
Chapter 1
Changes, Evolution and Bugs
Recommendation Systems for Issue Management

Markus Borg and Per Runeson

Abstract Changes in evolving software systems are often managed using an issue
repository. This repository may contribute to information overload in an organi-
zation, but it may also help navigating the software system. Software developers
spend much effort on issue triage, a task in which the mere number of issue reports
becomes a significant challenge. One specific difficulty is to determine whether a
newly submitted issue report is a duplicate of an issue previously reported, if it con-
tains complementary information related to a known issue, or if the issue report
addresses something that has not been observed before. However, the large number
of issue reports may also be used to help a developer to navigate the software de-
velopment project to find related software artifacts, required both to understand the
issue itself, and to analyze the impact of a possible issue resolution. This chapter
presents recommendation systems that use information in issue repositories to sup-
port these two challenges, by supporting either duplicate detection of issue reports
or navigation of artifacts in evolving software systems.

1.1 Introduction

As software systems evolve, modifications due to discovered defects or new feature
requests are inevitable. Typically, projects manage change requests and defect re-
ports in issue repositories [21, 42, 49]. In large software engineering projects, the
number of issue reports reaches several thousands and challenges engineers’ abili-
ties to overview the content [4, 23]. Also, distributed development, in terms of both
geographical and organizational distances, intensifies the need for efficient manage-
ment of archived issue reports. Further, issue reports can constitute junctures for
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Fig. 1.1: Main principles of an RSSE for issues, content-based and collaborative
filtering. The two approaches can also be combined in a hybrid system.

several other software artifacts, with pointers to e.g. requirements, test cases and
code components that are involved in the resolution of the issue.

The relationships between issue reports and other software artifacts implies chal-
lenges in managing the large amount of information. On the other hand, it also
brings opportunities in using the link information to support software developers
in their tasks. Networks of software artifacts can be actionable input to a system
recommending related information for the task at hand. With proper tool support,
archived issue reports can be harnessed to support developers in tasks such as issue
triage and change impact analysis.

Issue management in software engineering is similar to task management in gen-
eral, for example, in a service organization. Issue reports are similar to the baton in
a relay race; different actors (e.g., developers, testers, quality assurance, customers)
contribute to solving the task, and the issue management system is the central
node which dispatches subtasks to the actors. Issue reports may originate from sev-
eral sources, within the development organization or from outside customers or sub-
contractors. Issues may be pure defect reports, but may also contain change requests
and proposals.

An issue repository is typically a database where issue reports (i.e., defect reports
and change requests) are stored and maintained over time [21, 42]. The Bugzilla
open source issue repository [37] is probably the best known, although several open
source and proprietary alternatives exist. Existing issue repositories have features for
storing and dispatching issue reports to actors as well as statistics functionality for
management reporting. In Chapter ??, ? ] elaborate further on issue management.
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To support the management and resolution of issues in software development,
RSSEs have been proposed. Fig. 1.1 shows the two basic approaches to RSSEs,
content-based filtering and collaborative filtering, in the context of issue reports.
In an RSSE based on content-based filtering, each issue is represented by a set of
features. In previous work, issues have typically been represented by textual fea-
tures, i.e., the terms in their descriptions. Apart from the textual content of the issue
reports, issues can be represented by features such as severity, submission date, re-
sponsible developer, impacted source code etc. [34]. The RSSE then compares the
features of the given issue to all other issues in the issue repository to recommend
the most similar issues. Section 1.2 presents several examples of how RSSEs have
been used to recommend duplicate issue reports, as well as results from empirical
evaluations.

Collaborative filtering on the other hand, relies on a crowd of developers in
the organization. In a narrow sense, algorithms for collaborative filtering identify
users with similar preferences to produce recommendations for the information
seeker [47]. In an RSSE for issues, this would mean matching the profile of the
information seeker with the other developers. When the peers most similar to the
information seeking developer have been identified, the RSSE can recommend the
issues that these peers most often interact with. The user profiles could be based
on either previous interaction with issue reports or by features such as role, team,
location etc (further discussed in Chapter ??).

In a wider sense, collaborative filtering can be used to refer to all social recom-
mendation systems. One approach is to reuse the “trails” in the software engineering
information landscape, i.e., following in the footsteps of previous work. This type
of collaborative RSSEs identifies patterns in data, produced by developers as part of
their normal work tasks. This approach can also be referred to as social data min-
ing [47]. The idea is to aggregate the decisions from previous work and make it
explicit, with the purpose to support future decision making. Section 1.3 presents
two applications of this approach in related to navigation from issue reports to other
artifacts during software evolution.

1.2 Supporting issue triage using RSSEs

Issue triage, analyzing a new issue report and deciding how to react to it, requires
a lot of effort in large software projects [10]. Questions that are typically asked in-
clude: Have this issue been reported before? Should this issue be fixed? Who should
fix this issue? Where should this issue be fixed? When debugging large software sys-
tems, answering the last question is easier if the developer is aware of all relevant
reported pieces of information, thus also similar issue reports are of interest.

Software engineering research has addressed several aspects of issue triaging.
Examples include work by Guo et al. on predicting which reported issues get fixed at
Microsoft [19]. Based on this information, developers could easier prioritize issues
during triage, e.g., to decide which bugs should be closed or migrated to future
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product versions. A related question, however more specific, is how long it will take
to resolve a given issue. Both Weiss et al. [49] and Raja [36] report that using the
average resolution time of textually similar issue reports can be used as an early
estimate for newly submitted issues.

Several researchers focused on assessing the severity of issue reports. Menzies
and Marcus developed a tool that alerts developers when the manually assigned
severity is anomalous [30]. Lamkanfi et al. report promising results from automated
severity assignments in a study on three issue repositories used in development
of OSS [27]. Another approach to identify severe issue reports was presented by
Gegick et al.. With a research focus on security-critical software development, they
successfully identified about 80% of the reported issues related to security on a large
software system from Cisco [17].

Another challenge in large software engineering projects is to assign issue re-
ports to the most appropriate developer [10], to reduce resolution times and mini-
mize reassignment of bug reports also knows as ‘bug tossing’. Anvik and Murphy
trained a classifier to automatically assign incoming issue reports to developers and
reported promising results on five OSS projects [2]. Jonsson et al. did similar work
and evaluated their prototype on a large proprietary system at Ericsson, reporting
performance comparable to manual assignment by human experts [22].

The rest of this section presents work on duplicate detection of issue reports to
aid issue triage. When searching for related or duplicate issue reports, part of the
problem lies in defining what counts as a duplicate. Duplicates can be categorized
as either those that describe the same failure and those that describe two different
failures with the same underlying fault [39]. These two kinds are inherently different
in that the former type, which describes the same failure, generally uses similar
vocabulary. The latter type on the other hand, which describes two failures stemming
from the same fault, may use different vocabulary. RSSEs relying on content-based
filtering based on textual features are thus better suited for addressing duplicates
of the former type. In this section we refer to the first submitted issue report on a
specific fault as the master report, and subsequent reports as duplicate reports.

