematically collected

empirical evidence to answer research questions characteristic for an SM (Kitchenham

and Charters, 2007; Petersen et al., 2008). The study was conducted in the following

distinct steps, (i) development of the review protocol, (ii) selection of publications,

(iii) data extraction and mapping of publications, which were partly iterated and each

of them was validated.

4.1 Protocol development

Following the established guidelines for secondary studies in software engineering (Kitchen-

ham and Charters, 2007), we iteratively developed a review protocol in consensus

meetings between the authors. The protocol defined the research questions (stated in

Section 1), the search strategy (described in Section 4.2), the inclusion/exclusion cri-

teria (presented in Table 3), and the classification scheme used for the data extraction

(described in Section 4.3). The extracted data were organized in a tabular format to

support comparison across studies. Evidence was summarized per category, and com-

monalities and differences between studies were investigated. Also, the review protocol

specified the use of Zotero3 as the reference management system, to simplify general

tasks such as sorting, searching and removal of duplicates. An important deviation from

the terminology used in the guidelines is that we distinguish between primary publi-

cations (i.e. included units of publication) and primary studies (i.e. included pieces of

empirical evidence), since a number of publications report multiple studies.

3 www.zotero.org
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Inclusion criteria Rationale/comments
I1 Publication available in English in

full text
We assumed that all relevant publications would be
available in English.

I2 Publication is a peer-reviewed
piece of software engineering work

As a quality assurance, we did not include technical
reports, master theses etc.

I3 Publication contains empirical re-
sults (case study, experiment, sur-
vey etc.) of IR-based trace recov-
ery where natural language arti-
facts are either source or target

Defined our main scope based on our RQs. Publication
should clearly link artifacts, thus we excluded tools
supporting a broader sense of program understanding
such as COCONUT (De Lucia et al., 2006a). Also, the
approach should treat the linking as an IR problem.
However, we excluded solutions exclusively extracting
specific character sequences in NL text, such as work
on Mozilla defect reports (Ayari et al., 2007).

Exclusion criteria Rationale/comments
E1 Answer is no to I1, I2 or I3
E2 Publication proposes one of the fol-

lowing approaches to recover trace
links, rather than IR:

We included only publications that are deployable in
an industrial setting with limited effort. Thus, we
limited our study to techniques that require nothing
but unstructured NL text as input. Other approaches
could arguably be applied to perform IR, but are too
different to fit our scope. Excluded approaches
include: rules (Egyed and Grunbacher, 2002;
Spanoudakis et al., 2004), ontologies (Assawamekin,
Sunetnanta, and Pluempitiwiriyawej, 2010),
supervised machine learning (Spanoudakis,
d’Avila-Garcez, and Zisman, 2003), semantic
networks (Lindvall et al., 2009), and dynamic
analysis (Eisenbarth, Koschke, and Simon, 2003).

a) rule-based extraction
b) ontology-based extraction
c) machine learning approaches
that require supervised learning
d) dynamic/execution analysis

E3 Article explicitly targets one of the
following topics, instead of trace
recovery:

We excluded both concept location and duplicate
detection since it deals with different problems, even
if some studies apply IR models. Excluded
publications include: duplicate detection of
defects (Runeson, Alexandersson, and Nyholm,
2007), detection of equivalent requirements (Falessi,
Cantone, and Canfora, 2010), and concept
location (Marcus et al., 2004). We explicitly added
the topics code clustering, class cohesion, and cross
cutting concerns to clarify our scope.

a) concept/feature location
b) duplicate/clone detection
c) code clustering
d) class cohesion
e) cross cutting concerns/aspect
mining

Table 3 Inclusion/exclusion criteria applied in our study. The rightmost column motivates
our decisions.

Table 3 states our inclusion/exclusion criteria, along with rationales and examples.

A number of general decisions accompanied the criteria:

– Empirical results presented in several articles, we only included from the most

extensive publication. Examples of excluded publications include pioneering work

later extended to journal publications, the most notable being work by Antoniol

et al. (2000) and Marcus and Maletic (2003). However, we included publications

describing all independent replications (deliberate variations of one or more major

aspects), and dependent replications (same or very similar experimental setups) by

other researchers (Shull et al., 2008).

– Our study included publications that apply techniques in E2a–d in Table 3, but use

an IR model as benchmark. In such cases, we included the IR benchmark, and noted

possible complementary approaches as enhancements. An example is work using

probabilistic retrieval enhanced by machine learning from existing trace links (Di

and Zhang, 2009*).
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– We included approaches that use structured NL as input, i.e. source code or tab-

ular data, but treat the information as unstructured. Instead, we considered any

attempts to utilize document structure as enhancements.

– Our study only included linking between software artifacts, i.e. artifacts that are

produced and maintained during development (Kruchten, 2004). Thus, we ex-

cluded linking approaches to entities such as e-mails (Bacchelli, Lanza, and Robbes,

2010) and tacit knowledge (Stone and Sawyer, 2006; Huffman Hayes, Antoniol, and

Guéhéneuc, 2008).

– We excluded studies evaluating trace recovery in which neither the source nor the

target artifacts dominantly represent information as NL text. Excluded publications

comprise linking source code to test code (Van Rompaey and Demeyer, 2009), and

work linking source code to text expressed in specific modelling notation (Antoniol

et al., 1999; Cleland-Huang, Marrero, and Berenbach, 2008).

4.2 Selection of publications

The systematic identification of publications consisted of two main phases: (i) develop-

ment of a gold standard of primary publications, and (ii) a search string that retrieves

them, and a systematic search for publications, as shown in Figure 3. In the first phase,

a set of publications was identified through exploratory searching, mainly by snowball

sampling from a subset of an informal literature review. The most frequently recurring

publication fora were then scanned for additional publications. This activity resulted

in 59 publications, which was deemed our gold standard4. The first phase led to an

understanding of the terminology used in the field, and made it possible to develop

valid search terms.

The second step of the first phase consisted of iterative development of the search

string. Together with a librarian at the department, we repeatedly evaluated our search

string using combined searches in the Inspec/Compendex databases. Fifty-five papers

in the gold standard were available in those databases. We considered the search string

good enough when it resulted in 224 unique hits with 80% recall and 20% precision

when searching for the gold standard, i.e. 44 of the 55 primary publications plus 176

additional publications were retrieved.

The final search string was composed of four parts connected with ANDs, specifying

the activity, objects, domain, and approach respectively.

(traceability OR "requirements tracing" OR "requirements trace" OR
"trace retrieval")
AND
(requirement* OR specification* OR document OR documents OR
design OR code OR test OR tests OR defect* OR artefact* OR
artifact* OR link OR links)
AND
(software OR program OR source OR analyst)
AND
("information retrieval" OR IR OR linguistic OR lexical OR
semantic OR NLP OR recovery OR retrieval)

The search string was first applied to the four databases supporting export of

search results to BibTeX format, as presented in Table 4. The resulting 581 papers

4 The gold standard was not considered the end goal of our study, but was the target during
the iterative development of the search string described next.
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Fig. 3 Overview of the publication selection phase. Smileys show the number of people in-
volved in a step, while double frames represent a validation. Numbers refer to number of
publications.

Primary Databases Search options #Search results
Inspec Title+abstract, no auto-stem 194
Compendex Title+abstract, no auto-stem 143
IEEE Explore All fields 136
Web of Science Title+abstract+keywords 108
Secondary Databases Search options #Search results
ACM Digital Library All fields, auto-stem 1038
SciVerse Hub Beta Science Direct+SCOPUS 203

Table 4 Search options used in databases, and the number of search results.

were merged in Zotero. After manual removal of duplicates, 281 unique publications

remained. This result equals 91% recall and 18% precision compared to the gold stan-

dard. The publications were filtered by our inclusion/exclusion criteria, as shown in

Figure 3, and specified in Section 4.1. Borderline articles were discussed in a joint ses-

sion of the first two authors. Our inclusion/exclusion criteria were validated by having

the last two authors compare 10% of the 581 papers retrieved from the primary data-

bases. The comparison resulted in a free-marginal multi-rater kappa of 0.85 (Randolph,

2005), which constitutes a substantial inter-rater agreement.

