
© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 27–39, 2015.
DOI: 10.1007/978-3-319-18612-2_3

An Industrial Case Study on Test Cases as Requirements

Elizabeth Bjarnason1(), Michael Unterkalmsteiner2,
Emelie Engström1, and Markus Borg1

1 Lund University, SE-221 00, Lund, Sweden
{elizabeth.bjarnason,emelie.engstrom,markus.borg}@cs.lth.se

2 Blekinge Institute of Technology, SE-371 79, Karlskrona, Sweden
mun@bth.se

Abstract. It is a conundrum that agile projects can succeed ‘without require-
ments’ when weak requirements engineering is a known cause for project fail-
ures. While Agile development projects often manage well without extensive
requirements documentation, test cases are commonly used as requirements.
We have investigated this agile practice at three companies in order to under-
stand how test cases can fill the role of requirements. We performed a case
study based on twelve interviews performed in a previous study. The findings
include a range of benefits and challenges in using test cases for eliciting, vali-
dating, verifying, tracing and managing requirements. In addition, we identified
three scenarios for applying the practice, namely as a mature practice, as a de
facto practice and as part of an agile transition. The findings provide insights
into how the role of requirements may be met in agile development including
challenges to consider.

Keywords: Agile development · Behaviour-driven development · Acceptance
test · Requirements and test alignment · Case study

1 Introduction

Agile development methods strive to be responsive to changing business requirements
by integrating requirements, design, implementation and testing processes [1][2]. Face-
to-face communication is prioritised over written requirements documentation and cus-
tomers are expected to convey their needs directly to the developers [3][4]. However,
weak customer communication in combination with minimal documentation is reported
to cause problems in scaling and evolving software for agile projects [4].

Requirements specifications fill many roles. They are used to communicate among
stakeholders within a software development project, to drive design and testing, and
to serve as a reference for project managers and in the evolution of the system [6].
Due to the central role of requirements in coordinating software development, there
exists a plethora of research on how to document requirements with varying degrees
of formality depending on its intended use. This spans from formal requirements
specifications [7] and requirements models [8], over templates [9] to user stories [10]
and requirements expressed using natural language. At the formal end of the spec-
trum, requirements specifications can be automatically checked for consistency [11]

28 E. Bjarnason et al.

and used to derive other artefacts, e.g. software designs [12] or test cases [13]. For the
less formal approaches, requirements documentation is driven by heuristics and best
practices for achieving high quality [14] requirements.

The coordination of evolving requirements poses a challenge in aligning these with
later development activities including testing [5]. In a previous study we identified the
use of test cases as requirements (TCR) as one of several industrial practices used to
address this challenge [5]. In this paper, we investigate this practice further by a more
detailed analysis of the interview data from the three case companies (of six) that
explicitly mentioned this practice. The case study presented in this paper investigates
how the practice may support the role of requirements engineering (RE) by investigat-
ing RQ1 How does the TCR practice fulfil the role of requirements? and RQ2 Why
and how is the TCR practice applied?

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 presents the case companies and Section 4 the applied research method. The
results are reported in Section 5, while the research questions are answered in Sec-
tions 6 and 7. The paper is concluded in Section 8.

2 Agile RE: Test Cases as Requirements Documentation

In agile software development requirements and tests can be seen as two sides of the
same coin. Martin and Melnik [15] hypothesize that as the formality of specifications
increases, requirements and tests become indistinguishable. This principle is taken to the
extreme by unit tests [16] where requirements are formalized in executable code. Practi-
tioners report using unit tests as a technical specification that evolves with the imple-
mentation [17]. However, unit tests may be too technical for customers and thereby lack
the important attribute of being understandable to all relevant stakeholders.

Acceptance tests are used to show customers that the system fulfils the require-
ments [18]. However, developing acceptance tests from requirements specifications is
a subjective process that does not guarantee that all requirements are covered [18].
This is further complicated by requirements documentation rarely being updated [19],
leading to potentially outdated acceptance tests. In agile development, automated
acceptance tests (AATs) drive the implementation and address these issues by docu-
menting requirements and expected outcomes in an executable format [4][20]. This
agile practice is known, among others, as customer tests, scenario tests, executa-
ble/automated acceptance tests, behaviour driven development and story test driven
development [21].