1.2.1 Duplicates – Burden or asset?

During the life cycle of large software systems, maintenance activities account for a
majority of the development costs [5]. In many software projects, the management
of the maintenance work revolves around issue reports in an issue repository. How-
ever, the inflow of issue reports often requires significant effort to address them,
typically exceeding the available resources [20]. This challenge is further intensi-
fied in open source projects, where the software users directly report issues to an
open issue repository. Anvik et al. highlighted the continuous inflow of new issue
reports in the Mozilla community as challenging already in 2005, when the average
number of daily submitted issue reports was about 300 [1].
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One reason for the daunting inflow of issue reports is that the same issues are re-
ported in multiple reports. Previous studies have shown that the number of duplicate
issue reports in issue repositories can be considerable. Sureka and Jalote report that
13% of the issue reports in the Eclipse project (among 205,242 issue reports) were
duplicates [46], while Anvik et al. studied an earlier stage of the Eclipse project
and found that the duplicate fraction in 2005 was 20% (among 18,165 issue re-
ports) [1]. In the same study by Anvik et al., they also studied the issue repository
used in development of Mozilla Firefox, observing that it contained 30% duplicate
reports (among 2,013 issue reports). Another study on Mozilla software, however
not restricted to Firefox, was conducted by Jalbert and Weimer [20]. They observed
that 26% of the issue reports were duplicates (among 29,000 issue reports). While a
majority of studies on issue management have addressed open source development,
the challenge of duplicate issue reports have also been reported from proprietary
contexts. Runeson et al. showed that the phenomenon exists also at Sony Ericson
Mobile Communications (SEMC), where practitioners acknowledged the extra ef-
fort caused by duplicates [39]. At SEMC, practitioners approximated 10% of the
issue reports to be duplicates.

On the other hand, based on results from a survey on duplicate issue reports
among open source developers, Bettenburg et al. present another view on the mat-
ter. While a majority of the respondents had experienced duplicate reports, only few
of them considered it to be a serious problem [4]. On the contrary, the respondents
stressed that multiple issue reports related to the same issue often provide addi-
tional information, thus decreasing resolution times. Furthermore, Bettenburg et al.
present empirical evidence confirming that additional information is present in du-
plicates, in the context of the Eclipse project. Their findings show that duplicates
are most often submitted by other users, and that duplicates provide different per-
spectives and additional information, e.g., additional steps to reproduce the issue
and supplementary stacktraces. Consequently, duplicate detection enables merging
of issue reports, a feature that can support bug triaging.

As already indicated, providing duplicate recommendations can be meaningful
at different points in time in a software development project. First, a tool can sup-
port detection of duplicate issue reports on the submitter side. At submission time,
only the information entered by the submitter is available, typically limited to ba-
sic system information and a natural language description of the observed software
behavior. As such, the tool can rely on content-based filtering using text retrieval
techniques to recommend the most similar issues reports among the ones already
existing in the issue repository. With this type of support, the submitter can decide
whether to either 1) submit a new issue report, 2) add additional information to an
already open issue report, or 3) skip submitting the issue report, if all information
is already available in the issue repository. Making the right decision at submission
time has the potential to speed up the issue triage on the developer side. On the other
hand, Runeson et al. report that it might be hard to make authors of issue reports use
the tool in such ways [39]. If someone has taken the time to write a full issue report,
he will most likely submit it regardless of the outcome of a duplicate detection, as
that action requires the least effort.
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Second, a tool can support an engineer on the receiving side of the issue reposi-
tory. When the developer first receives the issue report, again the only information
available is typically a natural language description of the issue and some basic sys-
tem information. Thus, the same options regarding decision making based on the
output of a content-based filtering recommender is available. However, as the de-
veloper probably is more knowledgeable than the submitter, the decision might not
be the same. Being aware of the duplicate status can be used both to avoid double
triaging, and to support issue resolution by aggregating all available information. In
an interview with developers on the receiving side, Runeson et al. found support for
the feasibility of issue duplicate detection in a proprietary context [39].

1.2.2 RSSEs for Duplicate Detection

Current best practice on RSSEs for duplicate detection is based on content-based
filtering, and has reached a level of maturity to allow a transition to some well-
established software engineering tools. For instance, both HP Quality Center and
Bugzilla implement automatic comparisons between newly submitted issue reports
and previously reported issues, and this functionality is also used in the marketing of
both tools. Also SuggestiMate for JIRA offers this feature. Two general approaches
to duplicate detection based on content are used in RSSEs for duplicate detection, ei-
ther treating it as an Information Retrieval (IR) problem, or a classification problem.
Both approaches have mostly relied on analyzing the textual content in the issue de-
scriptions, thus they share several steps as presented in Fig. 1.2. However, while an
indexed document space of issue reports is enough to deploy an IR-based approach,
a duplicate detector based on classification requires also a classifier trained on an
annotated subset of issue reports. This section presents some experiences from im-
plementations of duplicate detection for issue reports, and summarizes evaluation
results and lessons learned.

The accuracy of a tool for duplicate detection can be evaluated in several ways.
The most commonly reported measure in the literature is average recall when con-
sidering the top-k recommendations (recall@k), e.g., how many of the duplicates do
I find within the top 1, 2, 3, ... 10 recommendations. As we assume that each dupli-
cate report has exactly one master report, recall@k shows the fraction of duplicate
reports with their corresponding master reports presented among the top k recom-
mendations [29]. Another possible perspective is to consider sets of duplicate issue
reports, i.e., considering a network of issue reports with undirected edges represent-
ing duplicates [8]. Since a majority of previous work apply the first perspective, we
use it as the basis for our discussions, more specifically recall@10.
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Fig. 1.2: Overview of RSSEs for duplicate detection. The steps in the top track show
an RSSE based on the IR approach, while the bottom track displays a classification-
based approach.

1.2.3 Duplicate Detection as an IR Problem

The detection of duplicate issue reports can be treated as an IR problem, e.g., imple-
menting classical algebraic IR models. IR is defined as “finding material (usually
documents) of an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers)” [29]. Thus, IR
deals with analyzing large collections to retrieve the most relevant to a given infor-
mation need. In the context of duplicate detection, this transforms into “given this
issue report, which other issue reports are most likely to be duplicates?”. The system
then returns a ranked list of potential duplicates to the user of the tool.

As depicted in Fig. 1.2, an IR-based RSSE for duplicate detection implements
three main steps. The first step, after the issue reports are extracted from the issue
repository, is to pre-process their textual content. The most common pre-processing
steps are:

• Normalization. Converting all text to lower case. Removing special characters.
Pruning white spaces from the text, keeping only single white spaces between
terms.

• Stop word removal. Filtering out words that are not suitable as textual features,
as they appear in most texts. Examples of such words that capture no semantics
of an issue report include the, is, at, and, one, which, etc. Freely available lists of
stop words can be found on the Web. Also, stop word functions can be used in
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combination with lists, i.e., a function that filters out all words containing fewer
characters than a given threshold.

• Stemming Reducing inflected words to their stem. This step addresses grammat-
ical variation such as conjugation of verbs and declension of nouns. Stemming
should reduce “crash”, “crashes” and “crashing” to the same stem, converting
them to identical terms. In software engineering, Porter’s stemmer [35] is the
most commonly applied stemmer for English.

The second step in Fig. 1.2 depicts indexing the pre-processed issue reports.
RSSEs for duplicate detection typically consider the issue reports as a bag-of-words,
a simplifying assumption that represents a document as an unordered collection of
words, disregarding word order. The standard technique is to apply the Vector Space
Model (VSM), representing all issue reports as feature vectors of their contained
terms [29]. All terms after pre-processing are stored in a document-term matrix
that represents each issue report based on the frequencies of the terms contained in
their respective description. Thus, the VSM represents the issue reports in a high-
dimensional space where each term constitutes a dimension. An entry in the matrix
denotes the weight of a specific term in a given issue report. While term weights can
be both binary (i.e., existing or non-existing) and raw (i.e., based on Term Frequency
(TF)), usually some variant of Term Frequency-Inverse Document Frequency (TF-
IDF) weighting is applied. TF-IDF is used to weight a term based on the length
of the document and the frequency of the term, both in the document and in the
entire document collection. Further details on representing text using the VSM is
presented in Chapter ??.