As the next step, we applied the search string to two databases without BibTeX

export support. One of them, ACM Digital Library, automatically stemmed the search

terms, resulting in more than 1000 search results. The inclusion/exclusion criteria were

then applied to the total 1241 publications. This step extended our primary studies by

13 publications, after duplicate removal, and application of inclusion/exclusion criteria,

10 identified in ACM Digital Library and 3 from SciVerse.

As the last step of our publication selection phase, we again conducted exploratory

searching. Based on our new understanding of the domain, we scanned the top publica-

tion fora and the most published scholars for missed publications. As a last complement,
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we searched for publications using Google Scholar. In total, this last phase identified

8 additional publications. Thus, the systematic database search generated 89% of the

total number of primary publications, which is in accordance with expectations from

the validation of the search string.

As a final validation step, we visualized the selection of the 70 primary publications

using REVIS, a tool developed to support SLRs based on visual text mining (Felizardo

et al., 2011). REVIS takes a set of primary publications in an extended BibTeX format

and, as presented in Figure 4, visualizes the set as a document map (a), edge bundles

(b), and a citation network for the document set (c). While REVIS was developed to

support the entire mapping process, we solely used the tool as a means to visually

validate our selection of publications.

In Figure 4, every node represents a publication, and a black outline distinguishes

primary publications (in c), not only primary publications are visualized). In a), the

document map, similarity of the language used in title and abstract is presented, calcu-

lated using the VSM and cosine similarities. In the clustering, only absolute distances

between publications carry a meaning. The arrows point out Antoniol et al.’s publica-

tion from 2002 (Antoniol et al., 2002*), the most cited publication on IR-based trace

recovery. The closest publications in a) are also authored by Antoniol et al. (Anto-

niol et al., 1999*; Antoniol et al., 2000*). An analysis of a) showed that publications

sharing many co-authors tend to congregate. As an example, all primary publications

authored by De Lucia et al. (De Lucia et al., 2004*; De Lucia et al., 2005*; De Lucia

et al., 2006*; De Lucia et al., 2007*; De Lucia, Oliveto, and Sgueglia, 2006*; De Lu-

cia, Oliveto, and Tortora, 2009*[a]; De Lucia, Oliveto, and Tortora, 2008*; De Lucia,

Oliveto, and Tortora, 2009*[b]), Capobianco et al. (Capobianco et al., 2009*[b]; Capo-

bianco et al., 2009*[a]), and Oliveto et al. (Oliveto et al., 2010*) are found within the

rectangle. No single outlier stands out, indicating that none of the primary publications

uses a very different language.

In b), the internal reference structure of the primary studies is shown, displayed

by edges connecting primary publications in the outer circle. Analyzing the citations

between the primary publications shows one outlier, just below the arrow. The publi-

cation by Park et al. (2000*), describing work conducted concurrently with Antoniol

et al. (2002*), has not been cited by any primary publications. This questioned the

inclusion of the work by Park et al., but as it meets our inclusion/exclusion criteria

described in Section 4.1, we decided to keep it.

Finally, in c), the total citation network of the primary studies is presented. Re-

garding common citations in total, again Park et al. (2000*) is an outlier, shown as I in

c). The two other salient data points, II and III, are both authored by Natt och Dag et

al. (Natt och Dag et al., 2004*; Natt och Dag, Thelin, and Regnell, 2006*). However,

according to our inclusion/exclusion criteria, there is no doubt that they should be

among the primary publications. Thus, in December 2011, we concluded the set of 70

primary publications.

However, as IR-based trace recovery is an active research field, several new studies

were published while this publication was in submission. To catch up with the latest

research, we re-executed the search string in the databases listed in Table 4 in June

2012, to catch up with publications from the second half of 2011. This step resulted

in 9 additional publications, increasing the number of primary publications to 79. In

the rest of this paper, we refer to the original 70 publications as the “core primary

publications”, and the 79 publications as just the “primary publications”.
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Fig. 4 Visualization of core primary publications. a) document map, shows similarities in
language among the core primary publications. b) edge bundle, displays citations among the
core primary publications. c) citation network, shows shared citations among the core primary
publications.

4.3 Data extraction and mapping

During the stage of the study, data was extracted from the primary publications ac-

cording to the pre-defined extraction form of the review protocol. We extracted general

information (title, authors, affiliation, publication forum, citations), details about the

applied IR approach (IR model applied, selection and weighting of features, enhance-

ments) and information about the empirical evaluation (types of artifacts linked, size
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and origin of dataset, research methodology, context of IR evaluation, results of eval-

uation).

The extraction process was validated by the second and third authors, working

on a 30% sample of the core primary publications. Half the sample, 15% of the core

primary publications, was used to validate extraction of IR details. The other half

was used by the other author to validate empirical details. As expected, the validation

process showed that the data extraction activity, and the qualitative analysis inherent

in that work, inevitably leads to some deviating interpretations. Classifying accord-

ing to the four levels of IR contexts, which was validated for the entire 30% sample,

showed the least consensus. This divergence, and other minor discrepancies detected,

were discussed until an agreement was found and followed for the rest of the primary

publications. Regarding the IR contexts in particular, we adopted an inclusive strategy,

typically selecting the higher levels for borderline publications.

4.4 Threats to validity

Threats to the validity of the mapping study are analyzed with respect to construct

validity, reliability, internal validity and external validity (Runeson et al., 2012). Par-

ticularly, we report deviations from the study guidelines (Kitchenham and Charters,

2007).

Construct validity concerns the relation between measures used in the study and

the theories in which the research questions are grounded. In this study, this concerns

the identification of papers, which is inherently qualitative and dependent on the co-

herence of the terminology in the field. To mitigate this threat, we took the following

actions. The search string we used was validated using a golden set of publications, and

we executed it in six different publication databases. Furthermore, our subsequent ex-

ploratory search further improved our publication coverage. A single researcher applied

the inclusion/exclusion criteria, although, as a validation proposed by Kitchenham and

Charters (2007), another researcher justified 10% of the search results from the pri-

mary databases. There is a risk that the specific terms of the search string related

to ‘activity’ (e.g. “requirements tracing”) and ‘objects’ cause a bias toward both re-

quirements research and publications with technical focus. However, the golden set of

publications was established by a broad scanning of related work, using both searching

and browsing, and was not restricted to specific search terms.

An important threat to reliability concerns whether other researchers would come

to the same conclusions based on the publications we selected. The major threat is the

extraction of data, as mainly qualitative synthesis was applied, a method that involves

interpretation. A single researcher extracted data from the primary publications, and

the other two researchers reviewed the process, as suggested by Brereton et al. (2007).

As a validation, both the reviewers individually repeated the data extraction on a

15% sample of the core primary publications. Another reliability threat is that we

present qualitative results with quantitative figures. Thus, the conclusions we draw

might depend on the data we decided to visualize; however, the primary studies are

publicly available, allowing others to validate our conclusions. Furthermore, as our

study contains no formal meta-analysis, no sensitivity analysis was conducted, neither

was publication bias explored explicitly.

External validity refers to generalization from this study. In general, the external

validity of a SM is strong, as the key idea is to aggregate as much as possible of the
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Publication forum #Publications
International Requirements Engineering 9
Conference
International Conference on Automated 7
Software Engineering
International Conference on Program 6
Comprehension
International Workshop on Traceability in 6
Emerging Forms of Software Engineering
Working Conference on Reverse 5
Engineering
Empirical Software Engineering 4

International Conference on Software 4
Engineering
International Conference on Software 4
Maintenance

Other publication fora 34
(two or fewer publications)

Table 5 Top publication channels for IR-based trace recovery.

available literature. Also, our research scope is tight (cf. the inclusion/exclusion criteria

in Table 3), and we do not claim that our map applies to other applications of IR in

software engineering. Thus, the threats to external validity are minor. Furthermore,

as the review protocol is presented in detail in Section 4, other researchers can judge

the trustworthiness of the results in relation to the search strategy, inclusion/exclusion

criteria, and the applied data extraction. Finally, internal validity concerns confounding

factors that can affect the causal relationship between the treatment and the outcome.

However, as our mapping study does not investigate casual relationships, and only

relies on descriptive statistics, this threat is minimal.

5 Results

Following the method defined in Section 4.2, we identified 79 primary publications.