Some organisations view and use the AATs as requirements thereby fully integrat-
ing these two artefacts [15]. AATs are used to determine if the system is acceptable
from a customer perspective and used as the basis for customer discussions, thus re-
ducing the risk of building the wrong system. However, the communication might be
more technical and require more technical insight of the customer. Melnik et al. [22]
found that customers in partnership with software engineers could communicate and
validate business requirements through AATs, although there is an initial learning
curve.

 An Industrial Case Study on Test Cases as Requirements 29

The conceptual difficulty of specifying tests before implementation [23][24][25]
led to the conception of behaviour-driven development (BDD) [26]. BDD incorpo-
rates aspects of requirements analysis, requirements documentation and communica-
tion, and automated acceptance testing. The behaviour of a system is defined in a
domain-specific language (DSL); a common language that reduces ambiguities and
misunderstandings. This is further enhanced by including terms from the business
domain in the DSL.

Haugset and Hansen studied acceptance test driven development (ATDD) as an RE
practice and report on its benefits and risks [20]. Our work extends on this by also
investigating companies that use the TCR practice without applying ATDD princi-
ples.

3 Case Companies

The three case companies all develop software using an agile development model.
However, a number of other factors vary between the companies. These factors are
summarised in Table 1 and the interviewees are characterised in Table 2.

Table 1. Overview of the case companies

Company A B C

Type of company
Softw. develop.,
embedded products

Consulting
Softw. develop., embed-
ded products

#employees in
softw development

125-150 135 1,000

#employees in
typical project

10
Mostly 4-10, but varies
greatly

Previously:
800-1,000 person years

Distributed No No Yes
Domain / System
type

Computer network-
ing equipment

Advisory/technical ser-
vices, appl. management

Telecom

Source of reqts Market driven Bespoke Bespoke, market driven

Main quality focus
Availability, per-
formance, security

Depends on customer
focus

Performance, stability

Certification Not software related No ISO9001

Process Model Agile Agile in variants
Agile with gate decisions
Previous: Waterfall

Project duration 6-18 months No typical project Previously: 2 years
#requirements in
typical project

100 (20-30 pages
HTML)

No typical project
Previously:
14,000

#test cases in typi-
cal project

~1,000 test cases No typical project
Previously: 200,000 for
platform, 7,000 for system

Product Lines Yes No Yes
Open Source Yes Yes incl. contributions Yes (w agile dev model)

30 E. Bjarnason et al.

3.1 Company A

Company A develops network equipment consisting of hardware and software. The
software development unit covered by the interview study has around 150 employees.
The company is relatively young but has been growing fast during the past few years.
A typical software project has a lead time of 6-18 months, around 10 co-located
members and approximately 100 requirements and 1,000 system test cases. A market-
driven requirements engineering process is applied. The quality focus for the software
is on availability, performance and security. Furthermore, the company applies a
product-line approach and uses open-source software in their development.

A product manager, a project manager, and a tester were interviewed at Company
A, all of which described how the company manages requirements as test cases.

3.2 Company B

Company B is a consultancy firm that provides technical services to projects that vary
in size and duration. Most projects consist of one development team of 4-10 people
located at the customer site. The requirements are defined by a customer (bespoke).

The three consultants that were interviewed at Company B can mainly be charac-
terised as software developers. However, they all typically take on a multitude of
roles within a project and are involved throughout the entire lifecycle. All three of
these interviewees described the use of the TCR practice.

3.3 Company C

Company C develops software for embedded products in the telecommunications do-
main. The software development unit investigated in this study, consists of 1,000 people.
At the time of the interviews, the company was transitioning from a waterfall process to
an agile process. Projects typically run over 2 years and include 400-500 people. The
project size and lead time is expected to decrease with the agile process. The projects
handle a combination of bespoke and market-driven requirements. Including the product-
line requirements, they handle a very complex and large set of requirements.

Six of the interviewees (of 15) discussed the practice, namely one requirements
engineer, two project managers, two process managers and one tester.

Table 2. Interviewees per company. Experience in role noted as S(enior) = more than 3 years,
or J(unior) = up to 3 years. Interviewees mentioning the TCR practice are marked with bold.
Note: For Company B, software developers also perform RE and testing tasks.