When VSM is used for IR, document relevance is assumed to be correlated with
textual similarity. Thus, when looking for possible duplicates of a given issue report,
its similarities to all other indexed issue reports are calculated. When a new issue
report arrives, it must first be pre-processed and represented in the same vector-space
as was used for indexing the issue repository. The most common similarity measure
applied is the cosine similarity, calculated as the cosine of the angle between feature
vectors as presented in Fig. 1.3. As no entries in the document-term matrix are
negative, the resulting similarity value is bounded in [0,1]. Furthermore, calculating
cosine similarity is efficient in sparse high-dimensional spaces as only non-zero
dimensions need to be considered. As presented as the final step in the top track in
Fig. 1.2, the most similar issue reports are retrieved and used as recommendations.

Runeson et al. were the first to propose extracting textual features from issue
reports and applying the VSM to find duplicates [39]. They considered the textual
content in the title and description of the issue reports, and applied the standard pre-
processing steps stop word removal and stemming. The resulting textual features
were then weighted according to T F = 1+ log(frequency) before the issue reports
were represented as feature vectors in the vector space.

Runeson et al. evaluated their system on data from Sony Ericsson Mobile Com-
munications, a large company where a software product line is used for developing
mobile phones. At the company, about 10% of the issue reports were signaled as
duplicates. In this context, Runeson et al. evaluated their RSSE for duplicate detec-
tion, and explored a number of variations of their system: a) the length of the stop
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Fig. 1.3: Duplicate detection based on the VSM. In the example, applying raw term
weights and cosine similarities, the two most similar issue reports are Issue B and
Issue C.

word list, b) adding a thesaurus to deal with synonyms in the issue reports, c) adding
a spell checker to auto-correct misspelled terms, d) considering the textual content
of an additional field in the issue repository, i.e., “project name” e) up-weighting
textual features in the title, to make it more important than the content in the de-
scription f) different similarity measures (apart from cosine similarities, also Dice’s
coefficient and the Jaccard similarity coefficient were evaluated), and g) filtering du-
plicates according to time frames. However, while some modifications had a small
effect on the performance, e.g., adding extra weight to terms in the title, they con-
clude that little was gained from such fine tuning. About 2/3 of the duplicates could
be identified using their system, and they achieved a recall@10 of 40%. This result
was well-received among practitioners at the company, who confirmed the potential
to save effort.

Wang et al. considered in addition to the textual content of the issue report (title
and description), the stack traces attached to an issue report [48], and represented
the features in two separate VSM models. They pre-processed text using stop word
removal and stemming, and then they applied TF-IDF feature weights. Wang et
al. proposed representing also stack traces in a vector space, and let each invoked
method constitute a dimension. As such, each issue report was represented both in
a vector space of textual features, and a vector space of invoked methods. Then, the
combined similarity was calculated by treating both vector spaces as equally im-
portant. If a similarity above a defined threshold was detected in any of the vector
spaces, they classified a report as a duplicate. The authors used machine learning
to establish suitable values for these thresholds. Wang et al. calibrated their system
on a small set containing 220 issue reports from the Eclipse project, and then they
evaluated their approach on a larger dataset, containing 1,749 issue reports, col-
lected from the issue repository used for the development of Firefox. They conclude
that complementing textual descriptions with stack traces improved performance,
as did relying on the aforementioned thresholds. Either having two issue reports
with highly similar stack traces attached, or two issue descriptions that share a high
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degree of its content, was a strong indication of duplicates in the Firefox dataset.
Moreover, they confirmed Runeson et al.’s finding that up-weighting terms in the
title can be beneficial. Wang et al. reported that their system reached a recall@10 as
high as 93% on the Firefox dataset.

Sun et al. proposed a more advanced model for duplicate detection, including
both categorical issue features as well as more advanced weighting of textual fea-
tures [44]. Initially, they performed the same pre-processing operations as in pre-
vious work, i.e., they stemmed the content in the title and description and they re-
moved all stop words. However, thereafter they calculated textual similarities, both
for unigrams (single terms in isolation) and bigrams (sequences of two terms), us-
ing the BM25F model, a state-of-the-art IR model for probabilistic retrieval [38] (an
alternative to the algebraic VSM). Furthermore, the authors also considered three
nominal features (product, component, and type), and two ordinal features (priority,
and version). Finally, to tune the weighting of all parameters in the similarity func-
tion, they applied machine learning to tune the feature weighting, i.e., they applied
learning-to-rank ranking in their IR-approach [28].

Sun et al. evaluated their system using issue reports extracted from three open
source contexts: OpenOffice, Eclipse, and the Mozilla community. Moreover, they
compared the results with output from their previously implemented RSSE for du-
plicate detection, implementing a classification-based approach (presented in Sec-
tion 1.2.4). In all experimental runs they obtained better results (recall@10 consis-
tently between 65% and 70%), also they reported major improvements concerning
execution times.Again, their empirical results showed that the textual content of the
title was the single most important feature. However, the results showed that also
the product and version information were important features when recommending
duplicate issue reports.

Sureka et al. presented a different approach to textual similarities, focusing on
characters rather than terms [46]. They proposed a character n-gram model to cal-
culate textual similarities between issue reports. They did not perform any language
specific stemming and stop word removal, and thus their approach allow also cross-
language recommendation of duplicates. Sureka et al. applied a feature extraction
model that extracted all n-grams of sizes 4 to 10 from the titles and descriptions
of issue reports. They evaluated their approach on a random sample of 2,270 issue
reports, and obtained the best results when computing textual similarities based on
titles only (recall@10 of 40%).

1.2.4 Duplicate Detection as a Classification Problem

Duplicate detection can also be considered a classification problem. Given a newly
submitted issue report, an RSSE can classify it as either a duplicate or a non-
duplicate based on the previously submitted issue reports. As presented in the bot-
tom track in Fig. 1.2, a classification-based RSSE for duplicate detection typically
involves four steps. The first two steps are shared with the IR-based approach. First,
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Study Retrieval model and
features used

Dataset (#issue
reports)

Recall@10 Lessons learned

Runeson
et al. [39]

VSM. Word unigrams
from title and description
with TF weights. Cate-
gorical feature: project.

SEMC (Undis-
closed “large”)

40% Fine tuning had little effect. However, best
results for a) short stop word list, b) us-
ing thesaurus and c) spell checker, d) con-
sidering the project field, e) doubling the
weight of terms in the title, and f) apply-
ing a 50-day filter for issue reports.

Wang et
al. [48]

VSM. Word unigrams
from title and description
with TF-IDF weights.
Invoked methods from
stack traces with binary
weights.

OSS project:
Firefox (1,749)

93% Combining textual features and stack
traces improve performance, especially
when independent thresholds are applied.
Doubling the weight of terms in the title
beneficial.

Sureka et
al. [46]

Character n-grams from
title and description (4≤
n≤ 10).

OSS project:
Eclipse (2,270)

40% Acceptable results without preprocessing,
thus cross-language detection possible.
Character n-grams in titles most useful.

Sun et
al. [44]

BM25F. Word unigrams
and bigrams from ti-
tle and description with
TF-IDF weights. Cate-
gorical features: product,
component, type, prior-
ity, version.

