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Abstract Defect management is a central task in software maintenance. When a defect is
reported, appropriate resources must be allocated to analyze and resolve the defect. An
important issue in resource allocation is the estimation of Defect Resolution Time (DRT).
Prior research has considered different approaches for DRT prediction exploiting information
retrieval techniques and similarity in textual defect descriptions. In this article, we investigate
the potential of text clustering for DRT prediction. We build on a study published by Raja
(2013) which demonstrated that clusters of similar defect reports had statistically significant
differences in DRT. Raja’s study also suggested that this difference between clusters could be
used for DRT prediction. Our aims are twofold: First, to conceptually replicate Raja’s study
and to assess the repeatability of its results in different settings; Second, to investigate the
potential of textual clustering of issue reports for DRT prediction with focus on accuracy.
Using different data sets and a different text mining tool and clustering technique, we first
conduct an independent replication of the original study. Then we design a fully automated
prediction method based on clustering with a simulated test scenario to check the accuracy of
our method. The results of our independent replication are comparable to those of the original
study and we confirm the initial findings regarding significant differences in DRT between
clusters of defect reports. However, the simulated test scenario used to assess our prediction
method yields poor results in terms of DRT prediction accuracy. Although our replication
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confirms the main finding from the original study, our attempt to use text clustering as the basis
for DRT prediction did not achieve practically useful levels of accuracy.

Keywords Defect resolution time . Prediction . Text mining . Data clustering . Independent
replication . Simulation

1 Introduction

Defect management is a central aspect in software maintenance. The detection and elimination
of software defects require significant effort (Boehm and Basili 2001); software defects’ cost to
the US economy was in 2002 estimated to $59.5 billion annually (Tassey 2002). When a defect
is detected, appropriate resources must be allocated to identify and resolve the defect. The
allocation is based on estimates of defect severity and potential impact of the defect, as well as
the availability of resources. An important aspect to consider in the allocation of resources is
the expected Defect Resolution Time (DRT), i.e., the estimated time required to resolve the
defect. The DRT also reflects how long end users have to wait for the corrected piece of
software, especially in software development applying continuous deployment. Thus,
predicting the DRT of newly submitted defects is central to project managers, as it supports
both resource allocation and release planning.

DRT prediction has been investigated intensively in the last decade (Strate and Laplante
2013). The basic underlying idea is to use certain defect attributes, e.g., severity and number of
comments (Panjer 2007), and to leverage historical data in order to derive prediction models.
Multiple techniques have been experimented, e.g., decision trees (Giger et al. 2010), univariate
andmultivariate regression analysis (Bhattacharya andNeamtiu 2011), textual similarity (Weiss
et al. 2007), Markov model (Zhang et al. 2013), but fully conclusive results have not yet been
obtained. Of particular interest for us in this article is the method proposed by U. Raja for DRT
prediction based on textual clustering of defect reports (Raja 2013). Raja used data clustering, a
well-known method for unsupervised learning. She showed that different clusters of defect
reports have significantly different mean DRT. Based on this observation, Raja claims that “text
based classification of defect reports can be a useful early indicator of defect resolution times”
(p.135), implying that her approach could be applied to predict the DRT of incoming defect
reports. For example, the mean (or median) DRT of the cluster a newly incoming defect report
belongs to could be a plausible predictor of the time required to resolve that specific defect. It
should be noted that Raja provides no instructions on how to design such a prediction method in
practice. She also did not check the applicability and quality of such a prediction method.

The contribution of this paper is twofold. First, we replicate the experiment reported in Raja
(2013) and check whether our replication yields comparable results with regards to the
difference of DRTs of clustered defect reports. We structure our replication according to the
framework proposed by González-Barahona and Robles (2012). Our concern is to check
whether the results of the proposed technique hold when a different data mining tool is used
and a clustering technique is applied that is fully automated. Thus, the replication we conduct
is an external, non-exact (conceptual) replication. The value of replication has been empha-
sized in empirical software engineering and its importance to allow firm conclusions has been
stressed in the community (Brooks et al. 2008) (Shull et al. 2008) (Menzies and Shepperd
2012). Replication is motivated by the necessity to demonstrate repeatability of experimental
results and to understand the effects of a study’s characteristics on its reproducibility
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(González-Barahona and Robles 2012). Thus, there is a need for both increasing the number of
replications as well as for better acknowledging the value of replicated studies in software
engineering (Carver et al. 2014).

Second, we go beyond the goal of the original experiment (i.e., testing whether clusters
have significantly different mean DRTs), and operationalize a method to actually predict DRTs
of (sequential chunks of) incoming defect reports. As such, we test the claim made by Raja
concerning the applicability of clustering for DRT prediction under industrial working condi-
tions. To this end, we design simulation scenarios in which we assess the prediction accuracy
of our prediction method, if applied repeatedly over time.

Accordingly, the research questions we aim to answer are the following:

RQ1: Are the results of the experiment reported in Raja (2013) replicable using a fully
automated clustering technique?
RQ2: How accurate is a method for DRT prediction based on automated clustering of
defect reports?

Our study is not an exact replication as there are three main variation points. First, while in the
original experiment five open source data sets were used, we use two data sets from open source
repositories and one data set from a project conducted in a private company. Second, we used a
different software tool for the textual clustering, i.e., RapidMiner instead of SAS Text miner, and
a different clustering technique (k-means clustering instead of clustering using entropy minimi-
zation). Third, we apply automated clustering. This is different from the original experiment
which required human intervention and expert knowledge to optimize the obtained clusters. Our
replication can thus be classified as non-exact and conceptual, i.e., an external replication
undertaken by a different research team with several experimental parameters changed.

The structure of the paper is as follows: The next section discusses defect management in
software engineering, reviews prediction approaches based on textual similarity and clustering
used in defect management in general and applied to DRT in particular. Also, the next section
describes Raja’s original experiment in detail (Raja 2013). In section 3, we present our
replication of Raja’s baseline experiment, including a description of the data sets and the
experimental setup. We put special emphasis on the differences between the original experi-
ment and our replication. Section 4 presents the results of the replicated experiment, in
particular the statistical tests concerning the difference in DRT among clusters. Also, section 5
introduces the design of a possible operationalization of the clustering approach for the
purpose of DRT prediction. This operationalization is tested in a simulation scenario to
evaluate the prediction accuracy of the method and to explore the possible effect of certain
confounding factors. Section 7 presents the results of the simulation scenario in terms of
prediction accuracy. Section 8 discusses our results in relation to the research questions, and
gives possible explanations to the obtained results. Section 9 analyzes threats to validity.
Finally, section 10 concludes the paper and outlines plans for future work.

2 Background and Related Work

Figure 1 describes the general lifecycle of a defect report. Defect reporting systems allow users to
report, track, describe, comment on and classify defect reports. A defect report comes with a
number of pre-defined fields, including categorical information such as the relevant product,
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version, operating system and self-reported incident severity, as well as free-form text fields such
as defect title and description. In addition, users and developers can leave comments and submit
attachments, which often take the form of patches or screenshots. When initially declared, a
defect starts out in the unconfirmed pending state until a triager makes a first evaluation to see if
the defect report corresponds to a valid defect, and that the defect is not already known, i.e., the
submitted defect report is a duplicate of another defect report already stored in the defect reporting
system. Defect reports can pass through several different stages before finally being resolved.
Defect reports that are resolved receive one of the following designators: duplicate, invalid, fixed,
wontfix, or worksforme. These indicate why the report was closed; for example, worksforme and
invalid both indicate that quality assurance was unable to reproduce the issue described in the
report. Sometimes a defect report needs to be reopened (cf. gray arcs in Fig. 1). In this case, the
normal defect lifecycle (cf. black arcs) starts with status ‘reopened’.

Defects are inherent to software development; producing defect-free code is a fundamental
challenge in software engineering (Boehm and Basili 2001). The automated prediction and
detection of defects in code is an important issue which has received much attention. This topic
is, however, beyond the scope of this study and we refer interested readers to literature reviews
on the subject (Lessmann et al. 2008) (D’Ambros et al. 2010). We will focus here on newly
submitted defect reports and the problem of predicting their resolution time.

2.1 Analysis and Prediction of Defect Resolution Time

One of the first studies on defect resolution times is by Kim and Whitehead Jr (2006). The
authors use descriptive statistics to analyze several aspects: the distribution of defect resolution

Fig. 1 Lifecycle of a defect report (adapted from (Zeller 2009))
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times, identification of who resolved which defect, the modules that have the highest number
of defects, and the modules that have the most corrective fixes. The authors’ goal is to
demonstrate how defect resolution time could be used as a factor for defect related analysis.
The median value of defect resolution times for source code files in the two open source
projects that were analyzed, ArgoUML and PostgreSQL, is about 200 days; however, for
certain files, the defect resolution time extended into years.

In Panjer (2007), the author explores how different methods and different attributes, e.g.,
severity and the number of comments (excluding textual descriptions), can be used in a prediction
model. The experiments are conducted using a historical portion of the Eclipse Bugzilla database.
Five different algorithms are tested, and logistic regression yielded the best results and provided
the best prediction accuracy, i.e., 34.9 %, for the defect reports in the test set. The author
concludes that “there are other attributes or metrics that may have greater influence of the
resolution time of bugs”. This study has been replicated in Bougie et al. (2010) using a different
data set, and as the findings are inconsistent, they conclude that both the predictive accuracy, and
the most accurate prediction method, may vary significantly between software projects.

Another study that applies regression analysis to predict defect resolution time has been
published by Anbalagan and Vouk (2009). The authors use the number of persons concerned
with the defect report as a predictor. They conclude that the more people that are involved in a
defect report, the longer its resolution time.