Most of the publications were published in conferences or workshops (67 of 79, 85%),

while twelve (15%) were published in scientific journals. Table 5 presents the top pub-

lication channels for IR-based trace recovery, showing that it spans several research

topics. Figure 5 depicts the number of primary publications per year, starting from

Antoniol et al.’s pioneering work from 1999. Almost 150 authors have contributed to

the 79 primary publications, on average writing 2.2 of the articles. The top five authors

have on average authored 14 of the primary publications, and are in total included as

authors in 53% of the articles. Thus, a wide variety of researchers have been involved

in IR-based trace recovery, but there is a group of a few well-published authors. More

details and statistics about the primary publications are available in Appendix A.

Several publications report empirical results from multiple evaluations. Conse-

quently, our mapping includes 132 unique empirical contributions, i.e. the mapping

comprises results from 132 unique combinations of an applied IR model and its corre-

sponding evaluation on a dataset. As described in Section 4.1, we denote such a unit

of empirical evidence a ‘study’, to distinguish from ‘publications’.
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Fig. 5 IR-based trace recovery publication trend. The curve shows the number of publications,
while the bars display empirical studies in these publications.

5.1 IR models applied to trace recovery (RQ1)

In Figure 6, reported studies in the primary publications are mapped according to the

(one or several) IR models applied, as defined in Section 2. The most frequently re-

ported IR models are the algebraic models, VSM and LSI. For LSI, the dimensionality

reductions applied in previous studies is reported in Appendix A. Various probabilis-

tic models have been applied in 29 of the 132 evaluations, including 14 applications

of statistical LMs. Five of the applied approaches do not fit in the taxonomy; ex-

amples include utilizing swarm techniques (Sultanov and Huffman Hayes, 2010*) and

B-splines (Capobianco et al., 2009*[b]). As shown in Figure 6, VSM is the most ap-

plied model 2008-2011, however repeatedly as a benchmark to compare new IR models

against. An apparent trend is that trace recovery based on LMs has received an in-

creasing research interest during the last years.

Only 47 (72%) of the 65 primary publications with technical foci report which pre-

processing operations were applied to NL text. Also, in several publications one might

suspect that the complete preprocessing was not reported (e.g.(Chen, 2010*) and (Kong

et al., 2009*)), possibly due to page restriction. As a result, a reliable report of feature

selection for IR-based trace recovery is not possible. Furthermore, several papers do not

report any differences regarding preprocessing of NL text and source code (on the other

hand some papers make a clear distinction, e.g. (Wang, Lai, and Liu, 2009*)). Among

the publications reporting preprocessing, 32 report conducting stop word removal and

stemming, making it the most common combination. The remaining publications re-

port other combinations of stop word removal, stemming and ID splitting. Also, two

publications report applying Google Translate as a preprocessing step to translate NL

text to English (Li et al., 2008*; Huffman Hayes et al., 2011*). Figure 7 presents in

how many primary publications different preprocessing steps are explicitly mentioned,

both for NL text and source code.

Regarding NL text, most primary publications select all terms that remain after

preprocessing as features. However, two publications select only nouns and verbs (Zhao

et al., 2003*; Zhou and Yu, 2007*), and one selects only nouns (Capobianco et al.,

2009*[b]). Also, Capobianco et al. (2009*[a]) have explicitly explored the semantic role

of nouns. For the purposes of the mapping of primary publications dealing with source

code, a majority unfortunately does not clearly report about the feature selection (i.e.
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Fig. 6 Taxonomy of IR models in trace recovery. The numbers show in how many of the
primary publications a specific model has been applied, the numbers in parentheses show IR
models applied since 2008.

Fig. 7 Preprocessing operations used in IR-based trace recovery. The figure shows the number
of times a specific operation has been reported in the primary publications. Black bars refer
to preprocessing of NL text, gray bars show preprocessing of text extracted from source code.

selecting which subset of terms to extract to represent the artifact). Seven publica-

tions report that only IDs were selected, while four publications selected both IDs and

comments. Three other publications report more advanced feature selection, including

function arguments, return types and commit comments (Canfora and Cerulo, 2006*;

Abadi, Nisenson, and Simionovici, 2008*; Ali, Guéhéneuc, and Antoniol, 2011*[b]).

Among the primary publications, the weighting scheme applied to selected fea-

tures is reported in 58 articles. Although arguably more tangible for algebraic retrieval

models, feature weighting is also important in probabilistic retrieval. Moreover, most

weighing schemes are actually families of configuration variants (Salton and Buckley,

1988), but since this level of detail often is omitted in publications on IR-based trace

recovery, as also noted by Oliveto (2008), we were not able to investigate this further.

Figure 8 shows how many times, in the primary publications, various types of feature

weighting schemes have been applied. Furthermore, one publication reports upweight-
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Fig. 8 Feature weighting schemes in IR-based trace recovery. Bars depict how many times a
specific weighting scheme has been reported in the primary publications. Black color shows
reported weighting in publications applying algebraic IR models.

ing of verbs in the TFIDF weighting scheme, motivated by verbs’ nature of describing

the functionality of software (Mahmoud and Niu, 2010*).

Several enhancement strategies to improve the performance of IR-based trace re-

covery tools are proposed, as presented in Figure 9. The figure shows how many times

different enhancement strategies have been applied in the primary publications. Most

enhancements aim at improving the precision and recall of the tool output, however

also a computation performance enhancement is reported (Jiang et al., 2008*). The

most frequently applied enhancement strategy is relevance feedback, applied by e.g. De

Lucia, Oliveto, and Sgueglia (2006*) and Huffman Hayes et al. (2007*), giving the hu-

man a chance to judge partial search results, followed by re-executing an improved

search query. The following most frequently applied strategies, further described in

Section 2.1, are applying a thesaurus to deal with synonyms, (e.g. proposed by Huff-

man Hayes, Dekhtyar, and Sundaram (2006*) and Leuser and Ott (2010*)), clustering

results based on for instance document structure to improve presentation or ranking of

recovered trace links, (explored by e.g. Duan and Cleland-Huang (2007*) and Zhou and

Yu (2007*)), and phrasing, i.e. going beyond the BoW model by considering sequences

of words, e.g. as described by Zou, Settimi, and Cleland-Huang (2006*) and Chen

and Grundy (2011*). Other enhancement strategies repeatedly applied include: up-

weighting terms considered important by applying a project glossary, e.g. (Zou, Settimi,

and Cleland-Huang, 2008*), machine learning approaches to improve results based on

for example the existing trace link structure, e.g. (Di and Zhang, 2009*), and combin-

ing the results from different retrieval models in voting systems, e.g. (Gethers et al.,

2011*). Yet another set of enhancements have only been proposed in single primary

publications, such as query expansion (Gibiec, Czauderna, and Cleland-Huang, 2010*),

analyses of call graphs (Zhao et al., 2003*), regular expressions (Chen and Grundy,

2011*), and smoothing filters (De Lucia et al., 2011*).

5.2 Types of software artifacts linked (RQ2)

Figure 10 maps onto the classical software development V-model the various software

artifact types that are used in IR-based trace recovery evaluations. Requirements, the

left part of the model, include all artifacts that specify expectations on a system, e.g.

market requirements, system requirements, functional requirements, use cases, and
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Fig. 9 Enhancement strategies in IR-based trace recovery. Bars depict how many times a
specific strategy has been reported in the primary publications. Black color represents en-
hancements reported in publications using algebraic IR models.

design specifications. The distinction between these are not always possible to derive

from the publications, and hence we have grouped them together under the broad label

‘requirements’. The right part of the model represents all artifacts related to verification

activities, e.g. test case descriptions and test scripts. Source code artifacts constitute

the bottom part of the model. Note however, that our inclusion/exclusion criteria,

excluding duplication analyses and studies where neither source nor target artifacts

are dominated by NL text, results in fewer links between requirements-requirements,

code-code, code-test, test-test and defect-defect than would have been the case if we

had studied the entire field of IR applications within software engineering.

The most common type of links that has been studied was found to be between

requirements (37 evaluations), either of the same type or of different levels of abstrac-

tion. The second most studied artifact linking is between requirements and source code

(32 evaluations). Then, in decreasing order, mixed links in an information space of re-

quirements, source code and tests (10 evaluations), links between requirements and

tests (9 evaluations) and links between source code and manuals (6 evaluations). Less

frequently studied trace links include links between source code and defects/change re-

quests (e.g. (Gethers et al., 2011)) and links between tests (Lormans, Van Deursen, and

Gross, 2008*). In three primary publications, the types of artifacts traced are unclear,

either not specified at all or merely described as ‘documents’ (e.g. (Chen, Hosking, and

Grundy, 2011*)).

