
Preprint of paper accepted for publication in Information and Software Technology, Volume 77, Sep 2016, Pages 61–79

A Multi-Case Study of Agile Requirements Engineering and

the Use of Test Cases as Requirements

Elizabeth Bjarnason1, Michael Unterkalmsteiner2, Markus Borg1, Emelie Engström1

1Lund University

SE-221 00 Lund, Sweden

FirstName.LastName@cs.lth.se
2Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden

mun@bth.se

Abstract.

[Context] It is a conundrum that agile projects can succeed ‘without requirements’ when weak requirements

engineering is a known cause for project failures. While agile development projects often manage well without extensive

requirements, test cases are commonly viewed as requirements and detailed requirements are documented as test cases.

[Objective] We have investigated this agile practice of using test cases as requirements (TCR) to understand how test

cases can support the main requirements activities, and how the TCR practice can be varied.

[Method] We performed an iterative case study at three companies with two data collection periods. One in 2009/10

with 12 interviews and one in 2015 with 2 focus groups and 2 interviews.

[Results] Using test cases as requirements poses both benefits and challenges when eliciting, validating, verifying,

and managing requirements, and when used as a documented agreement. We have identified five variants of the TCR

practice, namely de facto, behaviour-driven, story-test driven, stand-alone strict and stand-alone manual for which the

application of the practice varies concerning the time frame of requirements documentation, the requirements format,

the extent to which the test cases are a machine executable specification and the use of TCR-specific tool support.

[Conclusions] The findings provide empirical insight into how agile development projects manage and communicate

requirements. The identified TCR variants can be used to perform in-depth investigations into agile requirements

engineering. The provided recommendations can be used to guide practitioners in designing and improving their agile

requirements practices based on project characteristics such as number of stakeholders and rate of change.

Keywords: Agile development, Requirements, Testing, Test-driven development, Behaviour-driven development,

Acceptance test, Case study

1 Introduction

Agile development methods strive to be responsive to changing requirements by integrating requirements, design,

implementation and testing processes (Sommerville 2005, Layman 2006). Face-to-face communication is prioritised over

written requirements documentation and customers are expected to convey their needs directly to the developers (Beck

2001, Ramesh 2010). However, weak customer communication in combination with minimal documentation is reported to

cause problems in customer participation and with scaling and evolving software for agile projects (Ramesh 2010).

Requirements specifications are used for different purposes and support the main requirements activities of eliciting and

validating stakeholders’ requirements, software verification, tracing and managing requirements, and for contractual

purposes by documenting customer agreements. We use the set of main requirements activities for which the requirements

specification plays a role as identified by Lauesen (2002). Requirements are used to communicate with stakeholders, to

drive design and testing, and to serve as a reference for project managers and in the evolution of the system (Davis 2005).

Due to the central role of requirements in coordinating software development, there exists a plethora of research on

requirements documentation with varying degrees of formality depending on its intended use. This spans from formal

requirements specifications (Lamsveerde 2000) and requirements models (Pohl 2010), over templates (Mavin 2010) to

user stories (Cohn 2004), and natural language specifications. Formal requirements specifications can be automatically

checked for consistency (Heitmeyer 1996) and used to derive other artefacts, e.g. software designs (Dromey 2003) or test

http://www.sciencedirect.com.ludwig.lub.lu.se/science/journal/09505849
http://www.sciencedirect.com.ludwig.lub.lu.se/science/journal/09505849/77/supp/C

cases (Miller 2012). Less formal requirements documentation is driven by heuristics and best practices for achieving high

quality requirements (Davis 1993).

The coordination of evolving requirements poses a challenge in aligning these with later development activities

including testing (Uusitalo 2008, Bjarnason 2014). In a previous study we identified the practice of documenting detailed

requirements as test cases, i.e. using test cases as requirements (TCR) as one of several industrial practices that addresses

this challenge (Bjarnason 2014). In this paper, we investigate TCR further for the three case companies (of six) from our

previous study that explicitly mentioned this practice. In this paper we discuss how TCR may support requirements

engineering (RE) by investigating the following:

RQ1 How can test cases of the TCR practice support the main requirements activities, i.e. elicitation and validation,

verification, managing changes, and for contractual purposes (Lauesen 2002) and thus fill the role of a requirements

specification? In particular, what are the benefits and the challenges of this approach?

RQ2 What variations are there in applying the TCR practice?

Intermediate results for these research questions can be found in (Bjarnason 2015a) for the same three case companies

based on 12 interviews from a previous study. For this paper, additional data was collected through two focus group

sessions and two (new) interviews. In particular, we followed up on two of the three previous reported cases, one of which

was a (previously) planned implementation of TCR. For this paper, further cross-case analysis and synthesis of the full set

of data has been performed. We report two additional variants of the practice (stand-alone strict and stand-alone manual),

and also depict the requirements flows for each case company.

The rest of this paper is organized as follows. Section 2 describes background and related work. Section 3 presents the

case companies and Section 4 the applied research method. The results are reported in Section 5 and discussed in Section

6 where the research questions are answered. Finally, the paper is concluded in Section 7.

2 Background and Related Work

While requirements engineering (RE) and testing are traditionally viewed as two separate processes, the TCR practice

studied in this paper is an example of a practice where the activities of these two processes are performed concurrently

(Lawson 1994). The work presented in this paper stems from research into the coordination and alignment of RE and

testing (RET) for software development in general including traditional development. In addition, our work relates to the

agile approach of integrating the RE activities with those of testing. We will now describe these two related areas of

research.

2.1 Requirements Engineering and Test (RET) Alignment

Coordinating and aligning RE and testing is a challenge within software development projects. This challenge relates to a

range of issues including organization, process, people, tools, requirements changes, traceability and measurements

(Bjarnason 2014, Sabaliauskaite 2010). Alignment methods have been studied from the perspective of linking information

between people and/or documentation using mechanisms of varying formalism and complexity (Unterkalmsteiner 2014).

Industrial practices in this area include traceability, model-based approaches and increased communication, e.g. by

involving testers in requirement reviews (Bjarnason 2014, Uusitalo 2008). Similarly, in requirements-driven collaboration

there is close communication between requirements and testing roles; key roles which when absent cause disruptions within

the development team (Marczak 2011).