More recently, several studies tried to understand the effects of different defect attributes by
applying various mining approaches. In Giger et al. (2010), decision tree analysis is applied to
classify incoming defects from three open source projects into fast or slowly fixed. Results
show that assignee, reporter, and monthOpened are the attributes that have the strongest
influence on defect resolution time (DRT) prediction. Furthermore, post-submission data
contained in defect reports, e.g., comments attached within a few weeks after the submission,
improve the performance of prediction models by 5 to 10 %. The study in Marks et al. (2011)
goes further and identifies 49 metrics according to three dimensions (location, reporter and
description) and use them in a Random Forest approach to predict DRT in simulation
scenarios. Results show that the location dimension of a defect, e.g., component name,
operating system, or the number of open and closed bugs, have the highest effect on the
prediction accuracy. In Bhattacharya and Neamtiu (2011), the authors perform univariate and
multivariate regression analysis to capture the significance of the features selected in building
prediction models, and to assess their predictive power. The results of the multivariate
regression analysis show that most of the post-submission features of a defect report, such
as the number of attachments or defect severity, contribute significantly to the prediction
model, however they also report significant variations in prediction power among different
data sets Finally, the study by Lamkanfi and Demeyer (2012) has similar goals in terms of
better understanding the predictive power of applied techniques. As outliers may negatively
influence the performance of the data mining technique chosen, the authors experiment with
removing outliers and obtain a significant improvement.

An interestingly different approach for DRT prediction is proposed by Zhang et al. (2013).
The authors develop a Markov-based method for predicting the number of bugs that will be
fixed in the future. For a given number of defects, their method estimates the total amount of
time required to fix them based on the empirical distribution of bug-fixing time derived from
historical data. Their results confirm previous findings, e.g., Panjer (2007), concerning the
attributes that have the strongest influence on the bug fixing time, i.e., the assigned developer,
the bug reporter, and the month when the bug was reported.

Empir Software Eng



In fact, there is only one single study (Weiss et al. 2007) that relies exclusively on the textual
content of a ‘bug report’ for resolution time prediction. Therefore, this study is an important
reference point for the second part of our study, i.e., investigating RQ2, andwe report the results
of this study with more detail. Weiss et al. (2007) use 567 ‘bug reports’ (including types
‘defect’, ‘feature request’, ‘task’ and ‘sub-task’) from the JBoss open source dataset and apply
their prediction approach to each newly incoming report. For the N-th incoming report, the
prediction is based on a training set composed of the previously arrived N-1 reports. The k-
nearest-neighbor (kNN) approach is used to find a set of the k most similar defects, k varying
from 1 to 3, 5, 7, 9 and ∞ (the whole set). Text similarity between reports is measured using the
open source search engine Apache Lucene (McCandless et al. 2010). Parameter α is used to set
a threshold for the level of similarity, ranging from 0 (no similarity at all) to 1 (identical texts).
For higher values of α often no similar reports could be found and the approach returns
Unknown. Applicability is measured as the percentage of responses different from Unknown.
Accuracy is calculated as the percentage of predictions having a relative error not greater than
25 and 50 %, respectively. For kNN (without threshold), the accuracy is poor. Only 30 % of the
predictions lie within the ±50 % range of the actual resolution time for any choice of k. The
setting of thresholdα creates a tradeoff between applicability and accuracy. For k=∞ (searching
all previous defects) and α=0.9 (restricted to very similar defects), accuracy is excellent: the
average prediction is off by only 7 h and almost every second prediction lies with ±50 % of the
actual resolution time. However, in this particular configuration, predictions for only 13 % of
the data set are made, i.e., for 87 % of the defects, the approach yields no results as there are no
defects with 0.9 level of similarity to be compared with and to obtain estimates from. For lower
values of α and k=∞, accuracy decreases; for α=0.5, only 30 % of predicted values are within
the 25 % error margin, and for α=0, it drops to 20 %. In fact, with k=∞ and α=0, the approach
corresponds to a naïve estimation approach, i.e., the average resolution time of all previous
reports is taken as predictor. Finally, the results vary a lot depending on which JBoss subproject
is analyzed, and on the type of report. The authors explain their results by the diversity of textual
descriptions in the reports and suggest that additional fields, i.e., version information, stack
traces and attachments could be exploited to improve the prediction accuracy.

2.2 Replications in Software Engineering

Replication is a complex issue in empirical software engineering (Miller 2005); different
terminology is used and little consensus has emerged concerning replication processes and
procedures. Moreover, conclusion instability is being raised as a serious threat: effect X
discovered in a certain situation does not hold in other situations, and there can be as much
evidence for effect X as against it (Menzies and Shepperd 2012). Variance and bias can come
from different sources such as sampling, data pre-processing or languages and tools used in the
experiment. Hence, there are many variation points to consider when replicating a study (Shull
et al. 2008), and different replication strategies are possible (Brooks et al. 2008). An internal
replication is undertaken by the original experimenters who repeat their own experiment, while
an external replication is conducted by independent researchers and is considered a critical
verification step in experimental research. Furthermore, exact (or dependent) replications, i.e.,
following as closely as possible the procedures of the original experiment, should be distin-
guished from conceptual (or independent) replications, i.e., the same research question is
evaluated by using a different experimental procedure where independent variables are
changed (Shull et al. 2008) (Juristo and Gómez 2012).
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2.3 The Original Study to be Replicated: Clustering Defect Reports

One of the goals of our research is to conduct an external, conceptual replication of the study
by Raja (2013) in which she suggests clustering as a technique with potential to predict DRT.
Clustering is an unsupervised machine learning technique for identifying homogenous sub-
groups of elements in a set of data (Jain 2010). Clustering is applied for solving problems such
as image segmentation, object and pattern recognition, and information retrieval (Jain et al.
1999). The goal of Raja’s study was, as stated by the author, to “examine the suitability of
textual content of defect reports as an early indicator of defect resolution time” (Raja 2013,
p.125). Raja uses the textual descriptions of defect reports in a text mining approach and
applies clustering techniques to organize similar defect reports into clusters. The obtained
categories, i.e., clusters, differ from project to project, and accordingly, the mean DRT of the
defects in each category. Raja thus assumes that “project specific categorization can signifi-
cantly distinguish defect resolution time patterns” (Raja 2013, p.126). Furthermore, she
discovers a significant difference in mean DRT of defect reports in different clusters, and
proposes that a cluster’s mean DRT could be used as an early indicator of the effort required to
resolve a defect report belonging to this cluster.

Raja studies five data sets containing defect reports originating from the open source
domain, with a total of approximately 14,000 closed defect reports. First, she applies standard
data pre-processing for information retrieval: tokenization, elimination of stop words and
stemming. When applying a clustering approach, two stages are essential: pattern representa-
tion and similarity measurement (Jain et al. 1999). Raja represents each defect report as a word
frequency matrix (WFM), and she uses Latent Semantic Indexing (LSI) to reduce the
dimension of the WFM. LSI uses singular value decomposition to reduce the size of the
sparse WFM (Deerwester et al. 1990). The goal of LSI is to transform individual terms to
“concepts” by capturing higher order term co-occurrence (e.g., synonyms). The reduced matric
requires much less computational power, and sometimes the retrieval or clustering accuracy
improves as well, but not necessarily (Borg and Runeson 2013). A disadvantage of using LSI
is that the number of dimensions to keep must be explicitly set, a parameter that is highly
dependent on the text collection and thus difficult to configure (Kontostathis 2007).

Raja uses the tool SAS Text Miner to cluster defect reports. She applies automatic
clustering based on entropy minimization together with some human intervention (using an
interactive feature of SAS Text Miner) to reduce and optimize the obtained clusters. These
manual interventions were not explicitly detailed. The final result is three to five clusters of
DRs for each project with, for each cluster, a set of the most descriptive terms extracted from
their textual content.

Raja performs statistical processing in three steps: first, she performs descriptive statistics
on the obtained clusters and notices that “the average time taken to resolve a reported defect
varies significantly across projects and across clusters within the same project” (Raja 2013, p.
127). Thus, as the second step, she applies one-way ANOVA analysis of variance to test the
significance of inter-cluster variation. Beyond independence of sample observations, ANOVA
relies on assumptions of normality of the sample and homogeneity of variance. Raja performs
the Kolmogorov-Smirnov test of normality and Levene’s test of homogeneity. She interprets
the results as globally positive, i.e., assumption of normality is established although it was
violated in certain clusters. Although Levene’s test revealed unequal variance, Raja argues that
ANOVA could be performed – because ANOVA can be considered robust enough despite
unequal variance – but Raja explains that additional testing with Brown-Forsythe test is
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required. Finally, the last step is post-hoc testing using Games-Howell’s test to identify the
exact pattern of differences among the clusters’ means DRT. The results indicate that only
some combinations of clusters show statistically significant variation in DRT means.

Table 1 presents a synthesis of the results of the data analysis performed in Raja’s study. As
the post-hoc testing showed inconsistent results among clusters, Raja seeks an explanation by
analyzing two possible factors. First, she analyses key terms appearing in the clusters and their
relation to the nature of the software component to which the defect report could be related.
For example, if key terms in a cluster are related to interface development, while key terms in
another cluster (in the same project) are related to server code, the differences in resolution
time can then be related to differences in complexity among the related code. The other factor
that Raja considered is the number of software downloads, and thus, the popularity of the
software and its potential impact on the maintenance team in terms of priority given to solving
the defect.

2.4 Replicability of the Original Study

Support for replications in software engineering has been developed. In González-Barahona
and Robles (2012), the authors present a method for assessing the reproducibility of a study,
i.e., a way to evaluate a study’s ability to be reproduced in whole or parts. The authors propose
a reproducibility assessment method based on eight elements of interest extracted from the
empirical study to be replicated. In Table 2, we have evaluated the reproducibility of Raja’s
original study according to this method. This assessment is based on information extracted
from the original paper (Raja 2013) and on email exchanges with the author of the paper.

