
A replicated study on duplicate detection:
Using Apache Lucene to search among Android defects

Markus Borg
Per Runeson

Dept. of Computer Science
Lund University, Sweden

{markus.borg |
per.runeson}@cs.lth.se

Jens Johansson
System Verification

Malmö, Sweden
jens.johansson@

systemverification.com

Mika V. Mäntylä
Dept. of Computer Science

and Engineering
Aalto University
Helsinki, Finland

mika.mantyla@aalto.fi

ABSTRACT
Context: Duplicate detection is a fundamental part of issue
management. Systems able to predict whether a new defect
report will be closed as a duplicate, may decrease costs by
limiting rework and collecting related pieces of information.
Goal: Our work explores using Apache Lucene for large-
scale duplicate detection based on textual content. Also,
we evaluate the previous claim that results are improved if
the title is weighted as more important than the descrip-
tion. Method: We conduct a conceptual replication of a
well-cited study conducted at Sony Ericsson, using Lucene
for searching in the public Android defect repository. In line
with the original study, we explore how varying the weight-
ing of the title and the description affects the accuracy. Re-
sults: We show that Lucene obtains the best results when
the defect report title is weighted three times higher than the
description, a bigger difference than has been previously ac-
knowledged. Conclusions: Our work shows the potential
of using Lucene as a scalable solution for duplicate detec-
tion.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Retrieval
models]; D.2.8 [Software Engineering]: Metrics—Metric-

sâĂŤprocess measures

General Terms
Experimentation

Keywords
software evolution, issue management, information retrieval,
replication

1. INTRODUCTION
Issue management is an important part of large-scale soft-
ware evolution. Development organizations typically man-
age thousands of defect reports in issue repositories such as

Jira or Bugzilla. In large projects, the continuous inflow of
defect reports can be a hard to overview [2]. An impor-
tant step in the early issue triaging is to determine whether
an issue has been reported before. This activity, known
as duplicate detection, is typically a manual process. Pre-
vious studies show that the fraction of duplicate defect re-
ports range from 10% to 30%, both in proprietary and Open
Source Software (OSS) development [1, 7, 5]. Moreover, in
projects where also end users can submit defect reports, i.e.,
not only developers and testers, the amount of duplicates
may be even higher [12].

In 2007, we implemented automated duplicate detection at
Sony Ericsson [7]. We showed that our prototype tool, based
on Information Retrieval (IR) techniques, discovered about
40% of the true duplicates in a large project at the company.
Furthermore, we argued that the approach had the potential
to find about 2/3 of the duplicate issue reports. Also, we
estimated that the tool support could save about 20 hours
of issue triaging per 1,000 submitted defect reports.

In our previous study, we also discovered a number of IR
configurations that have guided subsequent research on du-
plicate detection. We found that weighting the title twice as
important as the description of an defect report yielded im-
proved results, a finding that has been confirmed in several
later studies [12, 5, 9]. Moreover, we found that most dupli-
cate defect reports were submitted within three months of
the master report, thus providing us an option to filter the
duplicate detection accordingly.

We now return to two of the directions pointed out as future
work in the original study. First, we argued that the IR
approach used in our prototype tool should be compared to
an off-the-shelf search engine. While several papers have
been published on duplicate detection in recent years [3],
such an evaluation has not yet been conducted. Second,
we argued that our work should be replicated on another
dataset. Several researchers have presented work on other
datasets (see Section 2), and also confirmed the value of
up-weighting the the title; however a deeper study of the
title vs. description balance has not been presented. Also,
the usefulness of filtering duplicates based on differences in
submission dates have not been confirmed in later studies.

In this study, we replicate the original study partially, by

Markus
Anteckning
Preprint of short paper in Proc. of the 8th International Symposium on Empirical Software Engineering and Measurement, 2014.



using the search engine Apache Lucene1 for duplicate de-
tection. Lucene is an OSS state-of-the-art search engine
library, often integrated in large-scale full-text search solu-
tions in industry. We study a large set (n=20,175) of defect
reports collected from the Android development project, i.e.,
the dataset originates from the domain of mobile devices for
telecommunication, in line with our original study.

The following Research Questions (RQ), the same as in the
original study, guide our work:

RQ1 How many duplicate defect reports are found by Apache
Lucene?

RQ2 What is the relative importance of the title vs. the
description?

RQ3 How can the submission date be used to filter the re-
sults?