We previously investigated RET alignment through a large interview study at six development companies (Bjarnason

2014). The results include 10 main challenges and 10 categories of practices. Examples of RET challenges include aligning

goals, requirements specification quality, maintaining alignment during changes, and outsourcing testing. The main

categories of RET practices include change management, tracing, tools, and metrics. The RET study identified four high-

level factors that affect RET alignment. These factors are the human aspects of development, the quality of requirements,

the size of the development, and the incentives for implementing alignment practices. The human side of development

including communication and coordination is vital for alignment in general, so also between requirements engineers and

testers. Further, the quality and accuracy of requirements is a crucial starting point for testing the produced software in-

line with the agreed requirements. In addition, the size of the development organisation and its projects is a key variation

factor that affects which challenges that are faced and which tools and practices that are suitable. Finally, the incentive for

applying practices such as good requirements documentation and tracing vary. For companies with safety-critical

development this incentive is externally motivated, while the motivation is purely internal for non-safety critical cases.

This internal motivation for RET practices is often weak due to low awareness of the cost vs. benefit of RET alignment.

2.2 The Agile Approach of Integrating Requirements Engineering with Testing

In agile development requirements and tests can be seen as two sides of the same coin. Martin and Melnik (2008)

hypothesize that as the formality of specifications increases, requirements and tests become indistinguishable. This

principle is taken to the extreme by unit tests (Whittaker 2000) where requirements are formalized in executable code.

Practitioners report using unit tests as a technical specification that evolves with the implementation (Runeson 2006).

However, unit tests may be too technical for customers and thereby lack the important attribute of being understandable to

all relevant stakeholders.

Acceptance tests are used to show customers that the system fulfils the requirements (Hsia 1997). However, developing

acceptance tests from requirements specifications is a subjective process that does not guarantee that all requirements are

covered (Hsia 1997). This is further complicated by requirements documentation rarely being updated (Lethbridge 2003),

leading to potentially outdated acceptance tests. In agile development, automated acceptance tests drive the implementation

and address these issues by documenting requirements and expected outcomes in an executable format (Ramesh 2010,

Haugset 2008). This agile practice is known, among others, as customer tests, scenario tests, executable/automated

acceptance tests, behaviour-driven and story-test-driven development (Park 2010).

Some organisations view and use the automated acceptance tests as requirements thereby fully integrating these two

artefacts (Martin 2008). Automated acceptance tests are used to determine if the system is acceptable from a customer

perspective and provide the basis for customer discussions, thus reducing the risk of building the wrong system. However,

more technical communication might be needed which requires technical insight of the customer. Melnik et al. (2006)

found that customers in partnership with software engineers could communicate and validate business requirements

through automated acceptance tests, although there is an initial learning curve.

The conceptual difficulty of specifying tests before implementation (Causevic 2011, George 2004, Janzen 2007) led to

the conception of behaviour-driven development (North 2006). This approach incorporates aspects of requirements

analysis, requirements documentation and communication, and automated acceptance testing. The behaviour of a system

is defined in a domain-specific language; a common language that reduces ambiguities and misunderstandings. This is

further enhanced by including terms from the business domain in the domain-specific language. Solis and Wang (2011)

reviewed the available literature and a number of tools for behaviour-driven development in 2011. They found that the area

was still under development and that the domain-specific languages supported by the tools limited the requirements

expressiveness.

Haugset and Hanssen studied acceptance test driven development (ATDD) as an RE practice and report on its benefits

and risks (Haugset 2008). Our work extends on this by also investigating companies that use the TCR practice without

applying ATDD principles.

3 Case Companies

The three case companies all develop software using an agile development model. However, a number of other factors vary

between the companies. These factors are summarised in Table 1.

Table 1. Overview of the case companies.

Company A B C

Type of company
Software development,

embedded products
Consulting

Software development, embedded

products

#employees in software

development
250

(125-150 in 2009)
135 1,000

#employees in typical

project
10 Mostly 4-10, but varies greatly

Product projects: 400-500

Feature projects: 3-15

Distributed No No Yes

Domain / System type
Computer networking

equipment
Advisory/technical services,

application management
Telecom

Source of requirement Market driven Bespoke Bespoke, market driven

Main quality focus
Availability, performance,

security
Depends on customer focus Performance, stability

Certification Not software related No ISO9001
Process Model Agile Agile in variants Agile with gate decisions
Project duration 6-18 months No typical project Previously: 2 years
#requirements in typical

project
100 (20-30 pages HTML) No typical project 2,000-3,000

#test cases in typical

project
~1,000 test cases No typical project 15,000

Product Lines Yes No Yes
Open Source SW Used Yes Yes Yes

3.1 Company A

Company A develops network equipment consisting of hardware and software. The software development unit covered by

the interview study had around 150 employees in 2009 and grew to 250 employees in 2015. The company is relatively

young but has been growing fast during the past few years. A typical software project has a lead time of 6-18 months,

around 10 co-located software developers and approximately 100 requirements and 1,000 system test cases. The company

has a mature agile development process with a strong focus on testing. A market-driven requirements engineering process

is applied. The quality focus for the software is on availability, performance and security. Furthermore, the company applies

a product-line approach and uses open-source software in their development of closed-source products.

The participants from Company A consist of three interviewees from a previous study and five focus group participants.

The interviewees were a product manager, a project manager, and a tester, see Table 2. The focus group participants

consisted of two product managers, a systems architect, a technical project manager and a tester, see Table 3.

Table 2. Interviewees per company selected from a previous study: roles and experience. For Company B, software

developers also perform RE and testing tasks.

Legend: Experience in role noted as S(enior) = more than 3 years, or J(unior) = up to 3 years. Only interviewees mentioning the

TCR practice were included in this study, these are marked with bold.

Role A B C

Requirements engineer C1:S, C6:S, C7:S

Systems architect C4:S

Software developer B1:J, B2:S, B3:S C13:S

Test engineer A2:S C9:S, C10:S, C11:J, C12:S, C14:S

Project manager A1:J C3:J, C8:S

Product manager A3:S

Process manager C2:J, C5:S, C15:J

3.2 Company B

Company B is a consultancy firm that provides technical services to projects that vary in size and duration. Most projects

consist of one development team of 4-10 people located at the customer site. The company has applied agile development

practices for more than a decade and are active in the agile community. The requirements are defined by a customer

(bespoke).

The three consultants that were interviewed at Company B can mainly be characterised as software developers, see

Table 2. However, they all typically take on a multitude of roles within a project and are involved throughout the entire

lifecycle.

Table 3. Participants in focus group for Company A. Participant ids A21.n where A21 denotes the focus group session

and n the participant in that session.