As can be seen from Table 2, Raja’s study is difficult to replicate. Concerning the data,
although the source is easily identifiable (sourceforge.com software repository), the raw data
set, i.e., the set of closed defect reports, are not directly available for retrieval. Furthermore,
although we contacted the author and requested the raw data sets, she was unable to provide a
set identical to what was used in the baseline experiment. At last, the processed data set (i.e.,
the set of defect reports after manual cleaning) and the corresponding retrieval and extraction
methods are difficult to reproduce because they are poorly documented in the original study

Table 1 Synopsis of data analysis in Raja’s study

Statistical test Goal of the test Results

Kolmogorov-
Smirnov test

Normality distribution of DRT
among clusters

Partially positive – for each project data,
“there was a slight violation of normality
assumption” for certain clusters (p.129)

Levene’s test Equal variance of DRT among
clusters

Negative – unequal variance for all projects’
data (p.129)

One-way ANOVA
test

Analysis of DRT variance among
clusters

Positive – for each project, DRT mean of at
least one cluster differs from all other clusters
(p.130)

Brown-Forsythe test Equality of RT means among clusters Positive – the results were consistent, across
all projects, with the findings of ANOVA
(p.130)

Games-Howell’s
post-hoc test

Identify the exact pattern of
differences among clusters’
RT means

Partially positive – some of the clusters do
not have significant differences in their
DRT (p.130)

Empir Software Eng



T
ab

le
2

E
va
lu
at
io
n
of

R
aj
a’
s
st
ud
y
re
pr
od
uc
ib
ili
ty

ac
co
rd
in
g
to

G
on
zá
le
z-
B
ar
ah
on
a
an
d
R
ob
le
s’
m
et
ho
d
(2
01
2)

Id
en
tif
ic
at
io
n

D
es
cr
ip
tio

n
A
va
ila
bi
lit
y

Pe
rs
is
te
nc
e

Fl
ex
ib
ili
ty

A
ss
es
sm

en
t

C
om

m
en
ts

D
at
a
so
ur
ce

Y
es

D
et
ai
le
d

Pu
bl
ic

L
ik
el
y

–
U
sa
bl
e

T
he

da
ta
so
ur
ce

is
th
e
pu
bl
ic
re
po
si
to
ry

S
ou
rc
ef
or
ge
;

ho
w
ev
er
,t
he

de
fe
ct
re
po
rt
s
ar
e
no
t
di
re
ct
ly

do
w
nl
oa
da
bl
e

R
et
ri
ev
al
m
et
ho
d

Pa
rt
ia
l

Pa
rt
ia
l

N
o

N
o

–
D
if
fi
cu
lt

Pa
ra
m
et
er
s
fo
r
ex
tr
ac
tio
n
qu
er
ie
s
fo
r
ar
e
no
t
pr
ov
id
ed

R
aw

da
ta
se
t

Y
es

D
et
ai
le
d

N
o

N
o

–
D
if
fi
cu
lt

T
he

co
lle
ct
io
n
of

de
fe
ct
re
po
rt
is
no
t
m
ad
e
av
ai
la
bl
e
by

th
e
au
th
or

E
xt
ra
ct
io
n
m
et
h.

Y
es

Pa
rt
ia
l

N
o

N
o

–
D
if
fi
cu
lt

C
om

pl
ex

te
xt

pr
e-
pr
oc
es
si
ng

st
ep
s
br
ie
fl
y
de
sc
ri
be
d

Pa
ra
m
et
er
s

Pa
rt
ia
l

N
o

N
o

N
o

–
D
if
fi
cu
lt

T
he

pa
ra
m
et
er
s
fo
r
te
xt

pr
e-
pr
oc
es
si
ng

ar
e
no
t
de
sc
ri
be
d

Pr
oc
es
se
d
da
ta
se
t

Pa
rt
ia
l

Pa
rt
ia
l

N
o

N
o

–
D
if
fi
cu
lt

T
he

pr
e-
pr
oc
es
se
d
de
fe
ct
re
po
rt
s
ar
e
no
t
av
ai
la
bl
e

A
na
ly
si
s
m
et
ho
d

Y
es

Pa
rt
ia
l

N
o

N
o

–
U
sa
bl
e

R
el
ie
s
on

pr
op
ri
et
ar
y
so
ft
w
ar
e
to
ol

an
d
sp
ec
if
ic
pa
ra
m
et
er
s

R
es
ul
ts
da
ta
se
t

Y
es

D
et
ai
le
d

Y
es

Y
es

N
o

U
sa
bl
e

T
he

re
su
lts

ar
e
pr
es
en
te
d
in

th
e
pa
pe
r

Empir Software Eng



and have not been made publicly available. Concerning the data analysis method, it is also
very difficult to reproduce as it relies on a proprietary software tool (i.e., SAS Text Miner)
using specific non-documented processing parameters (i.e., interactive clustering and cluster
reduction).

3 Design of the Replication

In this section, we present the design of our conceptual replication of Raja’s baseline
experiment. In the rest of this paper, we will use the term baseline experiment to refer to the
set-up of the experiment itself, and the term original study to the research results published in
(Raja 2013).

In light of the evaluation of replicability presented in the previous section, to be exactly
replicated, the original experiment reported in (Raja 2013) requires using the same data mining
tool and clustering technique, as well as close collaboration with its author in order to set the
various processing parameters consistently. However, we are not interested in an exact
replication of this study. Indeed, beyond replication, our goal is to assess the accuracy of the
suggested method and explore its potential applicability in real world settings. From this
perspective, the clustering step should rely on non-proprietary software tools and – more
importantly – avoid any manual steps.

We chose to conduct an independent, conceptual, non-exact replication of Raja’s study.
Dependent (exact) replications, i.e., all the conditions of the experiment are the same or very
similar, are recommended for understanding all the factors that influence a result (Shull et al.
2008). A successful exact replication confirms the experimental results from the baseline
experiment and provides support to the theoretical results. In other words, an exact replication
consolidates the internal and conclusion validity of the baseline experiment (Rosenthal 1991,
p.5). On the other hand, an independent, conceptual, non-exact replication, i.e., when one or more
major aspects of the experiment are varied, is more convincing in demonstrating that an effect or a
technique is robust to changes with subjects, settings, and materials (Kitchenham 2008) (Juristo
and Gómez 2012). Indeed, we seek to understand how sensitive the results are to different
operationalization, i.e., “variation in results in response to changes to treatment application
procedures” (Gómez et al. 2014, p. 1040). When successful, a non-exact conceptual replication
extends the potential validity of the theoretical knowledge gained from the baseline experiment
and contributes to its external validity (Gómez et al. 2014; Rosenthal 1991).

Table 3 compares the settings for the baseline experiment and for the replication we have
designed. In the baseline experiment, Raja constructed the sample by selecting data sets from
projects “with significant activity and usage over an extended period of time” and that had “at
least 3 years of historical data available” (Raja 2013, p. 122). Beyond the availability of the
defect reports, the author did not mention other conditions for the inclusion of a data set in the
sample. In line with Raja’s selection, we selected two publicly available open source data sets
from the Android and the Eclipse development projects. These two data sets are considerably
larger than any of the five projects selected in the baseline experiment. The rationale for our
selection is two fold: first, as our goal is to test the clustering approach using a simulation
scenario, we considered that it is important to have large data sets so that multiple scenarios
can be explored. Second, in accordance with principles for conceptual and non-exact replica-
tions (Kitchenham 2008) (Juristo and Gómez 2012), varying the data sets and their size
contributes further to evaluating the external validity of the baseline experiment. Also, to
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further challenge the external validity of the baseline experiment, we also extracted defect
reports from a large proprietary project at an industrial partner, referred to as Company A.
Indeed, comparison to a proprietary development context is highlighted as an important
research endeavor (Robinson and Francis 2010).

3.1 Description of the Data Sets

The data sets are presented in Table 4. Android is an operating system designed for
touchscreen mobile devices such as smartphones and tablet computers. The Android Open
Source project, led by Google, develops and maintains the system. The defect reports were
collected from the public issue tracker on Dec 6, 2011, and made available as a 60 MB XML
file containing 20,176 reports by Shihab et al. as part of the mining challenge at the 9th
Working Conference on Mining Software Repositories (Shihab et al. 2012).

The Eclipse project consists of several subprojects with their own respective defect reports.
The defect reports of the Eclipse project, managed in Bugzilla databases, have been used for
DRT prediction in several previous studies (Panjer 2007), (Giger et al. 2010), (Lamkanfi and
Demeyer 2012), which motivates inclusion in this study. We extracted 4158 defect reports with
“closed” status from the subproject “Eclipse Platform” in March 2012. The raw data sets for
both projects are available for download on a publicly available website.1

Company A is a large multinational company active in the power and automation sector.
The software development context is safety-critical embedded development in the domain of
industrial control systems, governed by IEC 61511 (IEC 2014). The number of developers is in
the magnitude of hundreds a project has typically a length of 12 to 18 months and follows an
iterative stage gate project management model. At Company A, DRs are managed in Merant
Tracker (part of Merant Professional, acquired by Serena Software in 2004, http://www.serena.
com/). We extracted 7697 defect reports corresponding to a single development program,
which in turn is divided into several development projects.