Role A B C
Requirements engineer C1:S, C6:S, C7:S
Systems architect C4:S
Software developer B1:J, B2:S, B3:S C13:S
Test engineer A2:S C9:S, C10:S, C11:J, C12:S, C14:S
Project manager A1:J C3:J, C8:S
Product manager A3:S
Process manager C2:J, C5:S, C15:J

 An Industrial Case Study on Test Cases as Requirements 31

4 Method

We used a flexible exploratory case study design and process [27] consisting of four
stages: 1) Definition, 2) Evidence selection, 3) Data analysis and 4) Reporting.

Definition of Research Questions and Planning. Since we were interested in how
agile development can be successful ‘without requirements’ we selected to focus on
the practice of using test cases as requirements. We formulated the research questions,
(RQ1) How does the TCR practice fulfil the role of requirements? and (RQ2) Why
and how is the TCR practice applied?

Evidence Selection. We selected to use word-by-word transcriptions from our previ-
ous study of RE-Testing coordination. The research questions of this paper are within
the broader scope of the previous study [5], which also included agile processes. In
addition, the semi-structured interviews provided rich material since the interviewees
could freely describe how practices were applied including benefits and challenges.
Data selection was facilitated by the rigorous coding performed in the previous study.
We selected the interview parts coded for the TCR practice. In addition, the tran-
scripts were searched for key terms such as ‘acceptance test’, ‘specification’.

Data Analysis. The analysis of the selected interview data was performed in two
steps. First the transcripts were descriptively coded. These codes were then catego-
rised into benefits and challenges, and reported per case company in Section 5. The
analysis was performed by the first author. The results were validated independently
by the third author. The third author analysed and interpreted a fine-grained grouping
of the interview data produced in the previous study, and compared this against the
results obtained by the first researcher. No conflicting differences were found.

5 Results

Two of the investigated companies apply the TCR practice while the third company
plan to apply it. The maturity of the practice thus varied. The interviewees for Company
B provided the most in depth description of the practice, which is reflected in the
amount of results per company. Limitations of the findings are discussed in Section 5.4.

5.1 Company A: A De Facto Practice

Test cases have become the de facto requirements in company A due to weak RE
(A21), i.e. the RE maturity in the company is low while there is a strong competence
within testing. Formal (traditional) requirements are mainly used at the start of a pro-
ject. However, these requirements are not updated during the project and lack trace-
ability to the test cases. Instead, the test cases become the requirements in the sense
that they verify and ensure that the product fulfils the required behaviour.

1 Mentioned by this interviewee, see interviewee codes in Table 2.

32 E. Bjarnason et al.

Benefits. Efficient way of managing requirements in a small and co-located organisa-
tion that does not require managing and maintaining a formal requirements specifica-
tion once test design has been initiated (A1). In addition, the structure of the test
specifications is closer to the code simplifying navigation of these ‘requirements’
once the implementation has started (A1).

Challenges. As the company grows, the lack of traces to formal requirements is a
problem in communication of requirements changes to the technical roles (A1, A2)
and in ensuring correct test cases (A2). In addition, the test cases lack information
about requirements priority, stakeholders etc., needed by the development engineers
when a test case fails (A2) or is updated (A3). The untraced artefacts do not support
either ensuring test coverage of the formal requirements (A1, A3), or identifying the
test cases corresponding to the requirements re-used for a new project (A2).

5.2 Company B: An Established Practice

Company B actively applies the TCR practice through behaviour-driven development
supported by tools. The customer and the product owner define product and customer
requirements. Then, for each iteration, the development engineers produce acceptance
criteria (user scenarios) and acceptance test cases from these requirements. These
‘requirements test cases’ are iterated with the business roles to ensure validity (B1),
and entered into an acceptance test tool that produces an executable specification. The
interviewees described that the acceptance criteria can be used as a system specifica-
tion. However, interviewee B3 stated that the acceptance criteria can be read ‘to get
an impression. But, if you wonder what it means, you can look at the implementa-
tion’, i.e. this documentation is not fully stand-alone.

Benefits. The interviewees stated that the main benefits are improved customer col-
laboration around requirements, strengthened alignment of business requirements
with verification, and support for efficient regression testing. The customer collabora-
tion raises the technical discussion to a more conceptual level while also improving
requirements validity, since, as an engineer said, ‘we understand more of the require-
ments. They concretize what we will do.’ (B1) This alignment of business and techni-
cal aspects was experienced to also be supported when managing requirements
changes by the use of acceptance test cases as formal requirements (B2, B3). At the
end of a project the acceptance test cases show ‘what we’ve done’ (B2). Furthermore,
the executable specification provided by this practice, in combination with unit tests,
acts as a safety net that enables projects to ‘rebound from anything’ (B1) by facilitat-
ing tracking of test coverage, efficiently managing bugs and performance issues.