Roles Experience (years)

Current Previous Current role Previous role At company Total

A21.1 Product manager Systems architect 1 7 18 20

A21.2 Product manager Business manager 10 2 13 30

A21.3 Systems architect Software developer 5 10 19 25

A21.4 Technical project manager Software developer 2 10 5 12

A21.5 Tester Tester 5 3 8 10

3.3 Company C

Company C develops software for embedded products in the telecommunications domain. The software development unit

investigated in this study, consists of 1,000 people. At the time of the initial interviews, the company was transitioning

from a waterfall process to an agile process. Product projects typically run over 12-18 months and include around 400-500

people, while software features are developed in smaller sub-projects consisting of around 3-15 people. The projects handle

a combination of bespoke and market-driven requirements. Including the product-line requirements, they handle a very

complex and large set of requirements.

Six (of fifteen) interviews from a previous study were relevant to include in this study. These interviews were with one

requirements engineer, two project managers, two process managers and one tester, see Table 2. Additional interviews

were held with one systems architect and one account manager at Company C, see Table 4. Furthermore, six software

architects participated in a focus group session. These software architects represent six software development teams, or

feature projects, that develop software ranging from high-level user applications to software utility functions. The user

applications aim to release new software updates every 6 weeks while the utility functions are more tightly coupled to the

hardware and product releases, which have a 6-monthly release cycle. These feature development projects range in size

from 3 to 15 project members.

Table 4. Characterisation of participants in focus group (C21) and interviews (C22, C23) for Company C in iteration 2.

Data collection entity Roles
Experience (years)

Current role Total

C21 Focus group 6 software architects 2-10 5-20

C22 Interview Systems architect 9 20

C23 Interview Account manager 12 30

4 Method

The motivation for this research springs from our previous study on practices used to align RE and Testing (RET)

(Bjarnason 2014), one of which is the use of test cases in lieu of detailed requirements documentation. In order to gain an

in-depth understanding of this practice, we performed a case study in two iterations using a flexible exploratory case study

design and process (Runeson 2012). This approach allowed us to explore and compare variations of the practice found in

the three case companies. In the first iteration we analysed interview data collected during 2009/2010 as part of our previous

study where a wider set of RET practices were identified. The purpose of the first iteration was to gain an understanding

of how the TCR practice is applied in industry; its benefits and challenges. The second iteration was performed based on

the outcome of the first iteration, in particular to follow up and further investigate the situation for the two case companies

for which the practice was less mature (Companies A and C) and to complement the (more extensive) data available for

Company B. We collected additional data through focus groups and interviews for case companies A and C during the

Spring of 2015 to see if the practice had changed or matured, and to investigate the implementation of TCR in more depth.

For each of the two iterations, a case study process (Runeson 2012) was applied consisting of four stages: 1) Definition &

Planning, 2) Data selection/collection, 3) Data analysis and 4) Reporting. An overview of the method for each iteration is

shown in Table 5.

Table 5. Overview of the applied case study process for each of the iterations.

First iteration Second iteration

Definition and Planning

RQ1. How can test cases of the TCR practice support the main requirements activities, i.e. elicitation and validation,

verification, managing changes, and for contractual purposes (Lauesen 2002) and thus fulfil the role of a requirements

specification? In particular, what are the benefits and challenges of this approach?

RQ2. (1st version) Why and how is the TCR practice

applied?

RQ2. What variations are there in applying TCR in practice?

Data Selection / Collection

Selected relevant interview data from previous study (Bjarnason 2013) for Companies A, B and C. In total 12 semi-

structured interviews.

 Collected additional data for Companies A and C through 2

focus group sessions and 2 semi-structured interviews.

Data Analysis

Word-by-word transcripts Transcriptions

Descriptive coding and clustering into benefits and

challenges

Semi-exploratory coding based on Lausen’s set of main

requirements activities (RQ1), and roles and artefacts in the

requirements flow.

Triangulation applied by (at least) one other researcher reviewing each transcription and coding.

Transcripts reviewed by interviewee. Summary of transcript reviewed by participants/interviewee.

 Cross-cases analysis

Reporting

In Bjarnason 2015a In this paper

4.1 First Iteration: Initial Exploration

In the first iteration we analysed existing interview data from our previous (wider) study of industrial practices in aligning

RE and testing (Bjarnason 2014). For the current paper, we analysed the interview data relevant to the TCR practice in

more detail. This iteration consisted of defining research questions, selecting data, analysing this data and reporting of the

results in (Bjarnason 2015a).

4.1.1 Definition of Research Questions and Planning.

Since we are interested in how agile development can be successful ‘without requirements’ we selected to investigate the

practice of using test cases as requirements. We formulated the research questions, (RQ1) How can the test case of the

TCR practice support the main requirements activities? and (RQ2, 1st version) Why and how is the TCR practice applied?

4.1.2 Data Selection

We selected to use word-by-word transcriptions from our previous study of RE-Testing coordination (RET), which also

included agile processes. The research questions of this iteration are within the broader scope of the previous study on RET

(Bjarnason 2014), i.e. the previously collected data contains information relevant to these questions. Furthermore, the semi-

structured interviews provided rich material since the interviewees could freely describe how practices (of which TCR was

one) supporting RET were applied including benefits and challenges. Data selection was facilitated by the rigorous coding

performed in the previous study. We selected the interview parts coded for the TCR practice. In addition, the transcripts

were searched for key terms such as ‘acceptance test’ and ‘specification’ to further ensure that all relevant interview parts

were selected to be included in this study.

4.1.3 Data Analysis

The analysis of the selected interview data was performed in two steps. First the transcripts were descriptively coded. These

codes were then categorised into benefits and challenges and reported per case company in (Bjarnason 2015a). The analysis

was performed by the first author. The results were validated independently by the third author. The third author analysed

and interpreted a fine-grained grouping of the interview data produced in the previous RET study (Bjarnason 2014), and

compared this against the results obtained by the first researcher. No conflicting differences were found.

4.2 Second Iteration: Complementary and Focused Investigation

The aim of the second iteration was to complement the insights of the first iteration and to gain a deeper understanding of

the variations of the TCR practice. For this we collected new empirical data focused specifically on the TCR practice and

also performed further analysis of the full set of empirical data.

4.2.1 Case Study Design: Definition of Research Questions and Planning

The authors defined and planned the second iteration of this case study over a period of one month. The two research

questions of the first iteration were selected to be included also for this iteration, however RQ2 was rephrased to more

specifically focus on variations in applying TCR in practice (RQ2), i.e. how the practice is applied in different contexts.

Thus, motivation (how) for applying the practice was removed for the final version of RQ2.

We decided to gather new empirical data to complement our set of data for the two companies where the practice was

previously found to be weaker and for which there was less data in the first iteration, namely Company A and C. For

Company B there was already a substantial amount of relevant data from the first iteration. Thus, we decided to investigate

the practice further at Company A and B. This also allowed us to follow-up on the implementation of TCR that was planned

as part of the agile transition at Company C during the first iteration.