OSS projects:
OpenOffice
(31,138),
Eclipse
(209,058),
Mozilla
(75,653)

OpenOffice:
65%,
Mozilla:
65%,
Eclipse:
70%

Textual content of title most important
feature, followed by product and ver-
sion information. Faster and more accu-
rate than [45].

Table 1.1: Summary of studies on IR-based duplicate detection, sorted chronologi-
cally.

the issue reports are pre-processed, and then the issue reports are indexed by the
remaining terms, e.g., as feature vectors in the VSM as presented in Fig. 1.3. Third,
machine learning is used to train classifiers, either multiple binary classifiers or a
multi-class classifier. A major difference between the classification approach and
the IR approach to duplicate detection is thus that the former normally requires
supervised learning, i.e., learning from an annotated training set containing both
positive and negative examples. The standard IR approach on the other hand, uses
the existing information only, without any learning process. In this section, we focus
on describing an approach proposed by Sun et al. [45]. They trained an individual
classifier for each existing issue report in three large issue repositories, and used the
classifiers to predict whether a newly submitted issue report is a duplicate or not.
Fourth, when a new issue report is submitted to Sun et al.’s prototype, all classifiers
answer the question: “How likely is this newly submitted issue report a duplicate of
this master issue report?”.

A frequently used approach for “off-the-shelf” supervised learning is to apply
Support Vector Machines (SVM), when training classifiers in a new domain [40].
The SVM model maps all issue reports as points in space, where different terms
can constitute the dimensions as in the VSM, and individual issue reports are typ-
ically represented as the endpoints of their corresponding feature vectors. SVMs
then construct a maximum margin separator, a hyperplane that divides the positive
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Fig. 1.4: Duplicate detection based on SVM. In this example, the three terms mem-
ory, corrupt and crash constitute the dimensions in the vector space. An individual
SVM classifier, trained for a specific issue report, predicts that a newly submitted is-
sue report is a non-duplicate. An optimal separating hyperplane, a maximum margin
separator, is shown to the right.

and negative examples with a gap as wide as possible as illustrated in Fig. 1.4, thus
creating two classes: duplicates and non-duplicates with respect to a given master
issue report. As the fourth and final step, newly submitted issue reports are mapped
to the same space, and depending on which side of the hyperplane they belong, the
classifier predicts whether the issue reports are duplicates or not. When all SVM
classifiers have made their predictions, the classification-based RSSE can recom-
mend potential duplicates. Further details on SVM is presented in Chapter ??.

The classification-based RSSE implemented by Sun et al. uses a hash-map-like
bucket structure [45]. Each bucket contains a master report as the key, and all its
duplicate reports as values. Then, an SVM classifier is trained for each bucket, us-
ing the duplicate reports as positive examples, and the others as negative examples.
When a new issue report is submitted, all classifiers report a probability value given
by the distance to the separating hyperplane. The probability values are then used
to rank the output, used to recommend potential master issues of a submitted issue
report. Sun et al. used a rich set of textual features to train their classifiers. The
high number of features originate from considering three different bags-of-words
(title, description, and title+description) independently, allowing three different cal-
culations of inverse document frequencies (as IDF weights are calculated based on
frequencies in the entire collection). Moreover, they considered both unigrams and
bigrams. In total, 54 different textual similarities were calculated between each pair
of issue reports, 27 features based on unigrams and 27 features based on bigrams.
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Sun et al. [45] evaluated their system on issue reports from three open source
projects: OpenOffice, FireFox, and Eclipse. Furthermore, they implemented three
previously proposed systems for duplicate detection for comparison (Runeson et
al. [39], Wang et al. [48], and Jalbert et al. [20]). On all three datasets, they showed
that their system outperforms the others. Sun et al. reported recall@10 of 60 %
for both Firefox and Eclipse, and recall@10 of 55% for OpenOffice. They also
reported that the execution time of their system was longer than what was required
in previous work.

Jalbert et al. also did work on duplicate detection that they refer to as classification-
based [20]. While their approach is based on IR techniques, they extended it by
also training a classifier based on linear regression. First they considered textual
content in the title and the description as two separate bags-of-words, and pre-
processed them using stop word removal and stemming. Through experimentation
they showed that considering IDF did not improve performance in their context. In-
stead, they found it the most useful to consider only term frequencies and weigh the
textual features as T F = 3+2∗ log2(frequency). All issue reports were represented
as feature vectors in the VSM, and they calculated cosine similarities to induce a
graph of issue reports, connecting issue reports by undirected edges if two issue re-
ports were more similar than a certain threshold. Jalbert et al. then applied a graph
clustering algorithm developed for social network analysis [32], to generate a set
of possibly overlapping nodes in the graph, i.e., potentially duplicated reports. Fur-
thermore, they considering a set of ordinal and nominal surface features: severity,
operating system, and the number of associated patches or screenshots. They used
all the features to train a linear regression model, and to find a corresponding output
value cut-off that distinguishes between duplicates and non-duplicates. The linear
regression model could then be used for newly submitted issue reports, to perform
classifications against each existing issue report.

Jalbert et al. evaluated their system on 29,000 issue reports from the Mozilla
community, containing reports from several development projects. They report that
their system is at least as good as Runeson et al.’s approach [39], and achieved a
recall@10 of 45%. By conducting leave-one-out analysis on their textual features,
they concluded that the textual content of the title was the most important, followed
by the description. While other features also brought value, they all contributed
less to the linear model. Also, Jalbert et al. simulated the performance of their sys-
tem over 16 weeks using the submission dates of the issue reports in their dataset,
i.e., they reported how their tool would have performed if it was deployed in the
Mozilla context. They used the chronological first half of the dataset as the training
set, and evaluated their work on the second half. Their fully automated system cor-
rectly filtered 8% of all possible duplicates, while allowing at least one report for
each real issue to reach developers. The authors estimate that this could have saved
1.5 developer-weeks of triage effort over sixteen work weeks (assuming that each
manual issue triage would on average require 30 minutes).
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Study Classifier and features
used

Dataset (#issue
reports)

Recall@10 Lessons learned

Jalbert et
al. [20].

Linear regression model.
Word unigrams from ti-
tle and description with
TF weights. Categorical
features: severity, operat-
ing system, nbr attached
patches or screenshots.

OSS projects
from Mozilla
(29,000)

45% Performs comparably to [39]. Through
simulation they show that their system
realistically could save effort. Also, they
show that the textual content in the title is
the most important feature.

Sun et
al. [45]

SVM. Word unigrams
and bigrams from title
and description with sev-
eral TF-IDF weights (in
total 54 textual features).

OSS projects:
OpenOffice
(12,723),
Eclipse
(44,652), Fire-
fox (47,704)

About 60% Outperforms [39], [48], and [20]. While
the high number of textual features leads
to better results, more execution time is re-
quired.

Table 1.2: Summary of studies on duplicate detection based on classification.

1.3 Navigating from Issue Reports in Evolving Software Systems

Software development typically involves managing large amounts of information,
i.e., formal and informal software artifacts, that evolve in response to environmental
changes and user needs. In traditional software engineering, the software is system-
atically progressed through analysis, specification, design, implementation, verifi-
cation, and maintenance. However, the increase of formalized knowledge-intensive
activities tend to increase the number of artifacts maintained in a project [50]. When
software evolution accumulates changes, made by many different developers over
time, possibly from different development sites, it is a challenge to stay on top of all
information.