Challenges. The interviewees mentioned several challenges for the practice concerning
active customer involvement, managing complex requirements, balancing acceptance
vs. unit tests and maintaining the ‘requirements test cases’. Over time the company has
achieved active customer involvement in defining and managing requirements with this
practice, but it has been challenging to ensure that ‘we spoke the same language’ (B3).
The interviewees see that customer competence affects the communication and the out-
come. For example, interviewee B3 said that non-technical customers seldom focus on

 An Industrial Case Study on Test Cases as Requirements 33

quality requirements. Similarly, getting the customer to work directly with requirements
(i.e. the acceptance test cases) in the tool has not been achieved. This is further compli-
cated by issues with setting up common access across networks.

Complex interactions and dependencies between requirements, e.g. for user
interfaces (B1) and quality requirements (B2), are a challenge both to capture with
acceptance test cases and in involving the customer in detailing them. Furthermore,
automatically testing performance and other quality aspects on actual hardware and in a
live testing environment is challenging to manage with this approach.

All interviewees mentioned the challenge in balancing acceptance vs. unit test
cases. It can be hard to motivate engineers to write acceptance-level test cases. Fur-
thermore, maintenance of the acceptance test cases needs to be considered when ap-
plying this practice (B1, B2, B3). Interviewee B3 pointed out that test cases are more
rigid than requirements and thus more sensitive to change. There is also a risk of dete-
riorating test case quality when testers make frequent fixes to get the tests to pass
(B2).

5.3 Company C: Planned Practice as Part of Agile Transition

The agile transition at the company included introduction of this practice. Require-
ments will be defined by a team consisting of a product owner, developers and testers.
User stories will be detailed into requirements that specify ‘how the code should
work’ (C8). These will be documented as acceptance test cases by the testers and
traced to the user stories. Another team will be responsible for maintaining the soft-
ware including the user stories, test cases and traces between them. In the company’s
traditional process, test cases have been used as quality requirements, as a de facto
practice. Interviewee C1 describes an attempt to specify these as formal requirements
that failed due to not reaching an agreement on responsibility for the cross-functional
requirements within the development organisation.

Benefits. The practice is believed to decrease misunderstandings of requirements
between business and technical roles, improve on the communication of changes and
in keeping the requirements documentation updated (C5, C10).

Challenges. Integrating the differing characteristics and competences of the RE and
testing activities are seen as a major challenge (C5, C10) in the collaboration between
roles and in the tools. RE aspects that need to be provided in the testing tools include
noting the source of a requirement, connections and dependencies to other require-
ments and validity for different products (C5).

5.4 Limitations

We discuss limitations of our results using guidelines provided by Runeson et al. [27].

Construct Validity. A main threat to validity lies in that the analysed data stems from
interviews exploring the broader area of coordinating RE and testing. This limits the
depth and extent of the findings to what the interviewees spontaneously shared around
the practice in focus in this paper. In particular, the fact that the practice was not yet

34 E. Bjarnason et al.

fully implemented at Company C at the time of the interviews limits the insights
gained from those interviews. However, we believe that the broad approach of the
original study in combination with the semi-structured interviews provide valuable
insights, even though further studies are needed to fully explore the topic.

External Validity. The findings may be generalized to companies with similar char-
acteristics as the case companies (see Section 3), by theoretical generalization [27].

Reliability. The varying set of roles from each case poses a risk of missing important
perspectives, e.g. for Company B the product owner’s view would complement the
available interview data from the development team. There is a risk of researcher bias
in the analysis and interpretation of the data. This was partly mitigated by triangula-
tion; two researchers independently performing these steps. Furthermore, a rigorous
process was applied in the (original) data collection including researcher triangulation
of interviewing, transcription and coding, which increases the reliability of the se-
lected data.

6 Test Cases in the Role of Requirements (RQ1)

We discuss how the TCR practice supports the main roles of RE and the requirements
specification according to roles defined by Lauesen [28], i.e. the elicitation and vali-
dation of stakeholders’ requirements; software verification; tracing; and managing
requirements. The discussion is summarised in Table 3.