2. BACKGROUND AND RELATED WORK
When IR is used for duplicate detection, the query con-
sists of the textual content of the newly submitted defect
report and the IR system will search the issue repository for
potential duplicates and list them accordingly. Several re-
searchers have published studies on duplicate detection since
our original study. Wang et al. complemented the textual
content of defect reports with stack traces [12]. While their
evaluation contained fewer than 2,000 defect reports, they
report a Rc@10 (defined in Section 3.3) as high as 93% on
data collected from the development of Firefox. Sun et al.
proposed including also categorical features to represent de-
fect reports [9]. Also, they considered both unigrams (single
terms in isolation) and bigrams (sequences of two terms) in
the textual description, reaching a Rc@10 of 65-70% on the
three OSS projects Firefox, OpenOffice, and Mozilla. Sureka
et al. presented a different approach to text representation,
considering defect descriptions on character level [11]. They
did not perform any pre-processing, and thus allow duplicate
detection across languages. They evaluated their approach
on a random sample of 2,270 defect reports from the Eclipse
project, and obtained a Rc@10 of 40%.

Other researchers have instead considered duplicate detec-
tion a classification problem. A classifier can be trained on
historical defect reports to answer the question “is this new
defect report a duplicate of an already known issue?”. Jal-
bert and Weimer complemented IR techniques with training
a linear regression model using both textual information and
categorical features [5]. The regression model then learns a
threshold that distinguishes duplicates and unique issues,
reaching a Rc@10 of 45%. Sun et al. [10] instead used SVM,
a standard classifier, to detect duplicated defect reports. By
considering both unigrams and bigrams in the title and de-
scription, they achieve a Rc@10 of about 60%.

3. METHOD
This section presents the IR tool used, the dataset, and the
experimental design.

1http://lucene.apache.org/

3.1 Apache Lucene for duplicate detection
We use Apache Lucene version 3.6.1, to develop a prototype
tool for duplicate detection. Lucene provides a scalable so-
lution to index and search text, in our case identify textually
similar defect reports. For each defect report in our dataset,
Lucene creates a document which consists of fields, that rep-
resent the defect report. The documents are stored in an
index. Finally, we use other defect reports as search queries
to the index and Lucene returns a ranked list of the search
results, i.e., potential duplicate defect reports.

Lucene matches queries and documents by calculating sim-
ilarities. Each search result is given a raw score, i.e., a
floating-point number ≥ 0.0. Higher numbers indicate bet-
ter matches. Also, it is possible to set boost factors in
Lucene, weighting features as more or less important. The
default boost factor for all fields is 1.0, but can be any value
≥ 0. General practice is to find the best boost factors by
trial and error.

3.2 Dataset and feature selection
We study a set of 20,175 Android defect reports submit-
ted between November 2007 and September 2011, publicly
available as part of the MSR Mining Challenge 2012 [8]. We
represent a defect report by the textual content of the title
and the description, i.e., as two separate bags-of-words. We
apply stop word removal and stemming to the text, using
built-in functionality in Lucene. Moreover, we also consider
the submission date. We planned to include also categorical
features such as the severity and component, but pilot runs
showed that they did not add any predictive value for the
duplicate detection task.

The dataset contains 1,158 defect reports with one or more
duplicates. We observed that some bug reports have high
numbers of duplicates, 160 defect reports have as many as
20 duplicates or more. In the dataset, duplicates are sig-
naled using one-way references to the master report. By
translating all duplicate links to two-way relations, and by
using the transitive property of equality2, we obtain in total
16,050 duplicate relations. More than half of the duplicate
defect reports were submitted within 20 days, and almost
75% within 200 days.

3.3 Measures
The most commonly reported measure used for evaluating
duplicate detection in issue management is the recall when
considering the top-n recommendations (Rc@N) [3], i.e., how
many of the duplicates are found within the top 1, 2, 3,
... 10 recommendations (as a cut-off). Thus, Rc@N shows
the fraction of the true duplicate reports actually presented
among the top N recommendations. We restrict the cut-
off level to 10 as that is a reasonable number of duplicate
candidates for a developer to assess.

We complement this measure with Mean Average Precision
(MAP), a popular IR measure that provides a single-figure
result reflecting the quality of a ranked list of search results.
Within IR research, MAP is known to be a stable mea-
sure good at discriminating different approaches [6]. Also,

2if a is duplicate of b and b if duplicate of c, then a is
duplicate of c



we have previously argued that MAP, a so called secondary
measure for IR evaluation, should be used more often in
software engineering research [4]

We define Average Precision (AP) until the cut-off N as:

AP@N =

n∑
r=1

(P (k) × rel(k))

number of relevant documents
(1)

where P (k) is the precision at cut-off k, and rel(k) is equal
to 1 if the search result at rank k is relevant, otherwise 0.
The MAP is calculated over all the queries in the dataset.
For duplicate detection relevant documents turn into true
duplicates.

3.4 Experimental design and validity
We perform two controlled experiments, ExpA and ExpB,
to tackle our RQs. For both experiments we use all 20,175
defect reports as search queries in Lucene once, and evaluate
the ranked output at the cut-off 10. The dependent variables
are in both experiments the Rc@10 and MAP@10.