3.2 Overview of the Study

Figure 2 is a synopsis of the main steps in our study. The prediction simulation part is
presented in sections 5 and 6. For all defect reports, we extracted and merged the titles (one
line summaries of defect reports) and the descriptions. Similar to the pre-processing in the
baseline experiment by Raja, we manually cleaned the collected defect reports from the three
projects prior to running the clustering process. In cases of defect reports with identical textual
descriptions, i.e., report clones, we only included the first submitted defect report in the
experiment. Also, we excluded all defect reports that were still open at the time of the data
collection. However, while the baseline experiment manually investigated all closed defect
reports with DRTs of less than 1 h to ensure that they were not invalid, we did not perform this
cleaning step as all data sets did not provide such fine-granular time information. Moreover, as
argued by Menzies et al. (2011a), while some data cleaning should be performed before using
mining tools, perfect data often comes with a too high cost. Menzies et al. (2011a) also claim
that most data mining approaches can handle a limited amount of noise. Thus, we only
conducted data cleaning that can be performed automatically (i.e., removal of duplicates)
and otherwise took the data unfiltered as input to the clustering step.

1 http://serg.cs.lth.se/research/experiment-packages/clustering-defect-reports/
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We used RapidMiner, an open source data mining tool (Hofmann and Klinkenberg 2014),
for clustering the defect reports based on their textual content. Before executing the clustering
algorithm, the following sequence of preprocessing steps was performed on the defect reports
in RapidMiner:

a. Defect reports were tokenized, using non-letters for splitting.
b. Defect reports were transformed to lower case.
c. Stop words were removed from the defect reports, using the filter for English provided by

RapidMiner.
d. Defect reports were stemmed using Porter’s stemmer.
e. Defect reports were filtered to include only tokens between 2 and 999 characters.
f. Document vectors were created from the remaining terms with TF-IDF weights.

Determining the number of clusters (K) in unknown data, referred to as “the fundamental
problem of cluster validity” by Dubes (1993), is acknowledged as a difficult problem. In a
survey of clustering algorithms, Xu and Wunsch II (2005) identified a large number of
proposals for estimating an appropriate K. They organize the proposals as either 1) Visualiza-
tion of the data set, 2) Construction of stop rules, 3) Optimization under probabilistic mixture-
model frameworks, and 4) Other heuristic approaches. Unfortunately, the various estimation
methods are often unreliable (Frost and Moore 2014). On the other hand, there exist clustering
algorithms that adaptively adjust the number of clusters rather than use a fixed number.
However, for these algorithms the challenge of setting the number of clusters is converted to
parameter tweaking of other parameters (Xu and Wunsch II 2005). Consequently, to determine
a feasible number of clusters, the researchers must use their skills to explore the data and
motivate the selection of K.

In Raja’s baseline experiment, the author manually determined K by iterative
clustering using entropy minimization, a process she described as labor intensive.
Raja reported that the number of clusters was iteratively refined (i.e., until a stop
criterion was reached) using an interactive feature of SAS Text Miner, allowing easy
creation of start and stop lists through a manual analysis of the preliminary results.
Raja also conducted a manual filtering of terms, to ensure that only relevant terms
were included in the final clusters, e.g., removing misspelled words and terms related
to source code. This process resulted in decreasing the number of clusters from 40,
the default maximum number of clusters in SAS Text Miner, to between three and
five clusters of defect reports in the five data sets.

In line with our aim to automate the clustering step, we did not want to perform any manual
tuning of the clusters produced by RapidMiner (using K-means clustering with default

Fig. 2 Main steps in our study (the prediction simulation part is presented in sections 5 and 6)
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settings2). Instead, we based our selection of K on our pre-understanding gained from Raja’s
original study, complemented by the heuristic elbow method. Raja concluded the number of
clusters to between three and five for all her five data sets, indicating that a feasible number of
clusters would be around a handful. The elbow method means to visually identify the point on
a curve with the maximum curvature (Tibshirani et al. 2001). Figure 3 shows the average
within centroid distance, an internal validity measure for clusters, as a function of the number
of clusters (Hofmann and Klinkenberg 2014). The figure shows, for all three data sets, that the
distinct decrease appears as K goes from 2 to 3. Thus, the elbow method suggests that at least
three clusters should be identified among the defect reports from Android, Eclipse, and
Company A. Finally, we set K to 4 for all our three data sets, corresponding to the average
of what Raja reported as optimal for her five data sets, a value that is also higher than the lower
bound suggested by the elbow method. However, the best validation is to test if the choice of K
actually leads to clusters with statistically significant differences.

In line with the baseline experiment, we conduct the same types of statistical tests (cf.
Table 1), using R software packages: normality distribution test for DRT (Kolmogorov-
Smirnov test), DRT homogeneity of variance among clusters (Levene’s test), ANOVA analysis
of variance together with Brown-Forsyth robust test, and post-hoc inter-cluster analysis of
variance (Games-Howell test).

4 Results of the Replication

In this section, we present the results of our replication study and compare them with those of
the baseline experiment.

We first present descriptive statistics about the data sets used in our study. Figure 4 shows
how DRT is distributed for each project. All data sets are clearly left-skewed and, obviously,
they are not normally distributed.

2 The RapidMiner process is exported to a file available in the same repository as the raw data (http://serg.cs.lth.
se/research/experiment-packages/clustering-defect-reports/)

Fig. 3 The average within centroid distance as a function of the number of clusters (K). The curves correspond-
ing to the three data sets display similar behavior (solid line = Android, dashed line = Eclipse, dotted line =
Company A). The elbow method suggests that K should be at least 3 for all data sets
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Table 5 summarizes the three data sets. Skew and kurtosis values are very high, although
Eclipse seems slightly less heterogeneous. To confirm the non-normality of the data sets, we
applied the Kolmogorov-Smirnov test with parameters estimated from the sample and D
threshold values estimated at 0.05 level of significance according to the formula in (Lilliefors
1967). The results consistently show D statistic larger than the threshold with p-values very
close to 0 (i.e., smaller than 0.05) which implies a rejection of the null hypothesis, i.e., the DRT
in each data set is not normally distributed.

The next step is clustering the set of defect reports according to textual similarity. This step
was a complex and sophisticated process in the baseline experiment. Raja (2013) conducted
several iterations of the clustering step. In the tool she used, i.e., SAS Text Miner, the default
number of maximum permissible clusters is 40; it allows for outliers to be treated as individual
clusters. Although none of the 5 projects processed in the original study did actually yield
more than ten clusters, the author used an interactive feature of the SAS Text Miner tool to
create start and stop word lists and, for each project, to optimize these two lists by identifying
irrelevant terms and discrepancies such as misspelled words and code presence. This labor
intensive manual selection of relevant terms minimized noise and helped in obtaining a small
number of clusters that could each be described by a set of highly relevant keywords. Thus, the
clusters obtained in the baseline experiment tend to be a collection of defect reports strongly
related to each other through common use of terms, and can therefore be considered as
exhibiting a certain form of semantic unity.
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Fig. 4 Distribution of DRT for the three data sets (resolution time expressed in days)

Table 5 Descriptive statistics of the data sets (significance codes for p-value: <0.001‘***’ <0.01‘**’ <0.05‘*’)

Data set #Defect
reports

DRT mean
(days)

DRT std.
dev.

Skew Kurtosis Normality assumption
(Kolmogorov-Smirnov test)

Android 4684 108 208 3.34 13.33 Dthreshold=0.013, D=0.303
p-value=0.0000 ***

Eclipse 4158 551 726 1.4 1.12 Dthreshold=0.014, D=0.224
p-value=0.0000 ***

CompA 6790 177 215 2.04 6.16 Dthreshold=0.011, D=0.205
p-value=0.0000 ***
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In this study, we use the RapidMiner tool for text mining and clustering. We deliberately
fixed the number of clusters to four, as explained in section 3. We did not intervene manually
in the clustering step as we opted for a fully automatic process that goes beyond replication of
the baseline experiment, by also evaluating the applicability and predictive quality of using the
clustering approach for DRT prediction, as suggested by Raja (2013, pp. 134). The boxplots
for DRT for the clusters in each data set are shown in Fig. 5.

The detailed results of the clustering are shown in Table 6. The average DRT varies across the
clusters in each data set. In line with the original study, we performed the normality Kolmogorov-
Smirnov test on each cluster. The D statistic is always larger than the threshold value and the p-
values are almost always close to 0; thus, in all clusters, the DRT values are not normally distributed.

Raja suggested in the original study that the differences in DRT means across clusters can
provide some insights into the patterns of defect resolution time, and that the patterns can be
used to predict the DRTof future defect reports (Raja 2013; p. 127). However, she continues, it
needs to be established if the differences between the mean DRT for each cluster are
statistically significant. For this end, a one-way analysis of variance ANOVA test is suitable.
Three assumptions need to be met: (i) independence of the sample observations, (ii) normality
of the sample, and (iii) approximately equal variance (homogeneity) for each group. The first
assumption is met as reports are randomly ordered and each report is independent. According
to the results of the Kolmogorov-Smirnov test, the second assumption is not fully met in our
data. However, the normality of the sample was violated in the original study as well. Raja
(2013) indicates that certain clusters she obtained did not satisfy the Kolmogorov-Smirnov test
(p. 129). However, she considers that “since the sample size is very large”, the assumption of
normality is established. Indeed, the ANOVA test is considered as reasonably robust to
deviations from normality. Even fairly skewed distributions might not be problematic, as long
as the groups are similarly skewed (Sawilowsky and Blair 1992).

Concerning the homogeneity of variance assumption, like in the baseline experiment, we
conducted the Levene’s test. Table 7 shows the obtained results. Our results are identical to the
baseline experiment, i.e., the variance is unequal among the clusters in each data set and the
null hypothesis is rejected.
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Because of the violation of the third assumption, i.e., equal variance, the baseline experi-
ment required additional testing beyond the ANOVA test. Raja performed the Brown-Forsythe
robust test of equality of means. Both the ANOVA and the Brown-Forsyth tests in the baseline
experiment exhibited consistent results (Raja 2013; p.130).