A data collection protocol was defined based on the research questions. This protocol contains questions on how TCR

was applied or could be applied to the company’s current requirements information flow and how each main requirements

activity was fulfilled by TCR. The data collection protocol was designed and agreed jointly by the researchers and is

available on-line (Bjarnason 2015c).

The data collection method used was mainly focus group sessions due to the interactive nature of agile RE, which

involves collaboration between many different roles. A focus group allows for eliciting a holistic view of the situation from

multiple perspectives, as well as, providing value in itself to the participants through group reflection and learning (Robson

2002). Semi-structured interviews using the same data collection protocol were used as a compliment to the focus group

sessions. The data collection is further described below.

Sampling of participants was done with the aim of covering all roles throughout the life cycle from customer to testing.

However, due to practical reasons (limited time frame and participant availability) this was combined with convenience

sampling and adaptions to the data collection method. A characterization of the participants is provided in Table 3 and

Table 4.

4.2.2 Data Collection

In the second iteration data was collected from Company A through one focus group session and from Company C through

one focus group session and two semi-structured interviews. The interviews were used to investigate two additional

applications of TCR within Company C, mentioned by company representatives during the planning phase, namely API

implementation and self-certification of customer requirements.

Each focus group session was attended by two researchers; one moderator who lead the discussion and one note-taker

who asked follow-up questions when needed. The interviews were performed by one researcher. The focus group sessions

and the interviews were audio recorded after permission was granted by the participants.

The data collection protocol, available on-line (Bjarnason 2015c), was used as a guide during the focus group sessions

and the interviews. In the introduction part the participants were informed of the aim of the study, how it would be

performed, and confidentiality. The participants were then asked to introduce themselves and their role. The overall

information flow between requirements and testing including the used artefacts and involved roles was then explored. This

was followed by semi-structured discussions on how test cases can fulfil the various main requirements activities. The

meeting was then closed with a summary discussion around strengths and weaknesses with the practice and possible

improvements.

The duration of the data collection sessions varied between 30 minutes for the interviews through 45 minutes for the

focus group at Company C and 2 hours for the focus group at Company A. The reason for the short focus group session at

Company C was limited availability of the participants, which also meant that only project architects were present at this

session. The longer meeting duration for the focus group at Company A allowed for more individual reflection time and

jointly constructing an overview of the requirements flow using post-it notes produced individually by the participants and

then presented and jointly discussed.

4.2.3 Data Analysis

The audio recordings of the focus group sessions and the interviews were transcribed. The focus group sessions were

transcribed by the note-taking researcher and checked by the moderating researcher. The interviews were transcribed by

the interviewing researcher.

The transcripts were coded using a semi-exploratory coding approach using initial codes based on the research questions,

e.g. main requirements activities, involved artefacts and roles. For each transcript the coding was performed by one

researcher and reviewed by another. These codes for artefacts and roles were used to construct the diagrams depicting the

flow of requirements information for each case, see Figure 1, 2 and 3.

Finally, a cross-case analysis was performed per research questions through comparative analysis of the full set of

empirical data using the existing coding to locate parts of the transcripts concerning similar topics. This analysis was

performed by comparing the use of the TCR practice between the companies, thereby identifying common themes and thus

synthesizing the findings of our multi-case study. For example, for RQ1 while analysing how the TCR was applied similar

benefits and challenges were identified thus enabling comparing and contrasting the pros and cons of the practice between

cases. Similarly for RQ2, a set of varying facets of the practice emerged while analysing the variations between the case

companies concerning how they apply the TCR practice.

Full traceability was maintained from the transcript through the coding and into the reporting, i.e. this article. This is

denoted by references from the results to the empirical data, using the format Nn:mm where N is company A, B or C), and

chunk mm. These traces were also used for reviewing and validating the reported results against the data. (Comment to

reviewers: the chunk information will be removed in the final version to ease the information load on the reader.)

4.2.4 Reporting

As a first step of reporting the results of the newly collected data, a summary was produced per transcript structured per

main requirements activity. This summary was sent to the participants to review and contribute with possible additional

information or corrections. The results from both from both iterations were merged to providing a uniform story of TCR

for the three case companies.

In order to convey the rich data concerning the requirements information flows derived from the focus group sessions

we decided to visualise these flows using the FLOW notation by Stapel and Schneider (2012). The reason for choosing

this notation is that it is designed to convey communication situations and patterns, rather than a formal process. The

notation conveys the use of both documented (solid) information and un-documented (fluid) information, of which the

latter in particular plays an important role within agile development. Information storage is represented by a document

symbol for solid information, and a smiley for fluid, or un-documented information, see Table 6. Fluid information storage

is typically a role or an individual, we also use it to denote a function, e.g. development team to indicate all the roles within

a development team. The flow of fluid information is denoted by a dashed line, while a solid line is used to represent

communication of solid information.

Table 6. The notation used to illustrate the requirements flows for the case companies (see Section 5), based on FLOW notation

(Stapel and Schneider 2012).

In this paper we use flow diagrams to present information flow for each of the main requirements activities (e.g.

elicitation, validation) and high-light the relevant entities by encircling the people (fluid information storages) involved in

each requirements activity with a dashed lines (an addition to standard FLOW notation). The information that flows to and

from a circle is shared by all the fluid information storages within the circle. If a specific storage (role or function) is

involved in a flow, e.g. produces an artefact, this is denoted by a line to/from the icon representing that specific storage

rather than to the circle.

Most fluid information storages and some artefacts are duplicated and thus appear several times in the same figure. This

is to provide an overview of the requirements flow for each main requirements activities. Flows between requirements

activities is primarily denoted by connections to common artefacts (solid information storages). Furthermore, timing

aspects are not captured by the notation, e.g. different versions of an artefact or the order of activities.

5 Results: Applications of TCR in Practice

All of the investigated companies apply the TCR practice, however the context, extent and maturity of the practice varies.

Based on the data collected for each company, we will now describe how TCR is involved in eliciting, validating, verifying

and managing requirements, and in documenting the agreement with the customer. For each case company the application

of TCR for software development is described. In addition, for Company C the TCR practice was also found to be used for

API development. The requirements flow for each case context is depicted in Figure 1 – Figure 4 based on the FLOW

notation (Stapel and Schneider 2012). The notation shows the flow of non-documented (fluid) and artefact-based (solid)

requirements communication, see Section 4.2.4.