Table 3. Summary of benefits and challenges per role of RE

Benefits Challenges
Elicitation and Validation

Cross-functional communication Good Customer-Developer relationship
Align goals & perspectives between roles Active customer involvement
Address barrier of specifying solutions Sufficient technical and RE competence
 Complex requirements

Verification
Supports regression testing Quality requirements
Increased requirements quality
Test coverage

Tracing
Requirements - test case tracing in BDD Tool integration

Requirements Management
Maintaining RET alignment Locating impacted requirements
Requirement are kept updated Missing requirement context
Communication of changes Test case maintenance
Efficient documentation updates

 An Industrial Case Study on Test Cases as Requirements 35

6.1 Elicitation and Validation

The TCR practice supports elicitation and validation of requirements by its direct and
frequent communication between business and technical roles for all companies. The
customer involvement in combination with increased awareness of customer perspec-
tives among the technical roles supports defining valid requirements. This confirms
observations by Melnik and Maurer [29], Park and Maurer [30], Haugset and Hanssen
[20] and Latorre [31]. Furthermore, at Company B, the use of the acceptance criteria
format led to customers expressing requirements at a higher abstraction level instead
of focusing on technical details. Thus, this practice can address the elicitation barrier
of requesting specific solutions rather than expressing needs [28].

Nevertheless, the TCR practice requires good customer relations, as stated by in-
terviewees in Company B. Active customer involvement is a known challenge for
agile RE due to time and space restrictions for the customer, but also due to that this
role requires a combination of business and technical skills [4][31]. Business domain
tools can be used to facilitate the customers in specifying acceptance tests [30]. For
example, Haugset and Hanssen [20] report that customers used spread-sheets to
communicate information and never interacted directly with actual test cases.

Eliciting and validating requirements, in particular complex ones, relies on compe-
tence of the roles involved. At Company B limited technical knowledge affected the
customer’s ability to discuss quality requirements. This can lead to neglecting to elicit
them altogether [4]. Similarly, capturing complex requirements with acceptance test
cases is a challenge, in particular for user interactions and quality requirements.

6.2 Verification

The TCR practice supports verification of requirements by automating regression
tests as for Company B. The AATs act as a safety net that catches problems and en-
ables frequent release of product-quality code. This was also observed by Kongsli
[32], Haugset and Hanssen [20], and Latorre [31]. The practice ensures that all speci-
fied requirements (as test cases) are verified and test coverage can be measured by
executing the tests.

The verification effort relies on verifiable, clear and unambiguous require-
ments [6]. Test cases are per definition verifiable and the format used by Company B
supports defining clear requirements. Nevertheless, Company B mentioned quality
requirements as a particular challenge for embedded devices as this requires actual
hardware. This confirms previous findings by Ramesh [4] and Haugset and Hanssen
[20] that quality requirements are difficult to capture with AATs.

6.3 Tracing

Tracing of requirements and test cases is supported by the TCR practice, however the
benefits depend on the context. Merely using test cases as de facto requirements (as in
Company A) does not affect tracing. For the BDD approach applied at Company B,
the tools implicitly trace acceptance criteria and test cases, although there are no

36 E. Bjarnason et al.

traces between the original customer requirements and the acceptance criteria. Hence,
as the requirements evolve [33] this knowledge is reflected purely in the test cases.

At Company C, where user stories were to be detailed directly into acceptance test
cases, tracing remains a manual, albeit straight forward task of connecting acceptance
test cases to the corresponding user stories. Furthermore, the responsibility for these
traces is clearly defined in the development process, a practice identified by Uusitalo
[34] as supporting traceability. However, it is a challenge for the company to identify
tools which provide sufficient support for requirements and for testing aspects, and
for the integration of the two.

6.4 Requirements Management

The TCR practice provides benefits in managing requirements in an efficient way
throughout the life-cycle. As mentioned for Companies A and B, the practice facili-
tates a joint understanding of requirements that provides a base for discussing and
making decisions regarding changes. However, the practice also requires effort in
involving development engineers in the requirements discussion. The optimal balance
between involving these technical roles to ensure coordination of requirements versus
focusing on pure development activities remains as future work.

The challenge of keeping requirements updated after changes [5] is addressed by a
close integration with test cases, as for Company B, since the test cases are by neces-
sity updated throughout the project. Furthermore, since the requirements are docu-
mented in an executable format, conflicting new or changed requirements are likely to
cause existing test cases to fail. However, locating requirements in a set of test cases
was mentioned as a challenge for Company B due to badly structured test cases. The
difficulty of organizing and sorting automated tests has also been reported by
Park [21].