5.3 Strength of evidence (RQ3)

An overview of the datasets used for evaluations in the primary publications is shown in

Figure 11. In total we identified 132 evaluations; in 42 (32%) cases proprietary artifacts

were studied, either originating from development projects in private companies or

the US agency NASA. Nineteen (14%) evaluations using artifacts collected from open

source projects have been published and 65 (49%) employing artifacts originating from

a university environment. Among the datasets from university environments, 34 consist
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Fig. 10 Types of links recovered in IR-based trace recovery. The table shows the number of
times a specific type of link is the recovery target in the primary publications, also represented
by the weight of the edges in the figure.

of artifacts developed by students. In six primary publications, the origin of the artifacts

is mixed or unclear (e.g. (Park et al., 2000*; Li et al., 2008*; Parvathy, Vasudevan,

and Balakrishnan, 2008*). Figure 11 also depicts the sizes of the datasets used in the

evaluations, wrt. the number of artifacts. The majority of the evaluations in the primary

publications were conducted using an information space of less than 500 artifacts. In 38

of the evaluations, less than 100 artifacts were used as input. The primary publications

with the by far highest number of artifacts, evaluated links between 3,779 business

requirements and 8,334 market requirements at Baan (Natt och Dag et al., 2004*)

(now owned by Infor Global Solutions), and trace links between 9 defect reports and

13,380 test cases at Research in Motion (Kaushik, Tahvildari, and Moore, 2011*).

Table 6 presents the six datasets that have been most frequently used in evaluations

of IR-based trace recovery, sorted by the number of primary studies in which they

were used. CM-1, MODIS, and EasyClinic are publicly available from the CoEST web

page5. Note that most publicly available datasets except EasyClinic are bipartite, i.e.

the dataset contains only links between two disjunct subsets of artifacts.

All primary publications report some form of empirical evaluations, a majority

(80%) conducting “studies of methods” (Huffman Hayes, Dekhtyar, and Sundaram,

2006*). Fourteen publications (18%) report results regarding the human analyst, two

primary publications study both methods and human analysts (Antoniol et al., 2002*;

De Lucia et al., 2006*). Figure 12 shows the primary publications mapped to the

four levels of the context taxonomy described in Section 3.3. Note that a number of

publications cover more than one environment, due to either mixed artifacts or multi-

ple studies. Also, two publications did not report the environment, and could not be

mapped. A majority of the publications (50), exclusively conducted evaluations taking

place in the innermost retrieval context, the so-called “cave of IR evaluation” (Ingw-

ersen and Järvelin, 2005). As mentioned in Section 2, evaluations in the cave display

5 coest.org
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Fig. 11 Datasets used in studies on IR-based trace recovery. Bars show number and origin of
artifacts.

# Dataset Artifacts Links Origin Development
characteris-
tics

Sizea Lang.

17 CM-1 Requirements
specifying
system re-
quirements
and detailed
design

Bipartite
dataset,
many-
to-many
links

NASA Embedded
software de-
velopment in
governmental
agency

455 English

16 EasyClinic Use cases,
sequence
diagrams,
source code,
test case
descriptions

Many-
to-many
links

Univ. of
Salerno

Student
project

150 Italian

8 MODIS Requirements
specifying
system re-
quirements
and detailed
design

Bipartite
dataset,
many-
to-many
links.

NASA Embedded
software de-
velopment in
governmental
agency

68 English

7 Ice-
Breaker
System
(IBS)

Functional
require-
ments and
source code

Not pub-
licly avail-
able in full
detail

Robertson
and
Robert-
son (1999)

Textbook on
requirements
engineering

185 English

6 LEDA Source code
and user
documenta-
tion

Bipartite
dataset,
many-
to-one
links

Max
Planck
Inst. for
Informatics
Saarbrücken

Scientific com-
puting

296 English

5 Event-
Based
Trace-
ability
(EBT)

Functional
require-
ments and
source code

Not pub-
licly avail-
able

DePaul
Univ.

Tool from re-
search project

138 English

a Size is presented as the total number of artifacts.

Table 6 Summary of the datasets most frequently used for evaluations.
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Fig. 12 Contexts of evaluations of IR-based trace recovery, along with study environments.
Numbers show the number of primary publications that target each combination.

an inconsistent use of terminology. Nineteen (38%) of the primary publications refer

to their evaluations in the retrieval context as experiments, 22 (44%) call them case

studies, and in nine (18%) publications they are merely referred to as studies.

Since secondary measures were applied, fourteen publications (18%) are considered

to have been conducted in the seeking context. Eleven primary publications conducted

evaluations in the work context, mostly through controlled experiments with student

subjects. Only three evaluations are reported in the outermost context of IR evaluation,

the project context, i.e. evaluating the usefulness of trace recovery in an actual end

user environment. Among these, only a single publication reports an evaluation from

a non-student development project (Li et al., 2008*).

6 Discussion

This section discusses the results reported in the previous section and concludes on

the research questions. Along with the discussions, we conclude every question with

concrete suggestions on how to advance research on IR-based trace recovery. Finally,

in Section 6.4, we map our recommendations to the traceability challenges articulated

by CoEST (Gotel et al., 2012).

6.1 IR models applied to trace recovery (RQ1)

During the last decade, a wide variety of IR models have been applied to recover trace

links between artifacts. Our study shows that the most frequently applied models have

been algebraic, i.e. Salton’s classic VSM from the 60s (Salton, Wong, and Yang, 1975)

and LSI, the extension developed by Deerswester in the 90s (Deerwester et al., 1990).

Also, we show that VSM has been implemented more frequently than LSI, in contrast

to what was reported by Binkley and Lawrie (2010). The interest in algebraic models

might have been caused by the straightforwardness of the techniques; they have con-

crete geometrical interpretations, and are rather easy to understand also for non-IR

experts. Moreover, several open source implementations are available. Consequently,
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the algebraic models are highly applicable to trace recovery studies, and they constitute

feasible benchmarks when developing new methods. However, in line with the devel-

opment in the general IR field (Zhai, 2007), LMs (Ponte and Croft, 1998) have been

getting more attention in the last years. Regarding enhancements strategies, relevance

feedback, introduction of a thesaurus and clustering of results are the most frequently

applied.

While implementing an IR model, the developers inevitably have to make a va-

riety of design decisions. Consequently, this applies also to IR-based trace recovery

tools. As a result, tools implementing the same IR model can produce rather differ-

ent output (Borg, Runeson, and Brodén, 2012). Thus, omitting details in the report-

ing obstructs replications and the possibility to advance the field of trace recovery

through secondary studies and evidence-based software engineering techniques (Jedl-

itschka, Ciolkowski, and Pfahl, 2008). Unfortunately, even fundamental information

about the implementation of IR is commonly left out in trace recovery publications.

Concrete examples include feature selection and weighting (particularly neglected for

publications indexing source code) and the number of dimensions of the LSI sub-

space. Furthermore, the heterogeneous use of terminology is an unnecessary difficulty

in IR-based trace recovery publications. Concerning general traceability terminology,

improvements can be expected as Cleland-Huang, Gotel, and Zisman (2012) dedicated

an entire chapter of their recent book to this issue. However, we hope that Section 2.1

of this paper is a step toward aligning also the IR terminology in the community.

To support future replications and secondary studies on IR-based trace recovery, we

suggest that:

– Studies on IR-based trace recovery should use IR terminology consistently, e.g.

as presented in Table 1 and Figure 6, and use general traceability terminology as

proposed by Cleland-Huang, Gotel, and Zisman (2012).

– Authors of articles on IR-based trace recovery should carefully report the imple-

mented IR model, including the features considered, to enable aggregating empirical

evidence.

– Technology-oriented experiments on IR-based trace recovery should adhere to rigor-

ous methodologies such as the evaluation framework by Huffman Hayes and Dekht-

yar (2005a).