In line with the baseline experiment, we conducted both one-way ANOVA and Brown-
Forsythe tests on the data sets, as presented in Table 8. The results of both tests are consistent,
and corroborate the results obtained in the baseline experiment: in each data set, the mean
DRTs in each cluster are significantly different from each other.

The ANOVA test establishes that the differences in the means of the various clusters are
statistically significant. A post-hoc comparison is performed to identify how the means DRTs of
the clusters in each data set differ from each other. Post-hoc testing matches all data in each
cluster to data in every other cluster, calculates the differences in means and estimates the level
of statistical significance, i.e., the p-value. As the data is not normally distributed and homo-
geneity of variance is not assumed, the original study applied the Games-Howell post-hoc test.

The results of the post-hoc testing are presented in Table 9. We report only the p-value as
we are mainly interested in knowing if the mean DRT in each pair of clusters are significantly
different. For the Company A data set, all clusters are significantly different from each other,
while for the other two data sets, one or two pairs are not significantly different from each
other. This is, again, consistent with the baseline experiment’s results in which, for all data sets,
certain pairs of clusters were not significantly different from each other.

The knowledge gained from a non-exact, conceptual replication enhances the external
validity of the results and extends the potential generalizability. In the replication that we have
conducted, three important factors were varied: the data sets, the mining tool and the clustering
technique. The results we obtained are consistent with those obtained by Raja (2013): the
results of the ANOVA and Games-Howell tests for the three data sets are almost identical to
those obtained in the baseline experiment, i.e., there is a statistically significant difference in
the mean of the DRT for the various report clusters in all data sets. The statistical validity of
these tests, the ANOVA test in particular, is constrained by two important conditions:
homogeneity of variance and normal distribution. The data sets used in our replication did
not fully satisfy these constraints. However, this was the case also in the baseline experiment
(Raja 213, p. 129). Together with Raja, we consider that, since the sample size is very large,

Table 7 Test of unequal variance among the four clusters in the three data sets. The variance of DRT is not
homogeneous

Levene’s test

Android F=34.247 p-value=0.0000 ***

Eclipse F=32.228 p-value=0.0000 ***

CompA F=80.873 p-value=0.0000 ***

Table 8 Analysis of variance for the four clusters in the three data sets

One-way ANOVA test Brown-Forsythe test

Android F=13.47 p-value=0.0000 *** F=14.03 p-value=0.0000 ***

Eclipse F=21.44 p-value=0.0000 *** F=18.78 p-value=0.0000 ***

CompA F=92.99 p-value=0.0000 *** F=48.5 p-value=0.0000 ***
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the assumption of normality is established and ANOVA analysis is robust enough to be applied
to data with slightly unequal variance.

Moreover, some of the results we obtained are more distinct than those in the baseline
experiment. In the baseline experiment, the post-hoc test was globally successful for all pairs of
clusters in the studied projects (Raja 213, p. 131). In other words, for all projects, there was at least
one pair of clusters for which the result of post-hoc test was not significant. In our replication, for the
data set from company A, the results of the post-hoc are indeed significant for all pairs of clusters.

5 Design of the Simulation Scenario

To test the suggestion made in (Raja 2013), i.e., that variations of DRT in clusters of defect reports
can be used as an early indicator of the effort required for their resolution, we proceed in a deductive
manner. Starting out from the theoretical claim, we formulate a hypothesis and design an
operational context to gather observations, analyze the results and seek to confirm – or refute –
the hypothesis. The hypothesis is that clusters of defect reports with significantly different DRTs
can be used to predict DRTs of incoming defect reports. To define an operational context, we adopt
a simulation approach (Müller and Pfahl 2008). A simulation involves imitating the behavior of
some process (Walker and Holmes 2014), in our case the inflow of defect reports. The challenge
lies in designing a plausible and feasible operational scenario that provides ground for gathering
relevant data. A possible approach, for example, would be to cluster the defect reports each time a
new defect report arrives. The clustered data would then include both closed and open defect
reports. A possible prediction of the DRT of a defect report would then be the mean DRT of the
closed defect reports in the cluster to which the incoming defect report belongs. Such an event-
driven scenario is however barely feasible as clustering is a computationally intensive operation.
Furthermore, it can hardly be redone each time a single defect report is submitted. The clustering
time can easily extend the average time between incoming defect reports.

We opted instead for a scenario that simulates the application of the proposed prediction
method at various points in time (Fig. 6). The evaluation scenario we implement is inspired by
the k-tail simulation technique in which data after a given point are used for the test set (Walker
and Holmes 2014). In our context, the test set is the subset of defect reports for which DRT is

Table 9 P-values for Games-Howell post-hoc test (bold values are not significant at α=0.05 threshold)

Android Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.0004 *** 0.0472 * 0.9127

Cluster 2 0.0000 *** 0.8930

Cluster 3 0.3840

Eclipse

Cluster 1 0.0250 * 0.0000 *** 0.9308

Cluster 2 0.0000 *** 0.0000 ***

Cluster 3 0.0000 ***

Company A

Cluster 1 0.0000 *** 0.0000 *** 0.0000 ***

Cluster 2 0.0000 *** 0.0000 ***

Cluster 3 0.0000 ***
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predicted. As our simulation was not linked to a real-world software development context, we
did not have a practical criterion to decide what points in time would be suitable to split the
data set into cumulatively growing subsets of the total data set available. Such time-related
criterion could be defined, for example, by a specific day of the week, or an hour of the day.
For example, it might make sense to estimate new defect reports once a week. Then we would
do weekly estimations based on the number of closed defect reports available at a specific day
of the week. Another criterion could be to estimate once a certain amount of new defect reports
is waiting for prediction, or there could be a combination of criteria. In our simulation, with
lacking criteria from a real-world context, we were mainly interested in demonstrating the
mechanics of the approach and thus chose a somewhat arbitrary way of splitting the available
data so we could simulate the repeated DRT prediction of sequential chunks of newly
incoming defect reports along the timeline. We simply divided each data set of defect reports
into ten subsets, the first corresponds to a 10 % slice of the whole data set ordered by the
submission time, the second to 20 %, the 3rd to 30 %, etc. (cf. Fig. 6). These subsets represent
different points in time when the defect reports could have been clustered to predict DRTs.
Thus, larger subsets of defect reports imply that more historical data are available.

Theoretically, one could argue that a prediction should be made whenever a new (open)
defect report arrives. In order to simulate this situation, we would have had to repeat the
clustering and prediction steps thousands of times for each data set. This could become, even
when fully automated, rather time consuming. On the other hand, in practice, it might not even
be so that there is a need to predict every newly incoming defect report immediately. Instead,
estimation might happen at a certain fixed point in time, e.g., in the evening (or morning) of a
work day, or at the end (start) of a week. In those cases, there could be already several defect
reports be waiting for prediction. In our simulation, we tried to find a reasonable balance
between predictive power (which is highest when only one new defect report is to be
predicted) and saving of resources (which is lower the less predictions have to be made).

At each point in time when a prediction needs to be made, the whole data subset is clustered
and the DRTs of newly incoming defect reports uniformly receive the mean value of the cluster
to which they belong as predictor. This is followed by an evaluation step in which we compare
the predicted DRT with the actual DRT. Recall that in our simulation we only do as if the
defect reports were newly incoming. In reality, of course, we know their actual DRTs. The
whole process is shown in Fig. 7.

The simulated number of open defect reports is defined as the 10 % of the subset at its tail
(cf. the white regions in Fig. 6). For example, if we consider the Android data set (Table 4), the
40 % slice contains 1874 defect reports ordered according to their time of arrival. The

Fig. 6 Cumulatively growing data slices
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simulated subset of open defect reports would then contain 187 defect reports. The relative size
of the simulated open defects subset is to be considered as a parameter in the simulation
scenario. We will refer to this parameter as the Simulation Size Factor or SSF. It is possible to
envision different values for this parameter. For the Android data set and the 40 % slice for
example and for SSF=0.3, the size of the simulated open defects subset would be equal to 562
defect reports, and for SSF=0.5, equal to 937 defect reports. We consider 0.5 as the largest
possible value for SSF. This is summarized in the following definitions:

Size(SLi) = Size of the ith slice SLi, (i =1, 2, 3, …, 10)
SSF = Simulation Size Factor, a parameter to define the size of the subset of simulated
open defects reports, (0.1 < = SSF < =0.5)
Size(SimODRi) = Size(SLi) * SSF, (size of the subset of simulated open defects reports
for slice i)

To enact the simulation scenario, at each point in time and for each data slice, we define a
fixed number of defect reports as a test set (cf. Fig. 8). The goal of the simulation scenario is to
evaluate the predictive quality of the clustering approach at all ten simulation points. For this
reason, to make results comparable, the number of predicted defect reports in the test set
should be constant for all data slices. Accordingly, and in order to have a fixed size test set, we
set the size of the test set based on the size of the subset of simulated open defect reports for the
smallest slice (i.e., the 10 % slice). At SSF=0.1, 0.3 and 0.5, this correspond to 1, 3 and 5 % of
the whole data set respectively.

nb_PR = Size(SimODR1) * SSF, number of predicted defects (i.e., size of test set)

In case of the Android data set for example, at SSF=0.1, nb_PR is equal to 46. For the
Eclipse and Company A data sets at SSF=0.1, the size of the test set is 42 and 68 defect reports

Fig. 7 Synopsis of the test part of the study (cf. sections 3 for data preparation steps)

Fig. 8 Overview of the test scenario for DRT prediction
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respectively. For larger values of the SSF parameter, the size of the test set grows proportionally.
For the Android data set at SF=0.5, nb_PR is 234, i.e., 5 % of the size of the entire data set.