5.1 Company A: TCR as a De Facto Practice

The test cases have become the de facto requirements at Company A since the most extensive set of requirements are

documented as test cases as part of the testing process [A21:81], i.e. once the requirements details have been implemented

[A21:58].The test cases consist of a combination of unit, function and system level test cases produced by the system

testers, the developers and the system architects [A21:8]. These test cases are kept updated [A21:66, 67, 81] and are the

most accurate requirements documentation [A21:69, 92]. Other requirements documentation, e.g. the product requirements

specification, is not maintained past the initial implementation stage [A21:52, 66]. The same basic process was identified

in both iterations of our study. An overview of the requirements flow is shown in Figure 1.

The test cases provide valuable requirements information [A21:81] and are used to understand product details [A21:10,

73] by product managers with technical competence [A21:15, 16, 19, 20, 73] and roles within development, such as system

architects and developers [A21:8, 9, 10]. The product manager said: ‘I read test cases … because that is what we can say

actually works’ [A21:15]. The test cases are also used as a source of requirements information in selecting the test scope

for integration of new features [A21:74] and for analysing the impact of changes [A21:21].

At times the test results are used in the requirements communication, in particular concerning unspecified quality

requirements. Senior engineers and developers then view the test results, and if they agree to the test outcome, it becomes

a requirement that is included in the test cases [A21:30, 82].

This co-located organisation finds TCR to be an efficient way of managing requirements (A1) that decreases the number

of documents to maintain and thus the overhead of coordinating RE and testing [A21:82]. The lack of formal requirements

is only experienced as a problem when test case validity is questioned, e.g. when a test fails. The requirement’s motivation

and priority, which is not documented, then have to be re-investigated (MC2). The navigation of the test case ‘requirements’

is simplified by similar structuring in test cases and source code [A1:39]. A product manager suggested that the descriptions

noted in the test cases of the verified use case and (sometimes) its motivation could be extracted and thereby be made more

readily available to the development projects (CC1) [A21:87]. This is useful requirements information and could possibly

be extended and replace other artefacts [A21:87].

Implementation is managed in a Scrum-like way with a backlog prioritized by the product manager from which the

development project select work items based on priority, cost and feasibility [A21:42]. The backlog contains new

requirements, issues and change requests, which are all handled in a similar way.

1Nn:mm refers to interviewee or transcript Nn (where N is company A, B or C), and chunk mm. These references provide

traces from the presented results to the empirical data. (Comment to reviewers: the chunk information will be removed in

the final version to ease the information load on the reader.)

5.1.1 Elicitation and Validation: Company A

Early and very high-level requirements are documented by the product manager in business plan, product strategy and

roadmap documents [A21:13], who also creates a project order and a product proposal [A21:13]. The requirements are

then detailed in close collaboration between project roles (EB12), i.e. integrated with software design [A21:34],

implementation, and testing [A21:48]. This is believed to be due to having a strong testing competence within the company,

but no RE-specific role or competence (EC3) [A2:50]. Instead, the product manager acts as the proxy for market and

customers with whom the development-near roles have no direct contact (EC2). During development, direct

communication between the product manager and the development-near roles is the main requirements communication

channel [A21:89] complimented by a high-level product requirements specification produced by the project manager

[A21:3] and architectural artefacts created by the system architect during software design [A21:34]. These architectural

documents include an overview of the software architecture and functional descriptions of the product, and represent a

contract between the product manager (who orders the product) and the developing project (who implements it) [A21:34].

Thus the architectural documents contain requirements-related information.

Customer input is sought for complex functionality, through interviews and direct communication between stakeholders

and senior engineers [A21:40, 58]. The high requirements level provides the development engineers with freedom to design

innovative solutions (EB4), which the system architect believes has led to producing very creative products [A21:48].

However communicating these details to system testing is challenging (EC4) [A21:49] and lack of requirements

information forces testers to elicit further requirements, primarily from working software [A21:30, 37]. The testers’

2 EBn, ECn, VBn, VCn, TBn, TCn, MBn, MCn, CBn, and CCn denote benefits and challenges common for the case companies. These

are presented in Section 6.1 and traces provided here for supporting cross referencing to the results.

Figure. 1. Overview of requirements flow for Company A’s product development. Notation described in Section 4.2.4.

requirements understanding of functional and, in particular quality requirements, is primarily obtained by executing the

source code [A21:82] and then documented as test cases [A21:37, 66, 69]. Thus, a lack of requirements documentation

during implementation is compensated by developer-tester interactions, in particular when the test case requirements fail

[A21:38, 65].

Similarly, requirements are validated through close interaction between roles (EB1), in particular between the product

manager, systems architects, developers and testers [A21:30, 37, 55, 93]. For complex functionality, customers are

provided with working software for which they provide feedback and validation [A21:40, 58, 76].

5.1.2 Verification: Company A

The product requirements specification [A21:32, 33, 64, 69, 70] and the architectural documents [A21:29, 31, 49] provide

input to the testers in designing test cases. However, due to incompleteness, inaccuracy and unavailability of this

requirements information, additional work is required to identify the full and correct requirements necessary to verifying

the product (VC2) [A21:41, 49, 64, 66, 71, 84, 92, 93]. In addition, documenting TCRs as part of the testing process makes

verification uncertain since the requirements are less formal and more vulnerable to being changed as part of updating test

cases [A21:71, 84]. Manual system tests [A21:82, 85] and automated function and unit tests [A21:85] are used to verify

the implementation. The function test cases are used by the system architect in selecting the test scope when integrating

new functionality (VB1) [A21:74]. The company wants to increase the use of automatic testing since this is more efficient

[A21:86] and less prone to variability in testing due to who performs them (VC1) [A21:79].

When implementing a change, test cases for the affected software areas provide an executable specification for verifying

that the legacy functionality is intact [A21:21, 72, 82]. The TCR practice’s support for regression testing (VB1) supports

efficient regression testing of the many products based on the company’s software product line [A21:21, 72].

5.1.3 Tracing and Managing Changes: Company A

Requirements changes can be proposed by any project role through a change requests [A21:15, 63], while issue reports are

used for smaller changes [A21:15]. Test cases are used by the product manager to analyse the impact of issue reports and

change requests (MB4) [A21:73, 75]. Even so, much time and effort is spent on discussing and identifying the actual

requirements; ‘how it is supposed to work’ [A21:77], since there are no documented requirements for around half of the

incoming issue reports [A21:77]. Thus, there is insufficient coverage of the full set of requirements expected by the

customer and the users. Requirements coverage is considered during the initial test design, but not kept updated due to

weak tracing between TCRs and the formal product requirements specification [A1, A3, A1:41, A2]. In addition, the test

cases lack requirements-related information (MC2) needed when a test case fails [A2] or is updated [A3], e.g. priority and

stakeholders. The challenge of insufficient requirements coverage is partly mitigated by adding test cases for resolved issue

reports [A21:80]. As a product manager said: ‘That’s how we record the new requirement.’ [A21:80] However, as the test

lead said ‘we cannot test everything’ [A21:77].