6.2 Types of software artifacts linked (RQ2)

Most published evaluations on IR-based trace recovery aim at establishing trace links

between requirements in a wide sense, or between requirements and source code. Ap-

parently, the artifacts of the V&V side of the V-model are not as frequently in focus

of researchers working on IR-based trace recovery. One can think of several reasons for

this unbalance. First, researchers might consider that the structure of the document

subspace of the requirement side of the V-model is more important to study, as it is

considered the “starting point” of development. Second, the early public availability

of a few datasets containing requirements of various kinds, might have paved the way

for a series of studies by various researchers. Third, publicly available artifacts from

the open source community might contain more requirements artifacts than V&V ar-

tifacts. Nevertheless, research on trace recovery would benefit from studies on a more
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diverse mix of artifacts. For instance, the gap between requirements artifacts and V&V

artifacts is an important industrial challenge (Sabaliauskaite et al., 2010). Hence, ex-

ploring whether IR-based trace recovery could be a way to align “the two ends of

software development” is worth an effort.

Apart from the finding that requirement-centric studies on IR-based trace recov-

ery are over-represented, we found that too few studies go beyond trace recovery in

bipartite traceability graphs. Such simplified datasets hardly represent the diverse in-

formation landscapes of large-scale software development projects. Exceptions include

studies by De Lucia et al., who repeatedly have evaluated IR-based trace recovery

among use cases, functional requirements, source code and test cases (De Lucia et al.,

2004*; De Lucia et al., 2006*; De Lucia, Oliveto, and Sgueglia, 2006*; De Lucia, Oliveto,

and Tortora, 2008*; De Lucia, Oliveto, and Tortora, 2009*[a]; De Lucia, Oliveto, and

Tortora, 2009*[b]; De Lucia et al., 2011*), however originating from student projects,

which reduces the industrial relevance.

To further advance the research of IR-based trace recovery, we suggest that:

– Studies should be conducted on diverse datasets containing a higher number of

artifacts, to explore recovery of different types of trace links.

– Studies should go beyond bipartite datasets to better represent the heterogeneous

information landscape of software engineering, thus enabling studies on several

types of links within the same datasets.

6.3 Strength of evidence (RQ3)

Most evaluations on IR-based trace recovery were conducted on bipartite datasets con-

taining fewer than 500 artifacts. Obviously, as pointed out by several researchers, any

software development project involves much larger information landscapes, that also

consist of heterogeneous artifacts. A majority of the evaluations of datasets containing

more than 1,000 artifacts were conducted using open source artifacts, an environment

in which fewer types of artifacts are typically maintained (Scacchi, 2002; Canfora and

Cerulo, 2006*), thus links to or from source code are more likely to be studied. Even

though small datasets might be reasonable to study, only two primary publications

report from evaluations containing more than 10,000 artifacts (Natt och Dag et al.,

2004*; Kaushik, Tahvildari, and Moore, 2011*). As a result, the question of whether

the state-of-the-art IR-based trace recovery scales to larger document spaces or not

remains unanswered. In the empirical NLP community, Banko and Brill (2001) showed

that some conclusions (related to machine learning techniques for NL disambiguation)

drawn on small datasets may not carry over to very large datasets. Researchers on

IR-based trace recovery appear to be aware of the scalability issue however, as it is

commonly mentioned as a threat to external validity and suggested as future work in

the primary publications (Huffman Hayes et al., 2004*; De Lucia et al., 2007*; Leuser,

2009*; Wang, Lai, and Liu, 2009*; Gibiec, Czauderna, and Cleland-Huang, 2010*; Mah-

moud and Niu, 2011*). On the other hand, one reason for the many studies on small

datasets is the challenge involved in obtaining the complete set of correct trace links,

i.e. a gold standard or ground truth, required for evaluations. In certain domains, e.g.

development of safety-critical systems, such information might already be available. If

such information is missing however, a traceability researcher first needs to establish

the gold standard, which requires much work for a large dataset.
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Regarding the validity of datasets used in evaluations, a majority used artifacts orig-

inating from university environments as input. Furthermore, most studies on propri-

etary artifacts used only the CM-1 or MODIS datasets collected from NASA projects,

resulting in their roles as de-facto benchmarks from an industrial context. Clearly,

again the external validity of state-of-the-art trace recovery must be questioned. On

one hand, benchmarking can be a way to advance IR tool development, as TREC

have demonstrated in the general IR research (Smeaton and Harman, 1997), but on

the other hand it can also lead the research community to over-engineering tools on

specific datasets (Borg, Runeson, and Brodén, 2012). Thus, the community needs to

consider the risk of optimization against those specific benchmarks, which may make

the final result less suitable in the general case, if the benchmarks are not representative

enough. The benchmark discussion has been very active in the traceability community

the last years (Dekhtyar and Huffman Hayes, 2006; Dekhtyar, Huffman Hayes, and

Antoniol, 2007; Cleland-Huang et al., 2011; Ben Charrada et al., 2011*; Gotel et al.,

2012).

A related problem, in particular for proprietary datasets that cannot be disclosed,

is that datasets often are poorly described (Borg, Wnuk, and Pfahl, 2012). In some

particular publications, NL artifacts in datasets are only described as ‘documents’.

Thus, as already discussed related to RQ1 in Section 6.1, inadequate reporting obstructs

replications and secondary studies. Moreover, providing information about the datasets

and their contexts is also important for interpreting results and their validity, in line

with previous work by Ali, Guéhéneuc, and Antoniol (2012) and Borg, Wnuk, and

Pfahl (2012). For example, researchers should report as much of the industrial context

from which the dataset arose as encouraged by Kitchenham et al. (2002). As a starting

point, researchers could use the preliminary framework for describing industrial context

by Petersen and Wohlin (2009).

As discussed in Section 3.4, P-R values can be reported from IR-based trace re-

covery evaluations in different ways. Unfortunately, the reported values are not always

properly explained in the primary publications. In the evaluation report, it is central to

state whether a query-based or matrix-based evaluation style has been used, as well as

which cut-off strategies were applied. Furthermore, for query-based evaluations (closer

resembling traditional IR), we agree with the opinion of Spärck Jones, Walker, and

Robertson (2000), that reporting only precision at standard recall levels is opaque.

The figures obscure the actual numbers of retrieved documents needed to get beyond

low recall, and should be complemented by P-R values from a constant cut-point cut-

off strategy. Moreover, regarding both query-based and matrix-based evaluation styles,

reporting also secondary measures (such as MAP and DCG) is a step toward more

mature evaluations.

Most empirical evaluations of IR-based trace recovery were conducted in the inner-

most of IR contexts, i.e. a clear majority of the research was conducted “in the cave”

or just outside (Ingwersen and Järvelin, 2005). For some datasets, the output accuracy

of IR models has been well-studied during the last decade. However, more studies on

how humans interact with the tools are required; similar to what has been explored

by Huffman Hayes et al. (Huffman Hayes et al., 2004*; Huffman Hayes and Dekhtyar,

2005b; Dekhtyar, Huffman Hayes, and Larsen, 2007*; Cuddeback, Dekhtyar, and Huff-

man Hayes, 2010*) and De Lucia et al. (De Lucia, Oliveto, and Sgueglia, 2006*; De

Lucia, Oliveto, and Tortora, 2008*; De Lucia, Oliveto, and Tortora, 2009*[a]). Thus,

more evaluations in a work task context or a project context are needed. Regarding

the outermost IR context, only one industrial in-vivo evaluation (Li et al., 2008*) and
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three evaluations in student projects (De Lucia et al., 2005*; De Lucia et al., 2006*; De

Lucia et al., 2007*) have been reported. Finally, regarding the innermost IR contexts,

the discrepancy of methodological terminology should be harmonized in future studies.

To further advance evaluations of IR-based trace recovery, we suggest that:

– The community should continue its struggle to acquire a set of more representative

benchmarks.

– Researchers should better characterize both the context and the datasets used in

evaluations, in particular when they cannot be disclosed for confidentiality reasons.

– P-R values should be complemented by secondary measures such as MAP and DCG,

and it should be made clear whether a query-based or matrix-based evaluation style

was used.

– Focus on tool enhancements “in the cave” should be shifted towards evaluations in

the work task or project context.