First, ExpA evaluates the performance of duplicate detec-
tion of defect reports among Android defect reports using
Lucene (RQ1). To study the relative importance of the title
vs. the description (RQ2) we used Lucene boost factors as
the independent variables. We explore the effect of differ-
ent boost factors in a systematic manner, varying the boost
factors from 0 to 4.9 in steps of 0.1. For all combinations of
boost factors we perform an experimental run with Lucene,
in total 2,500 experimental runs.

ExpB addresses RQ3, i.e., whether it is useful to filter the
results based on submission dates. We evaluate removing
duplicate candidates returned by Lucene, keeping only du-
plicate candidates within a specific time window, in line with
the original study [7]. We fix the boost factors based on the
results of ExpA. Then we use the size of the time window as
the independent variable, varying between 1 and 1,141 days
(the longest time between a duplicate and a master defect
report in the dataset). We consider the defect report used
as the query as being in the middle of the time window.

We consider the following validity threats as the most rele-
vant for our study: 1) The share of duplicate defects in the
Android database is only roughly 5% whereas prior work
report that typically 10-30% are duplicates. This atypical
share of duplicate defects might make comparison to prior
work difficult. 2) The way we establish our gold standard
is different. Our dataset does not have fine-granular time
stamps, i.e., only dates are available, thus we cannot de-
termine a master report as in previous work. In our sets
of duplicates, typically several defect reports have the same
submission date. We are restricted to a set-based evalua-
tion, which is likely to boost precision values but decrease
recall. Still, we argue that a high-level comparison to the
results in previous work can be made.

4. RESULTS AND DISCUSSION
In ExpA, the highest Rc@10 we achieve is 0.138, i.e., de-
tecting 2,215 out of 16,050 cases where duplicates are listed
among the top ten candidates. Ten different combinations

Rc@10 Title boost Desc. boost Title/Desc.
0.138 1.9 0.8 2.375
0.138 2.6 1.1 2.364
0.138 3.4 1.1 3.091
0.138 3.7 1.2 3.083
0.138 3.1 1.3 2.385
0.138 3.3 1.4 2.357
0.138 3.8 1.6 2.375
0.138 4.0 1.7 2.353
0.138 4.3 1.8 2.389
0.138 4.5 1.9 2.368

Baseline
0.134 1.0 1.0 1.0

Table 1: Best relative weighting of title vs. descrip-
tion wrt. Rc@10. The baseline reflects the Rc@10
when using balanced weighting.

MAP@10 Title boost Desc. boost Title/Desc.
0.633 4.9 1.6 3.063
0.633 4.6 1.5 3.067
0.633 4.3 1.4 3.071
0.632 3.1 1.0 3.100
0.632 2.5 0.8 3.125
0.632 2.2 0.7 3.143
0.632 4.4 1.4 3.143
0.632 4.7 1.5 3.133
0.632 2.8 0.9 3.111
0.632 2.9 0.9 3.222

Baseline
0.616 1.0 1.0 1.0

Table 2: Best relative weighting of title vs. de-
scription wrt. MAP@10. The baseline reflects the
MAP@10 when using balanced weighting.

of boost factors yield this result, as presented in Table 1.
Thus, we answer RQ1 by: Lucene finds more than 10% of
the true duplicates among the top-10 duplicate candidates.

The performance of our approach appears significantly lower
than what has been reported in previous work. However,
while previous work has assumed the simplification that ev-
ery duplicate report has exactly one master report, typically
the first one submitted, we instead consider sets of dupli-
cates. Thus, every duplicated defect report might have sev-
eral different reports to find, many more than if using the
simplifying assumption. The Rc@10 we obtain reflect the
more challenging gold standard used in our evaluation.

ExpA confirms the claim by previous research, stating that
up-weighting the title over the description provides better
results in defect duplicate detection. Although the improve-
ment of overweighing the title is small, 3.0 and 2.8% for
Rc@10 and MAP@10, respectively, those improvements are
greater than in our original work where improvement was
1.2% [7]. Table 2 lists the ten best combinations of boost
factors wrt. MAP@10. We see that the best results are
achieved when the title is given three times as high weight as
the description, a bigger difference than has been acknowl-
edged in previous work. Our answer to RQ2 is: the title is
more important than the description when detecting dupli-
cates using IR; for Android defect reports it should be given
thrice the weight.

We hypothesize two main reasons for this difference. First,
submitters of defect reports appear to put more thought into
formulating the title, carefully writing a condensed summary



Figure 1: Rc@10 and MAP@10 when considering
duplicate candidates within a varying time window.

of the issue. Second, less precise information is added as
parts of the description. Stack traces, snippets from log
files, and steps to reproduce the issue might all be useful for
resolving the defect report, but for duplicate detection based
on IR it appears to introduce noise. On the other hand, it is
still beneficial to use the textual content in the description,
but it should not be given the same weight.