A different development context, also highly challenging in terms of information
access, is development of Open Source Software (OSS). Mature software such as
Android, Eclipse, and Mozilla Firefox have successfully adopted OSS development
practices. Development of OSS is often characterized by globally distributed work-
forces and rapid software evolution. As most collaboration is online, communication
within the team must be smooth, and all available information must be easily acces-
sible. Open source projects typically rely on simple techniques such as discussion
forums and mailing lists for communication, complemented by advanced version
control systems for managing source code and supporting artifacts [12]. While the
number of artifact types are typically lower than in traditional software develop-
ment, quick and concise access to information is essential as teams cannot rely on
face-to-face communication.

Thus, both large traditional projects and OSS projects risk being threatened by
information overload, a state where individuals do not have time or capacity to
process all available information [16]. Knowledge workers frequently report the
stressing feeling of having to deal with too much information [15], and in general
spend a substantial effort on locating relevant information [24]. Thus, an impor-
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tant characteristic of a software development context is the findability it provides,
defined as “the degree to which a system or environment supports navigation and
retrieval” [33]. A prerequisite to developing an RSSE for navigation support is to
properly understand the context of the work task that is to be supported.

This section presents two separate examples of RSSEs supporting software evo-
lution, where issue reports are used as ‘hubs’ in generating traces between infor-
mation items. First, we present Hipikat, proposed by Cubranic et al. [13], an RSSE
targeting software evolution in open source projects, specifically aiming at help-
ing project newcomers. Second, we introduce ImpRec, an RSSE supporting safety-
critical change impact analysis in a company with rich development processes. Both
RSSEs are based on knowledge reuse from previous collaborative effort in projects
complemented by textual analysis of artifact content, and rely on artifact usage
rather than explicit ratings provided by engineers.

We present both Hipikat and ImpRec using a four step model, shown in Fig. 1.5.
The development of the RSSEs starts by modelling the information space, to create
a schema that can be used to represent the involved software artifacts. Second, the
developed model is populated by historical data from the corresponding projects,
and stored in an actionable data structure. Also as part of this step, textual con-
tent of artifacts are pre-processed and indexed. When the historical data has been
been processed, the RSSEs are ready to calculate recommendations. This can ei-
ther be initiated by the developer explicitly, or implicitly based on the work task
the developer pursues at a given time. The final step in the model covers how the
recommendations are presented to the developers.

Hipikat and ImpRec are not the only approaches supporting navigation in large
software engineering projects. Begel et al. developed CodeBook, a framework for
connecting engineers and their software artifacts [3]. It was developed to support
mining various software repositories, and to capture relations among people and ar-
tifacts in a single graph strucutre. Codebook was evaluated by implementing portal
solutions at Microsoft, helping developers discover and track both colleagues and
work artifacts in a large software project. Seichter et al., also inspired by the social
media revolution, addressed the management of artifacts software ecosystems by
creating “social networks” with artifacts as first-class citizens [41]. The explicitly
visible network of artifacts supported maintaining relations between artifacts and
enabled personal “news feeds” for involved developers, containing recommenda-
tions for relevant changes and possible dependencies etc. Gethers et al. proposed
automated impact analysis from textual change requests [18], an approach that is
reused in ImpRec. Their tool combined IR techniques, analysis of software evolu-
tion using data mining, and execution information via dynamic analysis to recom-
mend an initial set of impacted methods in the source code of four OSS systems.
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Fig. 1.5: Four step model for development of an RSSE for navigation support.

1.4 Hipikat – Helping a Project Newcomer Come Up-to-Speed

Hipikat was developed by Cubranic et al. to build a project memory to support
newcomer software developers by using information about past modifications to the
project. The aim is to help them perform modification tasks to the system more
effectively [11–13]. Hipikat has mainly been studied in the context of the Eclipse
OSS community1. The main Eclipse project is the Eclipse Platform, a mature IDE
written in Java, known for its extensible architecture and many third-party plug-ins.

For software developers joining the Eclipse Platform project, the first contact
with the heterogeneous information space of the project can be discouraging: there
are several thousands of files, issue reports, documentation, and discussions. In a
traditional project, the developer would join a team and gain knowledge through
mentoring [43]. An experienced team member would work closely with the new-
comer and orally impart the information structure and help him becoming produc-
tive. However, in OSS projects such lightweight interaction is typically not possible
as the developers are globally distributed. Thus, it is challenging for a project new-
comer to come up-to-speed and learn a new software system, e.g., navigating source
code and finding issue reports relevant to the work task at hand.

Hipikat is implemented as a client-server architecture, as depicted in Fig. 1.6. The
server maintains the project memory, a semantic network of artifacts and relations,
formed during development and updated as the target system evolved. Developers
interact with Hipikat clients, which can be implemented in various ways, such as
the Eclipse plug-in developed by Cubranic et al. [13]. The server and the clients
communicate over a SOAP RPC protocol, and the server provides recommendations
to the clients in an XML format [11]. Sections 1.4.1-1.4.2 present Hipikat according
to the structure in Fig. 1.5.

1 www.eclipse.org
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Fig. 1.6: Client-Server architecture of Hipikat. Adapted from [13].

1.4.1 Step 1: Modeling the Hipikat Project Memory

Cubranic et al. developed Hipikat with the ambition to provide a project newcomer
recommendations of source code, accompanying information and stored developer
communication relevant to an issue report. Fig. 1.7 displays the five artifact types
represented in the project memory, and the relations among them. Four of the types
correspond to artifacts commonly created in OSS projects. The central entity is the
issue report. Source code file versions implement resolutions to issues described
in issue reports, and might be related to other file versions in the same commit.
Project documents represent accompanying information posted on the project web-
site, e.g., design documentation, and such artifacts might document aspects relevant
to an issue report. Another artifact type in the model is the project message (e.g.,
in discussion forums or mailing lists) that might contain information about an issue
report. Messages might also be related to each other as they might be posted as re-
sponses, i.e., “reply-to” links. Furthermore, the Hipikat model also covers implicit
relations between documents and between issue reports respectively, modeling that
these artifacts might have outgoing “similar to” relations if artifacts share much
content (represented by dashed edges in Fig. 1.7). Finally, the scheme of the project
memory represents persons, who might work on issue reports, post messages, and
write documents and source code file versions.

1.4.2 Step 2: Populating the Hipikat Project Memory

The Hipikat server is responsible for populating the Hipikat project memory. The
server has three functions, implemented in three subsystems as seen in Fig. 1.6. The
update artifacts subsystem monitors the project information space for additions and
changes during the OSS evolution. Cubranic et. al distinguish between three cat-
egories of artifacts in the Eclipse Platform development project: immutable (e.g.,
source file revisions), modifiable but not deletable (e.g., issue reports in Bugzilla),
and changeable (e.g., web pages). The update subsystem has separate modules
for the following project information sources: CVS (the version control system),
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Fig. 1.7: Entity-Relation diagram of the software artifacts in the Hipikat project
memory. Adapted from [13].

Bugzilla (the issue repository), www.eclipse.com (the web page), Usenet news-
groups, and Mailman (the archive of email messages). Change listeners in the sub-
system are notified as the information space changes, and new and modified arti-
facts are inserted in the artifact database (cf. Fig. 1.6). More specifically, the artifact
database stores mostly artifact metadata, e.g., ID, author, path and creation date, but
also natural language content is stored such as commit comments, issue descriptions
and email body text.