At each point in time, we use the information made available from the clustering as a
prediction of the DRT for the new defect report (cf. Fig. 8). In this way, we replay the history
of the issue management system and simulate an inflow of defect reports for our clustering
based approach. Our test scenario constitutes 10 experimental runs similar to a k-tail evaluation
(Matejka et al. 2009), a setup retaining the order of sequential data. For each run, a fixed
number of recent defect reports (1 % of the entire data set at SSF=0.1) are simulated as being
open and used for evaluation, and all defect reports submitted before that point in time are
considered training examples.

To measure the predictive quality of the prediction approach at each point in time, we use
the Magnitude of Relative Error (MRE) accuracy indicator (Shepperd and Kadoda 2001):

MRE dð Þ ¼ e−bej j
e

We assess the predictive power of the clustering approach by reporting the fraction of predicted
DRTswhereMRE are below 25 and 50%. This corresponds to the fraction of predicted DRTs that
are within ±25 and ±50% of the true DRTs. These two indicators are referred to as Pred(0.25) and
Pred(0.5) respectively. We only consider absolute differences, i.e., we assume that both over and
underestimation is equally unfortunate, in line with previous evaluations of DRT predictions
(Weiss et al. 2007). Pred(x) is calculated in the following manner:

N(k) = Number of defects to be predicted belonging to cluster k
∑N(k) = 1 % of the total number of defects in a data set
RT(d, k) = Actual resolution time for defect d in cluster k
RTpred(d, k) = Predicted resolution time for defect d in cluster k

Res d; k; xð Þ ¼ 1 if
RTpred d; kð Þ − RT d; kð Þj j

RTpred d; kð Þ < x; 0 otherwise

Pred xð Þ ¼
X

Res d; k; xð Þ
X

N kð Þ
; k ¼ 1; …; 4

Measuring Pred(x) at ten points in time enables us to assess how an increased number of
available defect reports affect the predictive power. To enable a comparison with a less
complex prediction approach, we also predict the resolution times of newly arrived defect
reports using the mean DRT of all available closed defect reports, i.e., the average resolution
time for all closed defects (cf. Fig. 8) . We refer to this approach as naïve predictions, in line
with related work by (Weiss et al. 2007). Consequently, the same formula for predictive power
measurement will be applied for naïve predictions, and will be used for comparison purposes,
i.e., to evaluate the clustering based prediction approach.

6 Results of the Simulation Scenario

We present the results from the simulation study that applies the clustering approach to predict
defect resolution time (DRT). The underlying idea of the approach, as suggested in Raja’s
study, is the significant variation in differences between mean DRTs of clusters of defect
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reports. Accordingly, the first step in the simulation study is to analyze these conditions for all
the data sets used in the simulation scenario. We conduct the two most important statistical
tests to check these conditions: the ANOVA test for the analysis of variance, which we
consider as robust enough with large data sets even if the data is not normally distributed
(cf. section 3); and the Games-Howell post-hoc test to check the significance of variation of
DRT among clusters. Table 10 and Fig. 9 present the results of the ANOVA tests and the post-
hoc analysis respectively, for the 10 data slices from each data set.

The results are slightly different for the three data sets: for the Company A data set, the
ANOVA test is positive for all 10 data slices; for the other two data sets, Android and Eclipse,
the test tends to be negative for smaller slices. The post-hoc analysis confirms a certain
difference among the data sets. In terms of inter-cluster variation in DRT, the data slices from
Company A are more compliant to the statistical conditions when compared with the other two
data sets (cf. Fig. 9).

Thus, the theoretical assumptions for the DRT prediction method suggested in Raja (2013)
are not systematically met by all the data slices in the simulation scenario. However, although
the ANOVA test is not positive for certain Android and Eclipse subsets, we decided to include
them anyway in the simulation scenario. Indeed, it is interesting to see whether the violation of
the statistical assumption has any effect on the results of the simulation scenario, i.e., whether
any differences can be observed in terms of prediction accuracy.

Figures 10 and 11 visualize the results of the test scenario. In these figures, the solid red line
corresponds to the prediction accuracy using the clustering approach, while the dashed blue
line corresponds to the accuracy of the “naïve” prediction (c.f. section 5). Each figure presents
three accuracy graphs, one for each data set: Android, Eclipse and Company A respectively.
Furthermore, each figure corresponds to a different accuracy threshold, i.e., Pred(0.25) and
Pred(0.5) respectively.

Figure 10 presents the accuracy graphs at 25 % error threshold, i.e. the percentage of DRT
predictions where the error margin from the actual DRT does not exceed 25 %. The graphs
look very irregular and the accuracy is globally below 20 %, i.e., in only 20 % of the DRT
predictions did the prediction accuracy result in an estimate within the 25 % error margin. At
the smallest data slice, i.e. the 10 % slice, the accuracy is better with the Eclipse data set, but it
falls to 0 for other slices. Finally, when compared with the “naïve” approach, the clustering

Table 10 ANOVA test of analysis of variance for the clusters in each data slice of the simulation scenario
(significance codes for p-value: <0.001‘***’ <0.01‘**’ <0.05‘*’, bold values are not significant)

Subset Android Eclipse Company A

10 % (F=1.551) 0.201 (F=0.383) 0.765 (F=11.45) 0.0000 ***

20 % (F=3.903) 0.0087 ** (F=2.392) 0.0673 (F=27.12) 0.0000 ***

30 % (F=2.791) 0.0393 * (F=8.157) 0.0000 *** (F=36.6) 0.0000 ***

40 % (F=0.176) 0.912 (F=18.43) 0.0000 *** (F=28.42) 0.0000 ***

50 % (F=2.441) 0.0625 (F=19.74) 0.0000 *** (F=33.9) 0.0000 ***

60 % (F=8.381) 0.0000 *** (F=20.82) 0.0000 *** (F=30.95) 0.0000 ***

70 % (F=2.745) 0.0416 * (F=46.72) 0.0000 *** (F=43.21) 0.0000 ***

80 % (F=9.374) 0.0000 *** (F=13.8) 0.0000 *** (F=32.42) 0.0000 ***

90 % (F=10.9) 0.0000 *** (F=39.58) 0.0000 *** (F=89.25) 0.0000 ***

100 % (F=13.47) 0.0000 *** (F=21.44) 0.0000 *** (F=92.99) 0.0000 ***
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(a) Android data set (b) Eclipse data set

(c) Company A data set

Fig. 9 Games-Howell post-hoc test for the clusters in each data slice of the simulation scenario (a) Android data
set (b) Eclipse data set (c) Company A data set
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Fig. 10 The DRT prediction accuracy for the three data sets, error threshold = 25 %
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approach to DRT prediction seldom provides more accurate results. This is true for the three
data sets, and moreover, the “naïve” prediction is sometimes even slightly more accurate.

The accuracy graphs at 50 % error threshold are presented in Figure 11. At this relatively
high level of error margin, the prediction accuracy improves. The prediction accuracy reaches
40 to 60 % for the 10 and 20 % slices in the Eclipse data. The same irregular patterns are
however still observed; The prediction accuracy for the Company A data set is again slightly
more regular than for the Eclipse data set, but the naïve approach is in all cases almost as
accurate as the clustering approach, an observation that applies also for the Android data set.

Analyzing the accuracy figures and the possible relation with the results of the ANOVA and
the post-hoc tests (cf. Table 10 and Fig. 9), there seems to be no clear pattern of effect. For
those slices where the ANOVA test failed, i.e., Android slices 10, 40, 50 % and Eclipse 10 and
20 %, the prediction accuracy is as irregular as for the rest. For the Android data set, the
prediction accuracy at 40 and 50 % is around the average, i.e., ~10 at Pred(0.25) and ~15 % at
Pred(0.50), and the prediction accuracy does not seem to be impacted by the negative result of
the ANOVA test. The case of the Eclipse data set seems particularly chaotic: for the 10 % slice,
the prediction accuracy is high at both the 25 and 50 % thresholds, although the ANOVA test is
negative, and the accuracy is null for the slices 90 and 100 %, although the test is positive.
Indeed, the chaotic shape of the Eclipse accuracy graph is difficult to interpret. Figure 12
presents the prediction accuracy of the simulation scenario from another perspective, highlight-
ing the variation for each data set. Indeed, the Eclipse data presents a particularly irregular
shape, in particular at Pred(0.5), with prediction accuracy in a range from 0 to 60 % .

6.1 Changing the Size of the Test Set

As stated earlier (cf. section 5), the simulation scenario relies on a fixed number of simulation
points in time, corresponding to 10 cumulatively growing data slices (cf. Fig. 6). However, the
size of the subset of defects that are considered for prediction can be varied. This variation in
the simulation procedure is implemented through the parameter SSF, Simulation Size Factor.
The results concerning prediction accuracy showed so far were obtained with SSF=0.1, which
sets the number of predicted defects equal to 1 % of the whole data set (i.e., 0.1 * Size(SL1)).
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Fig. 11 The DRT prediction accuracy for the three data sets, error threshold = 50 %
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Next, we report the results from simulations with larger values for SSF. Larger SSF values
imply that a larger number of predictions are made at a time, thus increasing the statistical
power of the evaluation steps in our simulation procedure.

We ran the simulation procedure with SSF values 0.3 and 0.5. In Fig. 13, we combined the
previous prediction accuracy results obtained with SSF=0.1 with the new results obtained with
SSF=0.3 and SSF=0.5. However, for the sake of readability, the naïve prediction is not
presented. Looking at each data set separately, it is interesting to see for the Android and
Company A data sets, the shape of the curves do not diverge and tend to be flattened as SSF
increases. However, results for the Eclipse data set are similarly irregular for all values of SSF.