Communication of requirements changes is a challenge at Company A where requirements are not documented as test

case upfront, but rather after they have been implemented [A1, A2]. In particular, the system testers suffer from not being

aware of all changes (MB1) [A21:63]. They can then not add or update the corresponding test cases (MB2), which then

causes (incorrect) test cases to fail for intended behaviour [A21:64]. In particular, this is the case for quality requirements

which are difficult to specify and communicate on paper [A21:41, 42].

The product line set-up used to develop many products on the same software base causes challenges in managing

requirements variations between the products both in general, and specifically using TCR (MC3). Since the tool

infrastructure does not support managing such variations in the test cases (TC1) the requirements variations are currently

handled by noting these directly in the test cases, information which everyone does not read [A21:92].

5.2 Company B: Tool-Supported Behaviour-Driven Development TCR

Company B actively applies the TCR practice through behaviour-driven development supported by tools such as Cucumber

and FitNesse. The customer and the product manager (often the same person) define product and customer requirements,

see Figure 2. Based on these the development team identify user scenarios or stories that describe ‘how this feature can

interact with a customer or another system’ [B2:77]. Then, for each iteration, the development engineers produce

acceptance criteria and acceptance test cases from these requirements [B1:46, 85, B3:32]. These criteria describe scenarios

using a domain-specific language [B2:78]. There is a close working relationship between the product owner and the

development team. The product owner is available to the development team who is usually located at the customer’s site.

5.2.1 Elicitation and Validation: Company B

Requirements are elicited through directly communication between business and engineering roles around acceptance test

cases (EB1) [B1:46, 86]. Requirements validity is ensured by bi-weekly meetings [B1:27] through which the customer and

the engineering roles ‘understand each other even though we are not on the same technical level’ (EB2) [B3:7]. A working

version of the software was mentioned as further supporting this interaction [B3:32]. The communication is also facilitated

by the engineers adapting higher and less technical level of communication [B3:7] and adapting to domain terminology in

the code design (for the test cases) [B2:68]. Furthermore, the specific format used for requirements raised the technical

discussion to a more conceptual level; to communicating more about needs and goals than about solutions (EB3) [B3:82].

Figure 2. Overview of requirements flow for Company B’s product development using tool-supported behavior-driven development.

Notation described in Section 4.2.4.

This communication level was seen to enable non-technical experts to participate in the elicitation, e.g. usability designers

[B3:82]. However, customers find it hard to be fluent in the structured format for acceptance criteria (EC3) [B3:77], similar

to a domain-specific language.

The elicited requirements are primarily documented as acceptance test cases in a tool. Interviewee B1 stated that the

clarification of requirements and specification of test cases ‘go well together because we understand more of the requirement.

They concretized what we will do’ [B1:86, 92]. In complex cases (EC4), informal summaries are also produced [B1:90].

The interviewees described that acceptance test cases are useful as a system specification. However, interviewee B3 indicated

that they are not fully stand-alone, i.e. the documentation can be read ‘to get an impression. But, if you wonder what it

means, you look at the implementation.’ [B3:51]

Over time the company has achieved active customer involvement and effective requirements communication with this

practice (EB1, EB2), despite challenges to ensure this involvement and that ‘we [customer and development team] spoke

the same language’ (EC1) [B3:6]. Interviewee B1 said that active business involvement strengthens requirements validation

and ensures a common view of requirements (EB2) [B1:94].

Similarly, it is a challenge to get business roles to write or revise the user stories or the acceptance test cases (EC2), in

particularly directly in the tools [B3:84]. Interviewee B1 believes this requires technical skills (EC3) [B1:97]. This may

also be due to the customer not trusting the technical systems or seeing the value in working on the same requirements base

[B3:80]. However, the added benefit of customer directly editing requirements is believed to be smaller than the cost of

training them to do this [B1:97]. The company has also experienced issues with setting up common access across networks

[B1:97].

The interviewees see that customer competence affects the communication and the requirements picture produced with

this practice (EC3) [B3:25]. In particular, non-technical customers seldom focus on quality requirements (EC4) [B3:24].

In contrast, engineers find it hard to match high-level requirements to the code required for automatic test cases [B1:32].

Complex interactions and dependencies between requirements (EC4), e.g. for user interfaces [B1:25] and quality

requirements [B2:75], are a challenge to capture with acceptance test cases. For user interfaces the issue is connected to

the complexity of between components. All interviewees mentioned the challenge to motivate engineers to write

acceptance-level test cases [B2:75].

5.2.2 Verification: Company B

One of the main benefits of TCR stated by the interviewees is the strengthened alignment of business requirements with

verification of the agreed requirements (VB2) [B1:44, 152] and support for efficient regression testing (VB1) [B1:24, 152].

The acceptance test cases verify that the system meets the requirements that were agreed as acceptance criteria [B1:44].

Similarly these test cases (connected to acceptance criteria, i.e. requirements) allow for status tracking based on

requirements coverage (VB3) [B2:79].

The executable specification provided by this practice, in combination with unit tests, acts as a safety net that enables

projects to ‘rebound from anything’ [B1:57] by its support for regression testing (VB1) which allows for efficiently

managing bugs and performance issues. This makes engineers confident in frequently releasing production code; weekly

for the described project. Interviewee B3 said that with this approach projects ‘deliver on time and almost on budget’

[B3:4]. The set-up has enabled projects to efficiently manage bugs and performance issues.

However, there are also challenges in creating automated tests and achieving a good executable specification [B1:24].

The right balance between acceptance and unit test cases needs to be found. Interviewee B3 described that ‘writing too

many acceptance criteria that deal with smaller things’ can be very costly if they need changing later on [B3:60, 62].

Furthermore, for quality requirements there is a challenge in automatically testing performance and other quality aspects

on actual hardware and in a live testing environment (VC3) [B1:77].

5.2.3 Tracing and Managing Changes: Company B

The alignment of business and technical aspects through TCR is supported when managing requirements changes by the

use of acceptance test cases as formal requirements (MB3) [B2:43, B3], thus having implicit requirements-test traces

(TB1). Any agreement on changes made, e.g. in face to face meetings, must be reflected in the test cases before they

become an actual change (MB2) and at the end of a project the acceptance test cases show ‘what we’ve done’ [B2:43].

The support for regression testing provided by TCR (see Section 5.2.2) ‘limits the danger of changing something’

[B2:88] and thus acts as a risk mitigator when managing requirements changes since the impact of changes are

automatically caught (MB4) [B3:76].