Apart from the artifacts stored in the project memory, a vital aspect of the project
memory is the relations among them. Some explicit relations are directly available in
the artifact metadata, e.g., authors and dates. However, Hipikat also implements sev-
eral modules that independently analyze artifact content to deduct additional links.
Moreover, Hipikat creates links with different confidence, a measure of trustworthi-
ness that is used when presenting recommendations to the developer. The four link
types “implements”, “part-of-commit”, “reply-to”, and “similar-to” (cf. Fig. 1.7) are
identified in the identify links subsystem using the following five modules [11]:

The log analyzer uses regular expressions to identify commit comments contain-
ing issue IDs to insert high confidence “implements” links.

The activity matcher searches for commits by a developer that occur shortly be-
fore the same developer changes the status of an issue report to resolved. Inserts
implements links between source code file version and issue reports to the project
memory with confidence reflecting the time span.

The CVS commit matcher identifies file versions checked in within a few min-
utes. “Part-of-commit” links are added if they have the same author and commit
comment.

The thread matcher identifies both conversation threads of newsgroup postings
and email threads by looking for specific headers in the stored messages. “Reply-
to” links are inserted accordingly.

The text similarity matcher predicts relations among documents and among is-
sue reports (cf. Fig. 1.7) based on the similarity of the textual content. This is
implemented in the same manner as the IR-based duplicate detection described
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Module Type of link Confidence Link source Link target
Log analyzer Implements High Commit Issue report
Activity matcher Implements Low, Medium, Medium

high, High
Commit Issue report

CVS commit matcher Part-of-commit Medium low, Medium,
Medium high, High

Commit Commit

Thread matcher Reply-to N/A Message Message
Text similarity matcher Similar-to Cosine similarity (0-1) Document Document
Text similarity matcher Similar-to Cosine similarity (0-1) Issue report Issue report

Table 1.3: Summary of links followed in the Hipikat project memory.

in Section 1.2.3. All textual content is pre-processed using stop word removal
and stemmed using Porter’s stemmer, then indexed using the VSM. Hipikat uses
the log-entropy model for feature weighting. As an additional step, the vector
space is transformed using Latent Semantic Indexing [14] (further described in
Chapter ??), an approach that aims to remove noise and to deal with synonymy.
Finally, cosine similarities are calculated and “similar-to” links are added to the
project memory.

1.4.3 Step 3: Calculating Recommendations in Hipikat

The third subsystem Cubranic et al. developed in the Hipikat server, Select (cf.
Fig. 1.6), calculates recommendations by using the relationship links in the project
memory. Hipikat recommendations are always calculated in response to a query,
either explicitly initiated by the user, or implicitly as the user performs work
tasks [13]. An implicit query identifies the artifact from which the query originates,
and might also contain additional context options. For explicit queries, Hipikat
searches for the artifact the developer specifies in the query. The select subsystem
locates that artifact in the project memory, and follows relationship links to gener-
ate a set of recommended artifacts for the developer to consider in his current work
task.

The select subsystem contains modules that correspond to the five identification
modules described in Section 1.4.2. As the modules recommend artifacts, they also
provide rationales for their choices as well as Hipikat’s confidence for the recom-
mendations. Before the final recommendations are presented to the developer, the
output from the modules is merged. If multiple modules recommend the same arti-
fact, only the one with the highest confidence will be kept. Table 1.3 lists the link
types that are followed by Hipikat, to enable the RSSE to detect recommendation
trails in the project memory. Fig. 1.8 shows an example of such trails, originating
from a study on Avid visualizer, a Java tool for visualizing the operation of a Java
system [11].
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Fig. 1.8: Example of Hipikat recommendation trails, in this case items in the project
memory related to Issue A. Issue reports are represented as boxes, and source code
file versions as ovals. All edges are directed, and have a confidence value as indi-
cated by the edge weights. Adapted from [11].

Fig. 1.9: The Hipikat user interface. To the left, querying Hipikat from a context
menu. To the right, presentation of Hipikat recommendations. Reproduced with per-
mission from the original developers [11].

1.4.4 Step 4: Presenting Recommendations

The Hipikat client is available as an Eclipse plug-in, which means it is integrated in
the IDE. Cubranic et al.’s goal was to develop an unobtrusive client, and the user
interaction is kept simple. Primarily, the developer explicitly queries Hipikat for
recommendations from context menus. “Query Hipikat” is an available menu item
in the context menus of several entities in Eclipse, e.g., version controlled files either
in the workspace Navigator or opened in the Java editor, files in Repository view,
revisions in the Resource History view and Java classes in the Outline or Hierarchy
views.

As a response to queries from the Hipikat client, the Hipikat server returns a list
of recommended artifacts as presented in Section 1.4.3. The list is presented in a
Hipikat Results view, where each recommended artifact is displayed together with
its type, why it is recommended and the confidence of the recommendation. The
recommended articles are grouped by artifact type. Double-clicking on an artifact
opens them for viewing, either directly in Eclipse, or in a web browser. Moreover,
the developer can also initiate new Hipikat queries from the context menues of the
artifacts in the Results view.
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Developers using Hipikat can also provide feedback on the recommendations.
For each recommended artifact, a developer can select “like” or “dislike”. Dislikes
clean the list of recommendations, i.e., disliked artifacts are removed from the list.
Liked recommendations on the other hand move to the top of the list. To better use
the developer feedback is one out of several improvements Cubranic outlined to
further improve Hipikat [11], however the RSSE is not actively developed anymore.

1.5 ImpRec – Supporting Impact Analysis in a Safety Context

The goal of ImpRec is to support artifact navigation in a development organization
in a large multinational company, active in the power and automation sector. The
development context is safety-critical embedded development in the domain of in-
dustrial control systems, governed by IEC 615112 and certified to a Safety Integrity
Level (SIL) of 2 as defined by IEC 615083. The targeted system has evolved over
a long time, the oldest source code was developed in the 1980s. A typical project
has a duration of 12-18 months and follows an iterative stage-gate project manage-
ment model. The number of developers is in the magnitude of hundreds, distributed
across sites in Europe, Asia and North America.

As specified in IEC 61511, the impact of proposed software changes should be
analyzed before implementation. In the case company, this process is integrated in
the issue repository [6]. As part of the analysis, engineers are required to investigate
the impact of a change, and document their findings in an impact analysis report
according to a project specific template. The template is validated by an external
certifying agency, and the impact analysis reports are internally reviewed and exter-
nally assessed during safety audits.

A slightly modified version of this template is presented in Table 1.4. Several
questions explicitly ask for trace links (6 out of 12 questions). The engineer is re-
quired to specify source code that will be modified (with a file-level granularity), and
also which related software artifacts need to be updated to reflect the changes, e.g.,
requirement specifications, design documents, test case descriptions, test scripts and
user manuals. Furthermore, the impact analysis should specify which high-level sys-
tem requirements cover the involved features, and which test cases should be exe-
cuted to verify that the changes are correct once implemented in the system. In the
addressed software system, the extensive evolution has created a complex depen-
dency web of software artifacts, thus the impact analysis is a daunting work task.