ExpB uses output from ExpA to set promising boost factors.
We use two weight configurations to up-weight the title in re-
lation to the description: 2.5 (ConfA) and 3.1 (ConfB). Fig-
ure 1 shows the effect of using different time windows. The
left subfigure shows the effect on Rc@10 for ConfA, the right
subfigure displays how MAP@10 is affected for ConfB. Our
results do not show any improvements of practical signifi-
cance for filtering duplicates based on the submission time.
Instead, it appears that considering the full dataset as po-
tential duplicates gives the best results. Our results do not
confirm the results from the original study, that only consid-
ering an interval of 60 days is beneficial [7]. We answer RQ3
by duplicate detection among Android defect reports does not
benefit from filtering results based on the submission date.

As reported in Section 3.2, more than 50% of the dupli-
cate defect reports in the Android dataset were submitted
within 20 days, and almost 75% within 200 days. Thus we
expected filtering to have a positive effect on the precision
of our ranked lists. This was not at all the case; instead it
appeared consistently better to skip filtering, in contrast to
the finding in the original study. The filter appears to not
remove any meaningful noise in our case, but instead remove
meaningful candidates. This could either be because differ-
ences in the dataset, or in the IR tool used. No matter what,
our recommendation is that if the textual similarity is high,
consider the defect report a potential duplicate even if it was
submitted at a distant point in time.

5. SUMMARY AND FUTURE WORK
In this paper, we make three important findings in duplicate
defect detection. First we confirm the prior findings that
weighting the title more important than the description can
significantly improve duplicate defect detection. Since this
confirmation comes from a different dataset and with the use
of another tool, we think this result might be generalizable.
Yet, future studies are needed before we can make definitive
conclusions. Second, we present conflicting evidence on the
benefits of filtering defect reports based on the submission
date. This suggests that the benefits of time based filtering
are dependent on the context. Third, we open a new avenue

for future work by considering all duplicate relations whereas
the prior work has only considered that every defect has
a single master report. The use of all duplicate relations
led to much poorer Rc@10 when compared with prior work.
However, since our approach is more realistic we suggest
that future works follow our more complex scenario.

Acknowledgement
This work was funded by the Industrial Excellence Center
EASE – Embedded Applications Software Engineering.

6. REFERENCES
[1] J. Anvik, L. Hiew, and G. Murphy. Coping with an

open bug repository. In Proc. of the OOPSLA
workshop on Eclipse technology eXchange, pages
35–39, 2005.

[2] N. Bettenburg, R. Premraj, T. Zimmermann, and
K. Sunghun. Duplicate bug reports considered
harmful... really? In Proc. of the Int’l Conf. on
Software Maintenance, pages 337–345, 2008.

[3] M. Borg and P. Runeson. Changes, evolution and bugs
- recommendation systems for issue management. In
M. Robillard, W. Maalej, R. Walker, and
T. Zimmermann, editors, Recommendation Systems in
Software Engineering. Springer, 2014.

[4] M. Borg, P. Runeson, and L. Brodén. Evaluation of
traceability recovery in context: a taxonomy for
information retrieval tools. In Proc. of the Int’l Conf.
on Evaluation & Assessment in Software Engineering,
pages 111–120, 2012.

[5] N. Jalbert and W. Weimer. Automated duplicate
detection for bug tracking systems. In Proc. of the
Int’l Conf. on Dependable Systems and Networks,
pages 52–61, 2008.

[6] C. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[7] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural
language processing. In Proc. of the Int’l Conf. on
Software Engineering, pages 499–510, 2007.

[8] E. Shihab, Y. Kamei, and P. Bhattacharya. Mining
challenge 2012: The Android platform. In Proc. of the
Working Conf. on Mining Software Repositories,
pages 112–115, 2012.

[9] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards
more accurate retrieval of duplicate bug reports. In
Proc. of the Int’l Conf. on Automated Software
Engineering, pages 253–262, 2011.

[10] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In Proc. of the Int’l Conf. on
Software Engineering, pages 45–54, 2010.

[11] A. Sureka and P. Jalote. Detecting duplicate bug
report using character n-gram-based features. In Proc.
of the Asia Pacific Software Engineering Conf., pages
366–374, 2010.

[12] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In Proc.
of the Int’l Conf. on Software Engineering, pages
461–470, 2008.


	Introduction
	Background and related work
	Method
	Apache Lucene for duplicate detection
	Dataset and feature selection
	Measures
	Experimental design and validity

	Results and discussion
	Summary and future work
	References