Contextual requirements information, e.g. purpose and priority [28], is seldom re-
tained in the test cases but can support, for example, impact analysis and managing
failed test cases. Without access to contextual information from the test cases, addi-
tional effort is required to locate it to enable decision making.

7 The Reasons for and Contexts of the Practice (RQ2)

Each case company applies the practice differently and for different reasons. At Com-
pany A it has become a de facto practice due to strong development and test compe-
tence, and weak RE processes. However, merely viewing test cases as requirements
does not fully compensate for a lack of RE. Company A faces challenges in managing
requirements changes and ensuring test coverage of requirements. The requirements
documentation does not satisfy the information needs of all stakeholders and staff
turnover may result in loss of (undocumented) product knowledge. As size and com-
plexity increase so does the challenge of coordinating customer needs with testing
effort [5].

 An Industrial Case Study on Test Cases as Requirements 37

Company B applies the practice consciously using a full BDD approach including
tool support. This facilitates customer communication through which the engineering
roles gain requirements insight. The AATs provide a feedback system confirming the
engineers’ understanding of the business domain [30]. However, it is a challenge to
get customers to specify requirements in the AAT tools. Letting domain experts or
customers provide information via e.g. spread-sheets may facilitate this [30].

The third practice variant is found at Company C, where it is consciously planned
as part of a transition to agile processes applying story test driven development [21].
The practice includes close and continuous collaboration around requirements be-
tween business and development roles. However, no specific language for expressing
the acceptance criteria or specific tools for managing these are planned. In contrast to
the de facto context, Company C envisions this practice as enabling analysis and
maintenance of requirements. To achieve this, requirements dependencies and priori-
ties need to be supported by the test management tools.

8 Conclusions and Future Work

Coordinating and aligning frequently changing business needs is a challenge in soft-
ware development projects. In agile projects this is mainly addressed through frequent
and direct communication between the customer and the development team, and the
detailed requirements are often documented as test cases.

Our case study provides insights into how this practice meets the various roles that
the requirements play. The results show that the direct and frequent communication of
this practice supports eliciting, validating and managing new and changing customer
requirements. Furthermore, specifying requirements as acceptance test cases allow the
requirements to become a living document that supports verifying and tracing re-
quirements through the life cycle. We have also identified three contexts for this prac-
tice; as a de facto practice, part of an agile transition and as a mature practice.

The results can aid practitioners in improving their agile practices and provide a
basis for further research. Future work includes investigating how to further improve
the RE aspects when documenting requirements as test cases.

Acknowledgement. We want to thank the interviewees. This work was funded by EASE
(ease.cs.lth.se).

References

1. Sommerville, I.: Integrated requirements engineering: a tutorial. IEEE Softw. 22, 16–23
(2005)

2. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an agile
case study. J. Syst. Archit. 52, 654–667 (2006)

3. Beck, K.: Manifesto for Agile Software Development. http://agilemanifesto.org/
4. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and

challenges: an empirical study. Inf. Syst. J. 20, 449–480 (2010)

38 E. Bjarnason et al.

5. Bjarnason, E., Runeson, P., Borg, M., et al.: Challenges and practices in aligning require-
ments with verification and validation: a case study of six companies. Empir. Softw. Eng.
19, 1809–1855 (2014)

6. Davis, A.M.: Just Enough Requirements Management: Where Software Development
Meets Marketing. Dorset House, New York (2005)

7. van Lamsweerde, A.: Formal specification: a roadmap. In: Conf. on The Future of Soft-
ware Engineering, pp. 147–159. ACM, Limerick (2000)

8. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer,
Heidelberg (2010)

9. Mavin, A., Wilkinson, P.: Big ears (the return of “easy approach to requirements engineer-
ing”). In: 18th Int. Reqts. Engineering Conf., pp. 277–282. IEEE, Sydney (2010)

10. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Boston (2004)

11. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated Consistency Checking of
Requirements Specifications. ACM Trans. Softw. Eng. Methodol. 5, 231–261 (1996)

12. Dromey, R.G.: From requirements to design: formalizing the key steps. In: 1st Int’l Conf.
on Software Engineering and Formal Methods, pp. 2–11. IEEE, Brisbane (2003)