Fig. 1.10 shows an overview of the ImpRec recommendation approach. To the
left, a developer is about to conduct a new impact analysis as part of a defect cor-
rection, i.e., answering Q1–Q12 in the impact analysis template in Table 1.4. First,
content-based filtering is used to find issue reports with descriptions similar to the
current issue report stored in the issue repository. The same techniques as presented

2 Functional safety - Safety instrumented systems for the process industry sector
3 Functional safety of Electrical/Electronic/Programmable Electronic safety-related systems
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Impact Analysis Questions for Error Corrections
Q1) Is the reported problem safety critical?
Q2) In which versions/revisions does this problem exist?
Q3) How are general system functions and properties affected by the change?
Q4) List modified code files/modules and their SIL classifications, and/or affected

safety related hardware modules.
Q5) Which library items are affected by the change? (e.g., library types, firmware

functions, HW types, HW libraries)
Q6) Which documents need to be modified? (e.g., product requirements specifica-

tions, architecture, functional requirements specifications, design descriptions,
schematics, functional test descriptions, design test descriptions)

Q7) Which test cases need to be executed? (e.g., design tests, functional tests, se-
quence tests, environmental/EMC tests, FPGA simulations)

Q8) Which user documents, including online help, need to be modified?
Q9) How long will it take to correct the problem, and verify the correction?
Q10) What is the root cause of this problem?
Q11) How could this problem have been avoided?
Q12) Which requirements and functions need to be retested by product test/system

test organization?

Table 1.4: Impact analysis template. Questions in bold fonts require explicit trace
links to other artifacts. Based on a description by Klevin [26].

in Section 1.2.3 on detection of duplicate issue reports using IR approaches are
applied. Then, originating from the most similar issue reports, the collaboratively
constructed trace link network, the “trails of previous developers in the information
landscape” is used to recommend which trace links the developer should consider
specifying in the impact analysis report. As such, the new impact analysis work task
is seeded by the pre-existing traceability from past impact analysis reports. The net-
work of collaboratively created trace links is referred to as the knowledge base, a
concept corresponding to the project memory in Hipikat. Note that the current scope
of ImpRec is limited to recommend non-code artifacts relevant to an issue report, as
these are considered more challenging in the case company.

1.5.1 Step 1: Modeling the ImpRec Knowledge Base

Fig. 1.11 shows the model of the knowledge base as an entity-relation diagram. The
impact analysis report that is attached to issue reports that cause changes to safety-
critical source code is the hub in the model. An impact analysis report can contain
trace links to several different artifact types, specifying relationships from individ-
ual issue reports (Q4-Q8 and Q12 in Table 1.4). Requirements (e.g., system require-
ments, safety requirements, and functional descriptions) can specify functionality
that is impacted by the problem described in an issue report. Test specifications can
verify functionality that is described in an issue report. Also, making the changes
required to resolve an issue report might force updates to test specifications as well.



1 Changes, Evolution and Bugs 23

Fig. 1.10: Impact analysis supported by ImpRec. Trace link structure created by
collaborative effort. Trace links among defects and from impact analysis reports to
requirements, HW descriptions and test cases.

Fig. 1.11: Entity-Relation diagram of the software artifacts in the ImpRec knowl-
edge base.

The changes might also impact hardware specifications. Finally, an issue report can
be related to other issue reports, a relation that is explicitly specified by developers
in the issue repository (presented also in Fig. 1.10). Furthermore, as the type of ar-
tifacts cannot always be deduced by ImpRec, also misc. artifacts and misc. links are
included in the model.

1.5.2 Step 2: Populating the ImpRec Knowledge Base

To aggregate the trace links from previous developers, ImpRec mines the issue
repository [7]. In the studied case, 4,845 out of the 26,703 issue reports in the is-
sue repository contain impact analysis reports. As a first step, the issue reports in
the issue repository were exported to an extended CSV format, a format specified
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by the vendor of the issue repository, and transformed to XML. Thus, the overall
information of the issue reports were well structured, however the attached impact
analysis reports were stored as text elements. On the other hand, the textual infor-
mation in the text elements were semi-structured according to the structure in the
impact analysis template in Table 1.4.

Then, regular expressions were used to extract trace links from the impact anal-
ysis reports. Due to the fixed format of artifact IDs, this method could extract all
correctly formatted trace links. To determine the type of the extracted trace links,
two heuristics were used. Thanks to the structure of the impact analysis template,
each trace links corresponded to a specific question. As such, in the context of Q8
and Q12 it could be deduced that the meaning of the links was related to verifica-
tion, Q7 and Q9 deal with document updates, and Q6 refers to impact on hardware
descriptions. Second, as requirement IDs have a distinguishable format in the com-
pany, also requirements specifications could be identified.

Next, explicit trace links between issue reports in the issue repository were ex-
tracted [8]. Each defect in the issue repository has a field “Related issues”, used by
engineers to manually signal other issues as related, by adding their issue IDs. Fi-
nally, the two extracted networks were combined into a single network, the ImpRec
knowledge base. The knowledge base, consisting of 29,000 nodes and 28,230 edges,
is represented as a semantic network expressed in GraphML [9]. Tables 1.5-1.6 sum-
marize the different types of extracted trace links and trace artifacts.

Note that this only contains artifacts actually pointed out by the previous impact
analysis reports, and that the total number of artifacts in the content management
systems in the company is much higher. However, while the extracted traceability
is a partial view, this is the traceability associated with the most volatile parts of the
system to date, and thus a pragmatic starting point for future impact analyses.

Fig. 1.12 shows an overviews of the largest interconnected component of the
knowledge base, comprising 36.2% of the nodes and 81.7% of the edges, created in
the graph editor yEd [31] using an organic layout. The graph nodes are treated like
physical objects with mutually repulsive forces. The edges on the other hand are
considered to be metal springs attached to nodes, producing repulsive forces if they
are long and attractive forces if they are short. By simulating these physical forces,
the organic layout finds a minimum of the sum of the forces emitted by nodes and
edges. Output from organic layouts typically show inherent symmetric and clus-
tered graph structures, useful for finding highly connected backbone regions in a
graph. Although the primary purpose of the knowledge base is not to enable visual
analytics, visual representations of complex information might enable additional in-
sights [25]. Regarding the knowledge base, we can make some general observations.
First, Fig. 1.12 shows that there is a highly interconnected central region containing
thousands of artifacts, rather than several distinctive clusters. This region displays
a high link density, and while “specified by” (i.e., links to requirements) dominate
the central region, all link types are present. This implies that changes to an artifact
in this region could impact a high number of artifacts. In general, the complex link
structure displayed in Fig. 1.12 suggests that much traceability information about
artifact relations in the software system has been captured in the knowledge base.
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Trace link type Description Classification strategy Count
related to Link to another issue report that has

been signaled by an engineer as re-
lated. The link is not bidirectional by
default.

Separate field in issue report 18,835

specified by Link to a specific requirement. Used
to signal that a requirement needs to
be updated, or requires verification.

Format of requirement IDs 3,996

verified by Link to a test case description that
needs to be executed, or a requirement
that requires verification.

IA template, Q8 and Q12 2,297

needs update Link to a software artifact that needs
to be updated.

IA template, Q7 and Q9 1,106

impacts HW Link from an IA report to a hardware
description that is impacted by the is-
sue or its implemented resolution.

IA template, Q6 1,221

misc. link Trace links from an IA report to an
artifact, but the meaning of the link
could not be deduced.

Default choice 775

Table 1.5: Types of links extracted from the issue repository. All links have an issue
report as source. IA stands for Impact Analysis.

Trace artifact type Description Classification strategy Count
issue report An individual issue report. Separate item in issue repository 26,703
impact analysis report A documented impact analysis. Attached to an issue report 4,845
requirement An individual requirement. The re-

quirements are organized in require-
ment specifications.

Separate ID format 572

test specification A document that contains test case de-
scriptions.