Locating requirements information in TCRs, e.g. when performing impact analysis for a requirements change, can be

hard for badly structured acceptance test cases (MC1). This requires tacit knowledge [B3:72] without which it is time

consuming to locate the requirements. Interviewee B3 suggested that the tools could be extended to support searching for

certain logic rather than just syntax.

Maintenance of the acceptance test cases is an issue that needs to be considered when applying this practice [B1, B2,

B3]. Interviewee B3 pointed out that test cases are more rigid than requirements and thus more sensitive to change [B3:72].

The same issue surfaces when new requirements affect old ones or when requirements misunderstandings are detected

resulting in updates to the (old) acceptance test cases. Thus, there is a risk of deteriorating test case quality and subsequently

also to requirements quality when testers make frequent fixes to get the tests to pass [B2:90].

Interviewee B1 described that when an acceptance test case fails an engineer analyses and discusses this with a business

role, ideally the one originally involved [B1:47]. However when larger changes are needed interviewee B3 had experienced

that this was best handled by the developer themselves using requirements documentation in the form of the existing test

cases and the informal requirements summaries to guide them in revising the requirements aspects of the acceptance criteria

(MB3) [B3:64].

5.2.4 Customer Agreement: Company B

The agreed requirements documented as test cases are seen as a contract between the customer and the development project.

If the customer later proposes conflicting requirements, the originally agreed acceptance test cases have then been referred

(CB1), thus supporting the project in the customer dialog [B3:7].

5.3 Company C: Failed Story-Test Driven TCR and Stand-Alone Manual TCR

The TCR practice was introduced as part of the agile transition that was ongoing in 2009/10, however our reinvestigation

shows that the practice is limited to the self-certification of customer requirements and for internal API development (see

Section 5.4). For software development in general, the only aspect of TCR found to be applied is as support for regression

testing, where test cases are viewed as requirements documentation for legacy functionality. Thus, test cases are not used

as requirements during development of new functionality. The initial intention was to define requirements as user stories

and acceptance test cases within a team consisting of a product manager, developers and testers. Acceptance criteria were

to specify ‘how the code should work’ (C8) and be documented by testers as acceptance test cases traced to user stories.

Another team was to maintain the software including the user stories, test cases and traces. Integrating the differing

characteristics and competences of RE and testing was seen as a major challenge (C5, C10). Tool support for integrating

RE aspects in the test cases was needed for noting requirement source, connections, dependencies, and validity for different

products (C5).

The current requirements flow (shown in Figure 3) partly corresponds to the one planned, although user stories and test

cases are no longer defined upfront and the planned tool support for connecting these artefacts has not been put in place

(TC1) [C21:2] and was mentioned as one reason for not fully implementing TCR. Despite being a large company,

requirements communication is primarily managed through informal communication with the development teams although

complemented by documentation, see Figure 3. Documentation is primarily used internally for scoping of high-level

requirements, and towards customers to agree on requirements for which customer requirements specifications and

requirements compliance documents are used. In addition, some customers provide a certification test suite that is to verify

support for the customer’s requirements. Internally, feature definitions and user interface specifications are used as

requirements documentation by the development teams. For large and complex customer-specific requirements, the

development teams have direct communication with the customers to clarify and detail requirements. This interaction often

also involves providing the customer with working software.

During implementation high-level requirements are detailed by the development team in collaboration with the product

owner and a usability designer. These detailed requirements are implemented and function and unit tested by the

developers. Once the software is integrated into the software product line it is system tested and the customer certification

test suite is executed.

The main reason for moving away from the TCR practice, mentioned by a senior systems architect, is a shift in priority

from quality to speed [C21:31, 61]. Faster software update channels enable the company to ‘act fast, fix them [problems]

quickly’ [C21:61] and frequently release new and improved software to the market. In addition, the development teams are

freer now to decide for themselves how they work [C21:32] with little documentation mandated by the development process

[C21:64], which has resulted in the current process.

5.3.1 Elicitation and Validation: Company C

Development teams elicit and validate requirements in close collaboration with a product manager (EB1) [C21:16, 32].

The formal input consists of a one-page document (feature definition) describing the business case and top-level scenarios,

and for customer functionality there is a high-level customer requirements specification [C23:8]. This high level of formal

requirements input (often at vision level) [C21:32] provides the development teams with freedom in detailing requirements

and encourages them to contribute with their creativity (EB4). Further input is elicited through stakeholder analysis

[C21:10, 51], interviews with users [C21:7] and direct interaction with customers. Additional requirements are identified

throughout the development life-cycle in an exploratory fashion [C21:7, 12, 15, 51], and ‘discovered when implementing’

[C21:7] rather than defined upfront before design [C21:10]. The product manager role is vital in facilitating the exploratory

requirements elicitation, but the role requires a combination of technical and business knowledge which is hard to fill (EC3)

[C21:11, 50]. The requirements are validated by customers and other stakeholders by using working software [C21:58].

Several participants stressed that it is expensive [C21:24, 58] and ‘hard to write any test cases at all beforehand’ [C21:51].

This would require the stakeholders to be able to express their requirements as test cases (EC3) [C21:56].

The development team produce a user interface (UI) specification [C21:16, 34, 43], and unit test cases in-line with the

implemented requirements. Defining test cases for user interactions was mentioned as a challenge (EC4) [C21:15]. Rather,

the UI specification is seen by the development team as ‘our requirements document … that lives together with the

development.’ [C21:34] Albeit this document is not used to communicate requirements outside of the development team,

although it was suggested to ‘be a good start for communicating.’ [C21:43] This lack of requirements documentation leads

to a large amount of questions from team-external roles concerning how the software is supposed to work, i.e. the

requirements [C21:47], more questions than they can answer [C21:48]. However, the participants do not see this as a

problem but rather an opportunity to elicit future requirements based on this feedback [C21:48].

 Concerning communicating requirements through TCR some participants believed they could provide ‘some help to

understand’ detailed requirements [C21:26]. Although, as the technical account manager said ‘a test case is not as clear to

read as a requirement’ and it ‘takes longer to understand a test case than to read a requirement’ [C23:22]. Furthermore, one

systems architect pointed out that a dedicated tester with less coding experience may ‘have a hard time to “read” the

functionality from the [unit test] code’ (EC3) [C21:27]. Thus, (automated) test cases require a certain level of technical

Figure 3. Overview of requirements flow for the software product development within Company C’s. The notation is described in

Section 4.2.4.

competence to read and understand as requirements. Similarly, defining TCRs was believed to require specific test

competence, not generally held by developers [C21:60]. This competence includes defining the TCRs as requirements,

rather than ‘how you implement it [C23:22].