6.4 In the light of the CoEST research agenda

Gotel et al. (2012) recently published a framework of challenges in traceability research,

a CoEST community effort based on a draft from 2006 (Cleland-Huang, Huffman Hayes,

and Dekhtyar, 2006). The intention of the framework is to provide a structure to

direct future research on traceability. CoEST defines eight research themes, addressing

challenges that are envisioned to be solved in 2035, as presented in Table 7. Our

work mainly contributes to three of the research themes, purposed traceability, trusted

traceability, and scalable traceability. Below, we discuss the three research themes in

relation to IR-based trace recovery, based on our empirical findings.

The research theme purposed traceability charts the development of a classification

scheme for traceability contexts, and a collection of possible stakeholder requirements

on traceability. Also, a “Traceability Book of Knowledge” is planned, including ter-

minology, methods, practices and the like. Furthermore, the research agenda calls for

additional empirical studies. Our contribution intensifies CoEST’s call for additional

industrial case studies, by showing that a majority of IR-based trace recovery studies

have been conducted in the “cave of IR evaluation”. To guide future empirical studies,

we propose an adapted version of the model of IR evaluation contexts by Ingwersen

and Järvelin (2005), tailored for IR-based trace recovery. Also, we confirm the need

for a “Traceability Book of Knowledge” and an aligned terminology in the traceability

community, as our secondary study was obstructed by language discrepancies.

Trusted traceability comprises research to gain improvements in the quality of cre-

ation and maintenance of automatic trace links. Also, the research theme calls for

empirical evidence as to the quality of traceability methods and tools with respect

to the quality of the trace links. Our work, founded in evidence-based software engi-

neering approaches, aggregated the empirical evidence of IR-based trace recovery until

December 2011. Based on this, we provide several advice on how to advance future

evaluations.

Finally, the research theme scalable traceability calls for the traceability commu-

nity to obtain and publish large industrial datasets from various domains to enable

researchers to investigate scalability of traceability methods. Also this call for research

is intensified by our work, as we empirically show that alarmingly few evaluations of
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Research theme Goal to reach by 2035
Purposed traceability to define and instrument prototypical traceability profiles

and patterns
Cost-effective traceability to perform systematic quality assessment and assurance of

the traceability
Configurable traceability to provide for levels of abstraction and granularity in

traceability techniques, methods and tools, facilitated
by improved trace visualizations, to handle very large
datasets and the longevity of these data

Trusted traceability to develop cost-benefit models for analyzing stakeholder
requirements for traceability and associated solution
options at a fine-grained level of detail

Scalable traceability to use dynamic, heterogeneous and semantically rich
traceability information models to guide the definition
and provision of traceability

Portable traceability to agree upon universal policies, standards, and a unified
representation or language for expressing traceability
concepts

Valued traceability to raise awareness of the value of traceability, to gain
buy-in to education and training, and to get commitment
to implementation

Ubiquitous traceability to provide automation such that traceability is
encompassed within broader software and systems
engineering processes, and is integral to all tool support

Table 7 Traceability research themes defined by CoEST (Gotel et al., 2012). Ubiquitous
traceability is referred to as “the grand challenge of traceability”, since it requires significant
progress in the other research themes

.

IR-based trace recovery have been conducted on industrial datasets of representative

sizes.

7 Summary and Future Work

Our review of IR-based trace recovery compares 79 publications containing 132 empir-

ical studies, systematically derived according to established procedures (Kitchenham

and Charters, 2007). Our study constitutes the most extensive summary of publications

of IR-based trace recovery yet published.

More than 10 IR models have been applied to trace recovery (RQ1). More studies

have evaluated algebraic IR models (i.e. VSM and LSI) than probabilistic models (e.g.

BIM, PIN, LM, LDA). A visible trend is, in line with development in the general field of

IR, that the probabilistic subset of statistical language models have received increased

attention in recent years. While extracting data from the primary publications, it

became clear that the inconsistent use of IR terminology is an issue in the field. In an

attempt to homogenize the language, we present structure in the form of a hierarchy

of IR models (Figure 6) and a collection of IR terminology (Table 1).

In the 132 mapped empirical studies, artifacts from the entire development process

have been linked (RQ2). The dominant artifact type is requirements at various levels of

abstraction, followed by source code. Substantially fewer studies have been conducted

on test artifacts, and only single publications have targeted user manuals and defect

reports. Furthermore, a majority of the evaluations of IR-based trace recovery have
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been made on bipartite datasets, i.e. only trace links between two disjoint sets of

artifacts were recovered.

Among the 79 primary publications mapped in our study, we conclude that the het-

erogeneity of reporting detail obstructs the aggregation of empirical evidence (RQ3).

Also, most evaluations have been conducted on small bipartite datasets containing

fewer than 500 artifacts, which is a severe threat to external validity. Furthermore, a

majority of evaluations have been using artifacts originating from a university envi-

ronment, or a dataset of proprietary artifacts from NASA. As a result, the two small

datasets EasyClinic and CM-1 constitute the de-facto benchmark in IR-based trace

recovery. Another validity threat to the applicability of IR-based trace recovery is that

a clear majority of the evaluations have been conducted in “the cave of IR evaluation”

as reported in Figure 12. Instead, the strongest empirical evidence in favor of IR-based

trace recovery tools comes from a set of controlled experiments on student subjects,

reporting that tool-supported subjects outperform manual control groups. Thus, we

argue that industrial in-vivo evaluations are needed to motivate the feasibility of the

approach and further studies on the topic, in which IR-based trace recovery should be

studied within the full complexity of an industrial setting. As such, our empirical find-

ings intensify the recent call for additional empirical studies by CoEST (Gotel et al.,

2012).

In several primary publications it is not made clear whether a query-based or

matrix-based evaluation style has been used. Also, the different reporting styles of P-R

values make secondary studies on candidate trace link accuracies challenging. We argue

that both the standard measures precision at fixed recall levels and P-R at specific

document cut-offs should be reported when applicable, complemented by secondary

measures such as MAP and DCG.

As a continuation of this literature study, we intend to publish the extracted data

to allow for collaborative editing, and for interested readers to review the details. A

possible future study would be to conduct a deeper analysis of the enhancement strate-

gies that have been reported as successful in the primary publications, to investigate

patterns concerning in which contexts they have been successfully applied. Another

option for the future is to aggregate results from the innermost evaluation context,

as P-R values repeatedly have been reported in the primary studies. However, such a

secondary study must be carefully designed to allow a valid synthesis across different

studies. Finally, future work could include other mapping dimensions, such as catego-

rizing the primary publications according to other frameworks, e.g positioning them

related to the CoEST research themes.
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A Classification of Primary Publications

Tables 8-12 present our classification of the primary publications, sorted by number of citations
according to Google Scholar (July 1, 2012). Note that the well-cited works by Marcus and
Maletic (2003) (354 citations) and Antoniol et al. (2000) (85 citations) are not listed. Applied
IR models are reported in the fourth column. For LSI, the number of dimensions (k) in the
reduced term-document space is reported in parenthesis, divided per dataset when possible.
The number of dimensions is reported either as a fixed number of dimensions, an interval
of dimensions, a dimensionality reduction in percent, or ‘N/A’ when the information is not
available. A bold number represents that the best choice, as concluded by the original authors.
Regarding LDA, the number of topics (t) is reported. Datasets are classified according to
origin: proprietary (Ind), open source (OS), university (Univ), student (Stud), not clearly
reported (Unclear), and mixed origin (Mixed). Numbers in parentheses show the number of
artifacts studied, i.e. the total number of artifacts in the dataset, ‘N/A’ is used when it is
not reported. Unless the full dataset name is presented, the following abbreviations are used:
IBS (Ice Breaker System), EBT (Event-Based Traceability), LC (Light Control system), TM
(Transient Meter). Evaluation, the rightmost column, maps primary publications to the context
taxonomy described in Section 3 (Level 1-4 = retrieval context, seeking context, work task
context, project context). Finally, Table 13 shows the distinctly most productive authors and
affiliations, based upon our primary publications.

Cit. Title Authors IR mod. Dataset Evaluation
486 Recovering Traceability Links Antoniol, Canfora, BIM, Univ: LEDA (296), Level 1,

between Code and Documentation De Lucia, Merlo VSM Stud: Albergate (116) Level 3
(8 subj.)