IA template, Q8 and Q12 243

HW description An artifact that describes the behavior
of hardware

Separate ID format 1,106

misc. artifact An artifact whose type could not be
deduced.

Default choice 376

Table 1.6: Types of nodes extracted from the issue repository. IA stands for Impact
Analysis.

1.5.3 Step 3: Calculating Recommendations in ImpRec

When the knowledge base is represented as a semantic network, ImpRec calculates
recommendations in three steps:

1. Retrieval of likely related issue reports, based on their textual content.
2. Search for artifacts that previously were marked as impacted, based on the col-

laboratively created knowledge base.
3. Ranking the identified artifacts based on textual similarities and network struc-

ture.
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Fig. 1.12: A visualization of the knowledge base, displaying the largest component
(10,211 artifacts and 23,078 relations).

First, ImpRec uses content-based filtering, based on the textual content of the is-
sue reports, to identify starting points in the knowledge base. Both terms in the title
and description of issue reports are considered, after stemming and stop word re-
moval. Then the remaining textual features are assigned TF-IDF weights before rep-
resenting them in the VSM. ImpRec then calculates cosine similarities between the
given issue report and all others, and finally rank them accordingly. This work is in
line with previous work on IR-based duplicate detection presented in Section 1.2.3.
ImpRec considers the top five issue reports, corresponding to the five highest non-
zero cosine similarity values, as starting points 1-5 (STARTi) in the knowledge base.
Moreover, the similarity values of the five issue reports are re-normalized between
0 and 1 (SIMi) for later ranking purposes.

Originating from the starting points, ImpRec performs breadth-first searches in
the knowledge database to find artifacts (ARTx) that previously have been pointed
out as impacted. First, impacted artifacts linked from starting points are identified,
then issue reports connected to the starting points are considered. ImpRec searches
for impacted artifacts up to three levels away from starting points (LEV EL), i.e.,
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Fig. 1.13: Example calculation of impact recommendation in a simplified knowl-
edge base.

a maximum of three “related issue” links from a starting point are followed. The
searches from each starting point results in an impact set of possibly impacted arti-
facts (SETi), which are then used as input to the ranking engine.

In the knowledge base, ImpRec calculates centrality measures for each artifact
(CENTx). As the artifacts ImpRec recommends are only link targets, i.e., they have
no outgoing links themselves, only the number of incoming edges are considered
for this calculation. The resulting indegree centralities are normalized between 0
and 1 and also used as input to the ranking engine.

The ranking of the artifacts in the set of recommendations is based on their indi-
vidual weights. The general equation for calculating the weight of a recommended
artifact, Weight(ARTx), is the following:

Weight(ARTx) = ∑
ARTx∈Seti

1≤i≤5

a∗SIMi +b∗CENTx

c∗LEV EL
(1.1)

where SIMi is the similarity of the issue report that was used as starting point when
identifying ARTx, LEV EL is the number of related issue links followed from the
starting point to identify ARTx, and CENTx is the centrality measure of ARTx in the
knowledge base. a, b, and c are constants that enables tuning for context-specific
improvements.
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Fig. 1.13 illustrates the calculation of an example recommendation in a simplified
knowledge base where a = b = c = 1. First, content-based filtering based on textual
features finds two starting points in the network, with normalized similarity values
equals to 1 and 0.6 respectively. Starting point 1 (Issue B in the figure) does not have
any direct links to any impacted artifacts, however a breadth-first search identifies
Req A and Test A through Issue C. Both Req A and Test A are added to Impact
set 1. Starting point 2 (Issue D in the figure) on the other hand has direct links
to impacted artifacts, thus Req A and Req B are both added to Impact set2. The
weight of the individual artifacts in each impact set is then calculated according
to Equation 1.1, considering textual similarities (Sim1 = 1 and Sim2 = 0.8), node
centralities (CentReqA = 1, CentReqB = 0.5, and CentTestA = 0.5), and the number of
links followed between issue reports (2 for artifacts in impact set 1, 1 for artifacts in
impact set 2).

Finally, the weights of the artifacts in the two impact sets are summarized (pre-
sented in the lower right part of Fig. 1.13). ReqA is included in both impact sets 1
and 2, thus its final weight in the list of ranked recommendations is 1+ 1.8 = 2.8.
The weights of ReqB and TestA are lower, 1.3 and 0.8 respectively, which results in
lower rankings.

1.5.4 Step 4: Presenting Recommendations

The developers at the case company all work in an MS Windows environment,
thus we have not considered ImpRec for multiple platforms. The current version of
ImpRec is written as a light-weight standalone tool in .NET, and supports basic user
interaction. Fig. 1.14 shows the ImpRec user interface. The leftmost frame is used
to input the description of the issue report for which the developer is conducting an
impact analysis. Based on the textual content in the text box, recommendations are
calculated when the developer clicks the “Impact?” button.

The center and rightmost frames in ImpRec are used to present the calculated
recommendations. In the center frame, the issue reports ImpRec recommends a de-
veloper to investigate are presented, i.e., similar to how RSSEs for duplicate detec-
tion (see Section 1.2) typically report candidate duplicates. In the rightmost frame,
ImpRec lists the most likely impacted artifacts. The content in both the frames are
sorted, to ensure the recommendations with the highest confidence are presented
first.

For ImpRec to be truly integrated in the impact analysis process, the tool needs to
be integrated in the working environment of the developers. As the impact analyses
are conducted with issue reports as starting points, and the outcome is stored as
attachments to issue reports, the natural approach is to develop an ImpRec plug-in
to the issue repository used in the organization.

Early evaluations using 90% of the dataset for training and the last 10% as a test
set show that about 40% of the previous impact could be identified by ImpRec. The
highest possible recall for this dataset is thus relatively low. However, the ranking
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Fig. 1.14: Prototype user interface for ImpRec. A is used for inputting the natural
language issue report. Output is presented to the right, possibly related issues in B,
and suggestions for impacted software artifacts in C.

function appears promising as ImpRec achieved a recall@5 of 30%. This result was
positively acknowledged by developers in the targeted organization as a quick way
to find a starting point in the impact analysis work task with a manageable number
of false positives. Moreover, recommendations regarding related issue reports were
appreciated, and considered more practical than the current search function in the
issue repository. As a final note, developers stressed the need to keep the knowledge
base updated. Test runs on new issue reports using the 18 month old knowledge
base in the prototype revealed that ImpRec’s recommendations did not reflect the
latest work in the organization. While this finding is not surprising due to the dy-
namics of software engineering, it highlights the need for future work both on how
to automatically update the knowledge base and how to identify obsolete content.

1.6 Concluding Remarks

Issue reports are primarily used as ‘batons’ in the communication between different
actors in the software development process, whether in house or open source. This
chapter demonstrates that there are several aspects to issue reports, that benefit from
recommendation systems. First, we presented different approaches to recommend-
ing duplicate issue reports, either for reducing information overload by merging
duplicates, or to provide more information of the issue at hand, e.g., for other rec-
ommendation systems. Evaluations indicate recall of 40-93% when considering the
top 10 recommendations. While the results are promising, further research is needed
to understand variations and tailoring to specific contexts. Second, we presented two
approaches to recommending traces to software engineering artifacts, using issue re-
ports as an information ‘hub’, implemented in the tools Hipikat and ImpRec. Both
approaches have shown potential of being useful for practitioners to help navigating
a continuously expanding software project. Still, they have to be better integrated
into development environments, and heuristics for the search methods have to be
improved to make them feasible for everyday practice.
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