13. Miller, T., Strooper, P.: A case study in model-based testing of specifications and imple-
mentations. Softw. Test. Verification Reliab. 22, 33–63 (2012)

14. Davis, A., Overmyer, S., Jordan, K., et al.: Identifying and measuring quality in a software
requirements specification. In: 1st Int. Softw. Metrics Symp., Baltimore, USA, pp. 141–152
(1993)

15. Martin, R.C., Melnik, G.: Tests and Requirements, Requirements and Tests: A Möbius
Strip. IEEE Softw. 25, 54–59 (2008)

16. Whittaker, J.A.: What is software testing? And why is it so hard? IEEE Softw. 17, 70–79
(2000)

17. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23, 22–29 (2006)
18. Hsia, P., Kung, D., Sell, C.: Software requirements and acceptance testing. Ann. Softw.

Eng. 3, 291–317 (1997)
19. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documentation: the

state of the practice. IEEE Softw. 20, 35–39 (2003)
20. Haugset, B., Hanssen, G.K.: Automated acceptance testing: a literature review and an in-

dustrial case study. In: Agile Conf., pp. 27–38. IEEE, Toronto (2008)
21. Park, S., Maurer, F.: A literature review on story test driven development. In: 11th Int.

Conf. on Agile Processes in Softw. Engin. and Extreme Progr., pp. 208–213 (2010)
22. Melnik, G., Maurer, F., Chiasson, M.: Executable acceptance tests for communicating

business requirements: customer perspective. In: IEEE Agile Conf., USA, pp. 35–46
(2006)

23. Causevic, A., Sundmark, D., Punnekkat, S.: Factors limiting industrial adoption of test dri-
ven development: a systematic review. In: 4th Int’l Conf. on Software Testing, Verifica-
tion and Validation, pp. 337–346. IEEE, Berlin (2011)

24. George, B., Williams, L.: A structured experiment of test-driven development. Inf. Softw.
Technol. 46, 337–342 (2004)

25. Janzen, D.S., Saiedian, H.: A leveled examination of test-driven development acceptance.
In: 29th Int’l Conf. on Software Engineering, pp. 719–722. IEEE, Minneapolis (2007)

26. North, D.: Behavior Modification: The evolution of behavior-driven development (2006)
27. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engi-

neering: Guidelines and Examples. Wiley, Hoboken (2012)

 An Industrial Case Study on Test Cases as Requirements 39

28. Lauesen, S.: Software Requirements: Styles & Techniques. Addison-Wesley Professional,
Harlow (2002)

29. Melnik, G., Maurer, F.: Multiple perspectives on executable acceptance test-driven devel-
opment. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS,
vol. 4536, pp. 245–249. Springer, Heidelberg (2007)

30. Park, S., Maurer, F.: Communicating domain knowledge in executable acceptance test dri-
ven development. In: Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) Agile Processes in
Software Engineering and Extreme Programming. LNBIP, vol. 31, pp. 23–32. Springer,
Heidelberg (2009)

31. Latorre, R.: A successful application of a Test-Driven Development strategy in the indus-
trial environment. Empir. Softw. Eng. 19, 753–773 (2014)

32. Kongsli, V.: Towards agile security in web applications. In: 21st ACM SIGPLAN Symp.
on Object-oriented Progr. Systems, Languages, & Appl., Portland, USA, pp. 805–808
(2006)

33. Mugridge, R.: Managing Agile Project Requirements with Storytest-Driven Development.
IEEE Softw. 25, 68–75 (2008)

34. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking requirements and testing
in practice. In: 16th Int. Conf. Reqts. Engineering, pp. 265–270. IEEE, Catalunya (2008)

	An Industrial Case Study on Test Cases as Requirements
	1 Introduction
	2 Agile RE: Test Cases as Requirements Documentation
	3 Case Companies
	3.1 Company A
	3.2 Company B
	3.3 Company C

	4 Method
	5 Results
	5.1 Company A: A De Facto Practice
	5.2 Company B: An Established Practice
	5.3 Company C: Planned Practice as Part of Agile Transition
	5.4 Limitations

	6 Test Cases in the Role of Requirements (RQ1)
	6.1 Elicitation and Validation
	6.2 Verification
	6.3 Tracing
	6.4 Requirements Management

	7 The Reasons for and Contexts of the Practice (RQ2)
	8 Conclusions and Future Work
	References