From this exploration of the data, we can establish that, approximately, the average
prediction accuracy is between 10 and 15 % for Pred(0.25) and 15 and 20 % with the three
data sets used in the experiment. There is a visible variation in this result, with the Eclipse data
set being less homogenous than the others, and the Company A data being slightly more
homogenous that the others two. For the rest of this section, we will focus on the Company A
data set and explore the potential effect of the number of clusters on the prediction accuracy.

6.2 Increasing the Number of Clusters (K=6, 8 and 10)

An important issue in both the baseline experiment and in our paper is the number of clusters
K. As discussed earlier (cf. section 3), Raja applied a sophisticated and complicated clustering
technique in the baseline experiment, a technique that includes several iterations and human
interventions. She indicated that she started with a default maximum number of clusters, and
that “several iterations lead to the optimal solution” (Raja 2013, p.126), with a final number of
clusters between 3 and 5. The clustering technique we use in the replication, and in the
subsequent simulation scenario, is intended to be fully automated with no human intervention
for practical reasons, i.e., daily use for making DRT predictions. In our conceptual replication,

Android Company AEclipse Android Company AEclipse
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Fig. 12 Variation in DRT prediction accuracy for the three data sets
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we fixed the number of clusters to 4 using the well known heuristic “Elbow technique” (cf.
section 3). However, fixing the number of clusters can eventually be a confounding factor in
the measured prediction accuracy.

To explore this issue, we run the clustering step with larger numbers of clusters. Concerning the
number of clusters, we relied on the indication given by Raja in the description of the baseline
experiment, indicating that, during the clustering she conducted, “none of the projects yieldedmore
than ten clusters” (p. 126). So we considered K=10 as a significantly large number for clustering
defect reports, and we decide to explore three additional values for K: 6, 8, and 10. We chose to
explore the effect of K on the Company A data set. This data set is the largest, and it yielded the
best prediction accuracy with K=4 for Pred(0.25). Regarding the statistical assumptions, the
ANOVA and the post-hoc test were both positive for all slices of the Company A data set.

We conducted the ANOVA test on the Company A data for each data slice, with K set to 6,
8 and 10. The results of these tests were positive in all cases, and they are not presented here.
However, the results of the post-hoc analysis were not as clear as for the initial clustering with
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Fig. 13 The DRT prediction accuracy for the three data sets with different simulation size factors (0.1, 0.3 and
0.5) and at error thresholds 25 and 50 %
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K=4 (cf. c in Fig. 9). In Fig. 14 we present the post-hoc results for K=6 and K=8. The results
get better with larger slices, and for the 80 to 100 % slices, the test is almost fully positive. For
sake of space, we don’t show the post-hoc test for K=10, the results were very similar to the K=
8 case.

For the simulation part, as there are more clusters to make predictions from, the test set
needs to be sufficiently large. Thus, we decide to run the simulation scenario with a Simulation
Size Factor SSF=0.3 and 0.5. This would set the size of the test set to 204 and 340
respectively.

The results of the simulation scenario are presented in Fig. 15. At the 25 % error threshold,
i.e., Pred(0.25), the prediction accuracy plot shows a clear and homogenous pattern that drops
from ~30 % (i.e., 30 % of predictions within the range set by the threshold) at early points in
time (i.e., smaller data slices) to ~20 % at later points in time. Comparing the shape of the
accuracy plot for K=4 (Fig. 13) and K=6, 8 and 10 (Fig. 15), in particular for SSF=0.5, the
results are very comparable and thus seem to be independent from the number of clusters K. At
the 50 % error threshold, i.e., Pred(0.5), the figures are less regular but the prediction accuracy
is the highest, i.e., ~45 %, for early points in time.

7 Discussion

In the previous section, we presented the results regarding RQ1 (replication) and RQ2 (test
scenario). Regarding RQ1, we demonstrated that the results obtained by Raja (2013) are fully
reproducible with different data sets and using a different mining technique. The success of the
conceptual, non-exact replication we conducted contributes to the external validity of the
results published in the original study. We thus confirm Raja’s claim: clustering defect reports
leads to clusters with significantly different mean defect resolution time (DRT). The signifi-
cantly different DRTs support Raja’s suggestion that “text based classification of defect reports
can be a useful early indicator of defect resolution times” (p. 135).

The idea behind our second research question RQ2 is to go beyond the replication, and to
explore a method for predicting DRT based on clustering. Raja gave no indication of how such
method could be designed. We choose a simulation approach for exploring this issue. We run a

Fig. 14 Games-Howell post-hoc test for the Company A data slices with K=6 and K=8 clusters
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set of simulation scenarios in which we simulate the arrival of new open defects at ten points in
time. The predicted DRT for an incoming defect is the mean resolution time of the cluster to
which it belongs. In industrial settings, this method would be applied in a similar manner, i.e.,
open and closed defect reports are clustered either each time a new defect arrives, or as batch
jobs on a regular basis, e.g., nightly or every weekend. To evaluate the quality of the method,
we measure the prediction accuracy, i.e., the percentage of predictions with an error within 25
and 50 %. Looking at the results, not only was the predictive quality generally low (even for
Pred(0.5)), also there was no visible pattern that would help indicate in which situation
predictions are of higher or lower quality. In particular, there was no indication that larger
sets of closed DRs are better or worse for the purpose of predicting DRT of incoming defect
reports. Interestingly, in many cases, clustering did not improve predictive quality over simply
using the average DRT of all closed defect reports as a naïve prediction approach (Figs. 10 and
11). To check if this result is influenced by certain parameters of the experiment, we run the
simulation with larger prediction sets and with larger number of clusters, and the results are
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Fig. 15 The DRT prediction accuracy for the different number of clusters, using two simulation size factors (0.3
and 0.5), and at error thresholds 25 % and 50 %
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globally consistent (Figs. 13 and 15), i.e., the average accuracy for Pred(25) is between 10 and
15 %, and for Pred(50) between 15 and 30 %.

While these results are discouraging, they seem to be consistent with what others have
found. For example, Weiss et al. (2007), who applied the k-nearest neighbor (kNN) method to
predict the defect resolution effort for various software systems, did not get better results than
we did. On average, only 30 % of their predictions lay within a ±50 % range of the actual
effort. Interestingly, their data were more fine-granular (person-hours) than ours, which
reconfirms our observation that different data granularity does not seem to have an impact
on accuracy of predicted DRT. Weiss et al. explain this by the diversity of the defect reports.
Others, like Panjer (2007) and Bougie et al. (2010) suggest that there are other attributes that
may have greater influence on the DRT than the pure lexical information in defect reports, and
they speculate that predictive accuracy and optimal methods for predicting DRTs may vary
significantly between software projects.

Moreover, the theoretical assumption about significant differences in mean DRT between
clusters (ANOVA and post-hoc test) did not seem to have an effect on the results. In the case of
the Eclipse data set, when the ANOVA test is negative (cf. Table 10), the prediction accuracy is
higher than average, and in others, when the test is positive, the prediction is very low or even
null. This is also confirmed when exploring the Company A data with larger number of
clusters, there is no visible pattern of correlation between the results of the post-hoc test
(Fig. 14) and the prediction accuracy (Fig. 15). From this conclusion, we would tend to deduce
that Raja’s suggestion about the usefulness of text based classification as an early indicator of
DRT cannot be applied in practice, and more importantly, do not produce an accurate
prediction of DRT. However, we are aware that we designed a method that uses a different
clustering approach and we applied it to different data sets. Thus, all we can confirm here is
that significantly different mean DRT among clusters is insufficient for making an accurate
prediction. Nonetheless, we cannot affirm that the specific clustering approach applied by Raja
in the baseline experiment would produce a similarly negative result. We indeed made
modifications in the clustering approach we applied in our method for two reasons: (1) Raja
did not disclose all details of the manual steps she applied to improve the data clustering; (2) in
industrial contexts, engineers need simple, robust, and fully automated prediction methods to
be applicable in a non-intrusive and effortless fashion.

Generally, in the literature, the opinion that DRT prediction shall be based on more than just
the description of the defect report is popular, e.g. Keung and Kitchenham (2008); however,
what features of a defect report are the most relevant is unclear. In Giger et al. (2010), where a
decision-tree algorithm was applied to classify incoming defect reports into those with fast
(less than median DRT) and those with slow (more than median DRT) resolution time, the best
performing prediction models were obtained when using additional information added to
defect reports (e.g., a milestone, a comment) between 14 to 30 days after defect reports
submission. Menzies et al. (2011b) and Bettenburg et al. (2012) suggest to first cluster defect
reports according to severity and domain information, and then apply the text based clustering
approach. Furthermore, another problem with basing DRT prediction on the defect reports
description might be insufficient quality of the defect report itself; for a discussion on defect
report quality see, e.g., Wang et al. (2011) and Laukkanen and Mäntylä (2011). Indeed, our
analysis relies on a strong assumption: a defect report is a correct, complete and relevant
description of a defect; the same defect reported by two different users would use the same
terms and thus, would have a high degree of similarity. The validity of this assumption might
be questionable.
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8 Threats to Validity

Threats to validity in experimental studies are categorized into construct, internal, external and
conclusion validity (Perry et al. 2000) (Wohlin et al. 2012). Construct validity means that the
studied phenomenon is adequately conceptualized with the dependent and independent vari-
ables in the model, and whether the experimental setup correctly measures the variables.
Internal validity points to the explanatory power of the model and the extent to which changes
in the dependent variables can be safely attributed to changes in the independent variables, i.e.,
the absence of any confounding factor. External validity means that the results can be
generalized to other settings similar to those of the study. Conclusion validity concerns the
relationship between the treatment and the outcome, and the risk of type I and II errors
occurring. As this study is of type theory testing, i.e., checking the existence or the extent of a
relationship or an effect claimed by a theory, we present the validity threats in the decreasing
priority mentioned by Wohlin et al. (2012): internal, construct, conclusion and external. We
will discuss each validity threat for RQ1 first and then for RQ2.