205 Advancing Candidate Link Tracing: Huffman Hayes, VSM, LSI Ind: MODIS (68), Level 2
Generation for Requirements Dekhtyar, Sundaram (k=10 (MODIS), CM-1 (455)
The Study of Methods 100 (CM-1))

169 Improving Requirements Tracing via Huffman Hayes, VSM Ind: MODIS (68) Level 1
Information Retrieval Dekhtyar, Osborne

140 Recovering Traceability Links in De Lucia, Fasano, LSI Stud: (Multiple Level 4
Software Artifact Management Oliveto, Tortora (k=30-100%) projects) (150 subj.)
Systems Using Information Retrieval
Methods

99 Utilizing Supporting Evidence to Cleland-Huang, PIN Univ: IBS (252), Level 1
Improve Dynamic Requirements Settimi, Duan, Zou EBT (114), LC (61)
Traceability

79 Best Practices for Automated Cleland-Huang, PIN Ind: Siemens Logistics Level 1
Traceability Berenbach, Clark, and Automation (N/A),

Settimi, Romanova Univ: IBT (255),
EBT (114)

74 Helping Analysts Trace Huffman Hayes, VSM Ind: MODIS (68) Level 2
Requirements: An Objective Look Dekhtyar, Sundaram,

Howard
70 Can LSI help Reconstructing Lormans, van LSI Ind: Philips (359), Level 1

Requirements Traceability in Design Deursen (k=20%) Stud: PacMan (46),
and Test? Callisto (N/A)

68 Supporting Software Evolution Settimi, Cleland- VSM Univ: EBT (138) Level 1
through Dynamically Retrieving Huang, Khadra,
Traces to UML Artifacts Mody, Lukasik,

DePalma
64 Enhancing an Artefact Management De Lucia, Fasano, LSI Stud: EasyClinic (150) Level 1

System with Traceability Recovery Oliveto, Tortora (k=10-50%)
Features
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Cit. Title Authors IR mod. Dataset Evaluation
58 Recovery of Traceability Links Marcus, Maletic, LSI (N/A) Univ: LEDA (228- Level 1

Between Software Documentation Sergeyev 803), Stud:
and Source Code Albergate (73)

44 Recovering Code to Documentation Antoniol, Canfora, BIM Univ: LEDA (296) Level 1
Links in OO Systems De Lucia, Marlo

40 Fine grained indexing of software Canfora, Cerulo BM25 OS: Gedit (233), Level 1
repositories to support impact ArgoUML (2208),
analysis Firefox (680)

38 ADAMS Re-Trace: A Traceability De Lucia, Fasano, LSI (N/A) Stud: (48, 50, 54, Level 4
Recovery Tool Oliveto, Tortora 55, 73, 74, 111) (7 proj.)

36 On the Equivalence of Information Oliveto, Gethers, VSM, LSI (N/A), Stud: EasyClinic (77), Level 1
Retrieval Methods for Automated Poshyvanyk, LM, eTour (174)
Traceability Link Recovery De Lucia LDA (t=50-300)

33 Incremental Approach and User De Lucia, Oliveto, VSM, LSI (k=10, Ind: MODIS (68), Level 1
Feedbacks: a Silver Bullet for Sgueglia 19, (MODIS), Stud: EasyClinic (150)
Traceability Recovery 60 (EasyClinic))

30 A machine learning approach for Cleland-Huang, PIN Mixed: (254) Level 2
tracing regulatory codes to product Czauderna, Gibiec,
specific requirements Emenecker

30 Assessing IR-based traceability De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3
recovery tools through controlled Tortora (20, 12 subj.)
experiments

29 A Traceability Technique for Abadi, Nisenson, VSM, LSI OS: SCA (1311), Level 2
Specifications Simionovici (k=5-100, CORBA (3340)

16 (SCA),
96 (CORBA)),
PLSI (k=5-128),
SDR (k=5-128),
LM

29 Can Information Retrieval De Lucia, Fasano, LSI (k=20%) Stud: EasyClinic (150), Level 1,
Techniques Effectively Support Oliveto, Tortora Univ: ADAMS (309), Level 4
Traceability Link Recovery? LEDA (803) (150 subj.)

29 Software traceability with topic Asuncion, Asuncion, LSI (k=10), Univ: ArchStudio (N/A), Level 1
modeling Taylor LDA (t=10, Stud: EasyClinic (160)

20,30) Stud: EasyClinic (160)
29 Speeding up Requirements to Natt och Dag, VSM Ind: Baan Level 2

Management in a Product Software Gervasi, (12083)
Company: Linking Customer Wishes Brinkkemper,
Product Requirements through Regnell
Linguistic Engineering

29 Tracing Object-Oriented Code into Antoniol, Canfora, BIM Stud: Level 1
Functional Requirements De Lucia, Casazza, Albergate (76)

Merlo
28 Clustering support for automated Duan, PIN Univ: IBS (185) Level 1

tracing Cleland-Huang
27 Text mining for software Huffman Hayes, N/A Ind: MODIS (68) Level 3

engineering: how analyst feedback Dekhtyar, Sundaram (3 subj.)
impacts final results

26 A feasibility study of automated Natt och Dag, VSM Ind: Telelogic Level 1
natural language requirements Regnell, Carlshamre, (1891, 1089)
analysis in market-driven Andersson, Karlsson
development

26 Implementation of an Efficient Park, Kim, Sliding Ind: Unclear (33) Level 1
Requirements Analysis Supporting Ko, Seo window,
System Using Similarity Measure syntactic
Techniques parser

25 Traceability Recovery in RAD Di Penta, Gradara, BIM Univ: TM (49) Level 1
Software Systems Antoniol

23 REquirements TRacing On target Huffman Hayes, VSM Ind: CM-1 (74) Level 3
(RETRO): improving software Dekhtyar, Sundaram, (30 subj.)
maintenance through traceability Holbrook,
recovery Vadlamudi, April

22 Phrasing in Dynamic Requirements Zou, Settimi, PIN Univ: IBS (235), Level 1
Trace Retrieval Cleland-Huang LC (59), EBT (93)
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Cit. Title Authors IR mod. Dataset Evaluation
21 Combining Textual and Structural McMillan, LSI (k=15, 25, Univ: Level 1

Analysis of Software Artifacts for Poshyvanyk, 50, 75) CoffeeMaker (143)
Traceability Link Recovery Revelle

20 Tracing requirements to defect Yadla, Huffman VSM Ind: CM-1 (68,118) Level 2
reports: an application of Hayes, Dekhtyar
information retrieval techniques

18 Automated Requirements Cuddeback, VSM OS: BlueJ Level 3
Traceability: the Study of Human Dekhtyar, Huffman Plugin (49) (26 subj.)
Analysts Hayes

18 Incremental Latent Semantic Jiang, Nguyen, LSI (k=10%) Univ: LEDA (634) Level 1
Indexing for Automatic Traceability Chen, Jaygarl,
Link Evolution Management Chang

18 Understanding how the Zhao, Zhang, VSM OS: Desktop Level 1
requirements are implemented in Liu, Juo, Sun Calculator (123)
source code

17 Improving Automated Zou, Settimi, PIN Ind: CM-1 (455), Level 2
Requirements Trace Retrieval: A Cleland-Huang Univ: IBS (235),
Study of Term-Based Enhancement EBT (93), LC (89),
Methods Stud: SE450 (521)

17 IR-Based Traceability Recovery De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3
Processes: An Empirical Comparison Tortora (30 subj.)
of ”One-Shot” and Incremental
Processes

17 Make the Most of Your Time: How Dekhtyar, Huffman VSM Ind: CM-1 (455) Level 2
Should the Analyst Work with Hayes, Larsen
Automated Traceability Tools?