Concerning RQ1, we successfully reproduced the results of the original study. Our results
are subject to the same threats to internal validity as the baseline experiment. Raja (2013)
discussed three threats concerning the data sets she used for her experiment: 1) the selected
sample of defect reports from five successful OSS projects, 2) that all defects were considered
equal, neglecting the possible effect of various defect attributes on DRT, and 3) that DRT was
computed without considering the complexity of the problem. The same threats should also be
mentioned also for our study. Moreover, concerning our replication, the clustering approach
we applied (i.e., k-means clustering using default settings in RapidMiner) might have influ-
enced the results for RQ1. Indeed, in the baseline experiment, Raja exploited specific features
of the software tool she used (i.e., SAS Text Miner) and made subsequent efforts to optimize
the results of the clustering to reduce possible sources of “noise”, e.g., presence of code
fragments, misspelled words, and terms that appear rarely (Raja 2013, p. 126). In our
experimental setting, and for reasons related to RQ2, we deliberately limited the manual
preprocessing and restrained ourselves to features available in the open-source software tool
we used for clustering, i.e., RapidMiner. Finally, when we applied clustering on some smaller
data slices, the ANOVA test was negative (cf. Table 10). Thus, the size of the data sample
could be a confounding factor in both the baseline experiment and in the reproduction we
made. There is indeed a risk that, for large data sets, any clustering technique, or even random
grouping, might produce clusters for which mean DRTs are significantly different.

Concerning RQ2, we have analyzed two possible confounding factors : the size of the test
set (the SSF parameter), i.e., the number of defects used for prediction, and the number of
clusters in the clustering approach. Our analysis showed that the results are robust, i.e., there is
no notable impact on the prediction accuracy. Another possible confounding factor is the non-
determinism of k-means clustering (Su and Dy 2004), i.e., another run of the clustering could
in theory produce clusters for which the simulation results would be better. However, this
threat is minimized by both the size of our data sets, and the multiple runs conducted for each
data slice according to the simulation protocol (cf. section 5).

In terms of construct validity regarding replication and RQ1, the threats concern the
experimental process we applied and the data sets we used. We have exclusively relied on
the description of the original experiment as reported in the published papers as no supple-
mentary material was available (cf. Table 2). As mentioned above, there are indeed certain
sophisticated details concerning the clustering technique in the baseline experiment that were
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not fully described. Concerning the data sets, we could not reuse the data sets from the baseline
experiment. Correspondence with the author did not result in the raw data needed; it was lost
after the baseline experiment was conducted, highlighting the importance of uploading
experimental data sets to online repositories. On the other hand, using the same data sets
would have reduced the significance of the replication aspect of the study as there would have
been too few variation points as compared with the original study, i.e., only the software tools
used for clustering and statistical analysis would have been different.

Regarding RQ2, construct validity spans two main issues. The first is again related to the
data sets we used, i.e., it could be questioned why the data sets of the original study were not
directly used for prediction in the test scenario. Beyond the unavailability of the original data
sets, we argue that diversifying the data sets, e.g., by including a proprietary data set in the
experiment, enriches our experiment. The three data sets we studied contribute to the external
validity of our findings, in line with recommendations for evaluating mining techniques on
non-open source systems (Hassan 2008). Indeed, the results for the proprietary data set we
studied are better than for any of the data sets in the original study in terms of the ANOVA
analysis, i.e., the difference in DRT is significant for all pairs of clusters for Company A data
(Table 8), while this is not the case for any of the data sets in the original study (Raja 2013, p.
131, Table 7). The second construct validity issue related to RQ2 is the simulation approach
we use in the test scenario. We replayed the inflow of defect reports and chose to cluster the
data at ten points in time. It would have been possible to cluster the data sets more frequently,
but that would have been considerably more computationally expensive. Also, choosing
clustering points based on the time dimension rather than a fixed number of defect reports
might better correspond to a real world usage scenario. However, keeping the number of
additional defect reports between every clustering point constant helps exploring the potential
value of more data. Finally, cumulatively increasing the number of defect reports at each
clustering point is perhaps not feasible. As shown for the Eclipse data set (cf. Figs. 10 and 11),
the Pred(X) graphs drops twice, suggesting that the performance of the DRT predictions must
be carefully monitored if the approach is deployed. At certain times the time locality of the
training data is critical, i.e.,. patterns in the old defect reports do no longer apply for newly
submitted defect reports. An alternative experimental setup would be to instead use the sliding
window method (Dietterich 2002) to only evaluate DRT prediction based on recent defect
reports.

Regarding the conclusion of RQ2, i.e., the low level of prediction accuracy, the main threats
to its validity are again related to the data sets and the pre-processing steps. Although the
prediction accuracy is low for the three data sets, the proprietary data showed patterns slightly
more regular than the patterns for the Android and Eclipse data sets. We tend to believe that
defect reports originating from proprietary contexts are authored more carefully. Thus, the
result of our test scenario could be threatened by the quality of the textual descriptions in the
defect reports. Furthermore, a better filtering of the data sets could have improved the results.
Previous work showed that filtering out outliers can support DRT prediction (Lamkanfi and
Demeyer 2012) (AbdelMoez et al. 2013). However, we decided to rely on as few preprocess-
ing steps as possible.

The main threat to conclusion validity is that the three data sets we studied might not have
fulfilled the normality assumptions. The author of the original study assumed normality for the
DRT distribution in each cluster, although she reported that the Kolmogorov-Smirnov test
indicated “slight violations” (Raja 2013, p. 129). We made the same assumption even though
both skewness and kurtosis of our data samples were rather high. Another assumption made in
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the original study, related to the ANOVA tests, concerned the independence of defect reports.
We assumed such independence although we suspect that defects in large software systems
often appear in complex networks and thus are not always independent of each other (Borg
et al. 2013a, b).

At last, concerning threats to external validity, the issue is slightly different for RQ1 and
RQ2. The successful replication of the original study positively confirmed its results using
different data sets and a fully automated clustering approach. Accordingly, this work contrib-
utes to a better generalization of the original study result concerning the significant differences
in mean resolution time for defects in different clusters. Concerning RQ2 and the test scenario,
and in the light of the threats to internal and construct validity as presented above, it is difficult
to draw a positive conclusion concerning the clustering based approach to DRT prediction.
The obtained patterns are very irregular, either for a single data set at different clustering points
in the test scenario, or for the three data sets all together, i.e., the shapes of the prediction
accuracy graphs are different for each data set. However, while our results suggest that
clustering based DRT prediction is not promising, confirming whether our negative results
extend to other data sets requires further replications.

9 Conclusion

In conclusion, we must clearly say that using a simple, fully automated clustering approach
based on term-frequency in defect report descriptions cannot predict defect resolution time
(DRT) with sufficient accuracy, no matter whether the acceptable error margin is set to 25 %,
or 50 %. Moreover, the predictions are in most cases not better than simply using the average
DRT of the whole available data set as a predictor for the DRT. On the other hand, our
replication confirmed the results achieved by Raja (2013) with regards to the significant
difference of average DRTs in defect report clusters. Indeed, the value of replication lies in
analyzing the results in conjunction with the baseline experiment. If the results are compatible,
they can be considered additive, increasing confidence in the original hypothesis (Miller
2005).

However, as suggested by our findings, the practical value of this observation regarding the
prediction of DRTs is rather limited. Given the results of other researchers, this finding is not
surprising. While according to Weick (1995), the “differential ‘responsiveness’ of data to
changes in a treatment is frequently an informative precursor to theorizing”, we must admit
that in our case Barbara Kitchenham is right when saying that she is “not convinced that we
can find theories by simply varying experimental conditions” (Kitchenham 2008), and that – as
was true in our case – “a replication without the framework of a theory, whether independent
or dependent, is by far the most risky type of replication”. Indeed, our study is grounded on
two theoretical principles: the first is the similarity principle, i.e., similar defects require similar
time to be resolved, the second is the clustering principle, i.e., similar defects are grouped in
clusters. These principles seem insufficient to fully explain our empirical findings, and further
investigations are necessary to better understand the relationships between multiple factors that
can affect defect similarity (e.g., severity) and DRT (e.g., developers’ background knowledge
or project specific settings).

Thus, our perspectives for future work will be guided by these observations. We first intend
to question the assumption of similarity using a controlled experiment: do different persons
describe defects that are alike – or even identical – with similar textual reports? Further, we are
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interested in exploring any confounding factors in software projects that impact defect likeness
beyond textual similarity. This would enhance the theoretical understanding of how a defect is
best described and how this information can be leveraged in software repositories for naviga-
tion, recommendation and prediction purposes (Borg 2014). At last, automatic clustering
techniques for grouping similar defects needs further questioning and exploration. As a cluster
is an automatically derived group of similar elements, to enhance usefulness when used for
prediction, a cluster should exhibit a certain level of semantic unity. Indeed, in the baseline
experiment we replicated, the author manually exploited interactive features of the text mining
tool to obtain more homogenous clusters in terms of domain concepts and keywords.
Moreover, a recent investigation leverages the observation that certain components of a
software are more error-prone than others (Chen et al. 2012); this would suggest that, beyond
textual similarity, words appearing in a defect report can be related to a software topic and,
thus, to a certain group of similar defects. Therefore, we believe that these ideas should be
developed further, for example, how automatic clustering can exploit domain knowledge, i.e.,
a domain ontology, and create categories related to the domain of the software to which the
defect is linked. Indeed, ontology-based semantic clustering has been experimented recently in
other research domains and showed promising results (Batet 2011).
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