16 Baselines in requirements tracing Sundaram, Huffman VSM, LSI Ind: CM-1 (455), Level 2
Hayes, Dekhtyar (k=10,19,29 MODIS (68)

(MODIS),
100,200 (CM-1))

11 Challenges for semi-automatic trace Leuser VSM, Ind: Daimler AG Level 1
recovery in the automotive domain LSI (N/A) (1500)

11 Monitoring Requirements Coverage Lormans, Gross, LSI (N/A) Ind: LogicaCMG (219) Level 1
Using Reconstructed Views: An van Deursen,
Industrial Case Study Stehouwer,

van Solingen
11 On the role of the nouns in IR-based Capobianco, De LSI (N/A), Stud: EasyClinic (150) Level 1

traceability recovery Lucia, Oliveto, LM
Panichella,
Panichella

10 An experiment on linguistic tool Natt och Dag, VSM Stud: PUSS (299) Level 3
support for consolidation of Thelin, Regnell (23 subj.)
requirements from multiple
sources in market-driven
product development

9 An Industrial Case Study in Lormans, LSI (k=40%) Ind: LogicaCMG (293) Level 1
Reconstructing Requirements van Deursen,
Views Gross

9 Towards Mining Replacement Gibiec, Czauderna, VSM Mixed: (254) Level 2
Queries for Hard-to-Retrieve Traces Cleland-Huang

8 Recovering Relationships between Wang, Lai, LSI (N/A), Univ: LEDA (597), Level 1
Documentation and Source Code Liu BIM Univ: IBS (270)
based on the Charecteristics of
Software Engineering

8 Trace retrieval for evolving artifacts Winkler LSI (k=15%) Ind: Robert Bosch Level 1
GmbH (500),
MODIS (68)

8 Traceability Recovery using Capobianco, VSM, LSI (N/A), Stud: EasyClinic (150) Level 1
Numerical Analysis De Lucia, Oliveto, LM,

Panichella, B-splines
Panichella

7 Assessing Traceability of Software Sundaram, Huffman VSM, LSI (k=10,25, Ind: MODIS (68), Level 2
Engineering Artifacts Hayes, Dekhtyar, 30,40,60 (MODIS), CM-1 (455),

Holbrook 10,25,100,200, Stud: 22* Waterloo
400 (CM-1), (65)
5,10,15,25,40
(Waterloo)

7 Requirement-centric traceability Li, Li, VSM Unclear: Requirements Level 4
for change impact analysis: Yang, Li Management System (5 subj.)
A case study (501)
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Cit. Title Authors IR mod. Dataset Evaluation
6 How do we trace requirements: an Kong, Huffman N/A OS: BlueJ Level 3

initial study of analyst behavior in Hayes, Dekhtyar, plugin (49) (13 subj.)
trace validation tasks Holden

6 Technique Integration for Dekhtyar, Huffman VSM, LSI Ind: CM-1 (455) Level 1
Requirements Assesment Hayes, Sundaram, (N/A), BIM

Holbrook, Dekhtyar LDA (N/A),
Chi2 key extr.

4 Application of Swarm Techniques Sultanov, VSM, Ind: CM-1 (455), Level 1
for Requirements Engineering: Huffman Hayes Swarm Univ: PINE (182)
Requirements Tracing

4 On Integrating Orthogonal Gethers, Oliveto, VSM, LM, Stud: eAnsi (194), Level 1
Information Retrieval Methods Posyvanyk, RTM eAnsi (67), EasyClinic (57)
to Improve Traceability Recovery De Lucia EasyClinic (100),

eTour (232), SMOS (167)
3 A clustering-based approach for Zhou, Yu VSM Univ: Resource Level 1

tracing object-oriented design to Management Software
requirement (33)

3 Evaluating the Use of Project Zou, Settimi, PIN Ind: CM-1 (455), Level 1
Glossaries in Automated Trace Cleland-Huang Univ: IBS (235),
Retrieval Stud: SE450 (61)

3 On Human Analyst Performance Dekhtyar, Dekhtyar, VSM OS: BlueJ (49) Level 3
in Assisted Requirements Holden, Huffman (84 subj.)
Tracing: Statistical Analysis Hayes, Cuddeback,

Kong
3 Tackling Semi-automatic Trace Leuser, Ott VSM Ind: Daimler Level 1

Recovery for Large Specifications (2095, 944)

2 Extraction and visualization of Chen Unclear OS: JDK1.5 (N/A), Level 1
traceability relationships between uDig 1.1.1 (N/A)
documents and source code

2 Source code indexing for Mahmoud, VSM Stud: eTour (174), Level 1
automated tracing Niu iTrust (264)

2 Traceability challenge 2011: using Czauderna, Gibiec, VSM Ind: CM-1 (75), Level 2
tracelab to evaluate the impact of Leach, Li, Shin, WV-CCHIT (1180)
local versus global idf on trace Keenan, Cleland-
retrieval Huang

2 Trust-Based Requirements Ali, Guéhéneuc, VSM OS: Pooka (388), Level 1
Traceability Antoniol SIP (1853)

1 An Adaptive Approach to Gethers, Kagdi, LSI (N/A) OS: ArgoUML Level 2
Impact Analysis from Change Dit, Poshyvanyk (qualitative analysis)
Requests to Source Code

1 Do Better IR Tools Improve Borg, Pfahl VSM Ind: CM-1 (455) Level 3
the Accuracy of Engineers’ (8 subj.)
Traceability Recovery?

1 Experiences with text mining large Port, Nikora, Hihn, LSI (N/A) Unclear Level 3
collections of unstructured systems Huang
development artifacts at JPL

1 Improving Automated Chen, Grundy VSM OS: JDK (431) Level 1
Documentation to Code Traceability
by Combining Retrieval Techniques

1 Improving IR-based Traceability De Lucia, Di Penta, VSM, Univ: PINE (131), Level 1
Recovery Using Smoothing Filters Oliveto, Panichella, LSI (N/A) Stud: EasyClinic (150)

Panichella
1 Using semantics-enabled Mahmoud, VSM Ind: CM-1 (455) Level 1

information retrieval in Niu
requirements tracing: An ongoing
experimental investigation

1 Traceclipse: an eclipse plug-in for Klock, Gethers, Dit, Unclear Ind: CM-1 (455), Level 1
traceability link recovery and Poshyvanyk Stud: EasyClinic (150)
management

0 A combination approach for Chen, Hosking, VSM OS: JDK 1.5 (N/A) Level 1
enhancing automated traceability: Grundy
(NIER track)
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Cit. Title Authors IR mod. Dataset Evaluation
0 A Comparative Study of Document Parvathy, VSM, LSI Unclear: (43), (261) Level 1

Correlation Techniques for Vasudevan, (k=10),
Traceability Analysis Balakrishnan LDA (t=21),

CTM
0 A requirement traceability Kong, Li, Li, VSM, Ind: Web Level 1

refinement method based on Yang, Wang LM app (511)
relevance feedback

0 An Improving Approach for Di, Zhang BIM Ind: CM-1 (455), Level 1
Recovering Requirements-to- MODIS (68)
Design Traceability Links

0 Proximity-based traceability: Kong, Huffman VSM Ind: CM-1 (75), Level 2
An empirical validation using Hayes OS: Pine (182),
ranked retrieval and set-based Univ: StyleChecker (49),
measures Stud: EasyClinic (77)

0 Reconstructing Traceability Kaushik, Tahvildari, LSI Ind: RIM (13389) Level 1
between Bugs and Test Cases: Moore (k=50-500,
An Experimental Study 150-200)

0 Requirements Traceability for Ali, Guéhéneuc, VSM OS: Pooka (388), Level 1
Object Oriented Systems by Antoniol SIP (1853),
Partitioning Source Code Univ: iTrust (526)

0 Software verification and validation Huffman Hayes, VSM Stud: EasyClinic (150), Level 2
research laboratory (SVVRL) of the Sultanov, Kong, Li eTour (174)
University of Kentucky: traceability
challenge 2011: language translation

0 The role of the coverage analysis De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3
during IR-based traceability Tortora (30 subj.)
recovery: A controlled experiment

0 Towards a Benchmark Ben Charrada, VSM Univ: AquaLush (793) Level 1
for Traceability Casper, Jeanneret,

Glinz

Table 12 Classification of primary publications, part V.

Author Publications
Andrea De Lucia 16 (9)
Jane Huffman Hayes 16 (6)
Alexander Dekhtyar 15 (3)
Rocco Oliveto 13 (1)
Jane Cleland-Huang 10 (3)
Affiliation Publications
University of Kentucky, United States 13
University of Salerno, Italy 11
DePaul University, United States 10
University of Sannio, Italy 5

Table 13 Most productive authors and affiliations. For authors, the first number is the total
number of primary publications, while the number in parenthesis is first-authored primary
publications. For affiliations, the numbers show the number of primary publications first-
authored by an affiliated researcher.
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