5.3.2 Verification: Company C

The developers perform function testing and automated unit testing [C21:30] once ‘the right requirements’ [C21:19, 51]

have been identified (VC2). Since these requirements are not documented they can only be verified by the development

team [C21:19]. System-level testing, e.g. of performance, is performed by team external testers, often located at a different

site [C21:19]. Exploratory test missions are used for function testing, i.e. step-by-step instructions for high-level use cases

[C21:22, 30]. These test missions are less time consuming to write and maintain than automated test cases at the use case

level [C21:30]. However, test missions require the same skilled people to execute them to get reliable (and repeatable)

results (VC1) [C21:41]. The combined set of test cases acts as an executable specification that facilitates re-testing after

refactoring [C21:51] and is considered the main benefit of TCR (VB1) [C21:53].

Finally, the customer test suite is used for self-certification of the customer requirements [C23:9] with the added

intention of catching issue reports and change requests from the customer early on, thereby increasing development

efficiency [C23:9]. However, this has not been achieved. While the cost of executing these (primarily) manual test cases

is very high, this testing uncovers very few issues [C23:9]. Even so, the customer later reports very many issues during

their exploratory customer acceptance testing [C23:9]. The problem, according to the interviewee, is the weak quality of

the self-certification test suite (VC2) mainly caused by low requirements coverage [C23:9], in combination with a low rate

of change [C23:19], i.e. not kept updated. The test suite does not have good coverage either of the formal requirements or

of the informal (previously uncommunicated) requirements represented by the many issue reports filed by the customer

[C23:9]. In addition, these reports contain issues on non-agreed requirements [C23:12], and are thus actually change

requests.

5.3.3 Tracing and Managing Changes: Company C

Requirements changes are triggered by change requests and issues reports [C21:24]. The analysis of changes are handled

mainly through communication within the development team [C21:24]. The developers are often involved also in customer

issues even though these are analysed by a technical account manager, since ‘only the developers know what they have

developed.’ [C23:3, 5] The (undocumented) customer requirements received through issue reports are documented by the

company by adding the corresponding test cases (MB2) [C23:11]. The test cases are used to catch the impact of

implemented requirements changes (MB4) [C21:36] rather than as documentation that supports impact analysis [C21:24];

‘It [the impact] will be detected when you run them [the test cases].’ [C21:24]

The lack of communication of implemented changes to roles outside of the development team was mentioned as a

problem, in particular for system testers at remote sites and customer communication. A system architect said: ‘they [team-

external roles] don’t know if it is a bug or a feature change….Well-documented requirements would solve that.’ [C21:34]

However, using TCR for communicating requirements changes is seen as too costly and error prone [C21:36] and, from

the development team perspective, the value of maintaining TCRs is perceived as low [C21:36].

Traces exist between the customer’s test cases and the corresponding formal requirements, although tracing is not

complete. Furthermore, different versions of the customer requirements specification often cause issues when the customer

acceptance test is performed based on a newer version of the specification (MC3) [C23:14].

Furthermore, the company’s product line software runs on several different hardware versions and poses a challenge in

managing requirements changes as test cases (MC3) [C21:39]. A test case may fail due to a variability in the underlying

hardware rather than that the requirement is not fulfilled. In this case you might ‘fix the test case and at the same time you

might rewrite the requirements’ [C21:39]. Thus, applying TCR may cause the requirements to become less formal and

more prone to inadvertent scope creep.

5.3.4 Customer Agreement: Company C

The certification test suite is an example of TCR used for contractual purposes [C23:9]. In order to deliver the final product

the company must show that this test suite has passed (CB2). In addition, the agreement is documented through the

compliance statement provided by the company. At the detailed level informal agreements are made based on direct

communication between customer and the development team around working software and user interaction flows [C23:8].

5.4 Company C: API Development with Stand-Alone Strict TCR

Company C applies a TCR process for developing APIs (application programming interfaces) for their large code base.

When a development team needs a new API to an existing component, the team’s software architect request that a new

API is specified by a systems architect [C22:2]. This new API is designed and specified as executable test cases (TCR); an

API specification test suite. This test suite is then used for developing software that invokes the API and when

implementing the API itself, often by different development projects and involving different geographical sites. The API

specification test suite ensures that the API implementation and the software that uses it match [C22:1, 2], thus that the

API requirements are met.

5.4.1 Elicitation and Validation: Company C API Development

The systems architect elicits and validates the needs and requirements on a new API through direct communication with

the requesting software architect (EB1) [C22:7]. The API architect then specifies the API requirements as automatic test

cases (API specification test suite) [C22:2]. This test suite includes documentation of parameters and method prerequisites

[C22:3], ‘to explain how the API is intended to work.’ [C22:3] This takes around two weeks. [C22:5] The API specification

test suite is informally reviewed by the requesting development team, and formally approved by a governance board of

system architects, i.e. the API board. This review process takes two weeks at the most. [C22:5]

The API specification test suites are used to transfer requirements knowledge. The test suites are read by developers and

their source code reused to initiate developing. The test suite enables them to ‘see how it [the API] is intended to work’

[C22:5].

The TCR practice works well in this context where all involved roles have similar technical competence (EC3), thus

reducing the effort required. As the interviewee said: ‘those involved can describe their world with source code.’ [C22:12]

In addition, the API specification test suite supports communication and coordination between several project teams

[C22:12, 13]. Thus, upfront specification of requirements as test cases is worthwhile for this context even though it is a

slower, and more costly and bureaucratic way of working [C22:14, 17]. The interviewed systems architect suggested

extending the TCR approach to the product level as supporting a high-level specification structured by use cases. [C22:8]

Figure 4. Overview of requirements flow for Company C’s API development. The notation is described in Section 4.2.4.

5.4.2 Verification: Company C API Development

The API specification test suite is executed by the developers implementing the API, and thus used to verify compliance

of the API implementation. [C22:5] In addition, the test suite is used for regression testing each new delivery. [C22:9]

5.4.3 Tracing and Managing Changes: Company C API Development

Changes to an API specification test suite, including bugs and issues found during development, are handled in a similar

way to requests for a new API. Thus, all changes are approved by the API governance board and communicated through

updating the API specification including its test cases (MB1, MB2) resulting in maintaining alignment between the API

requirements and test cases (MB3). New releases of an API are version controlled and for larger (non-backwards

compatible) changes an API can be deprecated and replaced by a new one [C22:6].

For changes, the API specification test suite is used for regression testing, i.e. for after-the-fact impact identification

(MB4) rather than upfront impact analysis [C22:10]. When problems are found the traces to the source code (TB1) are

used to analyse the issue [C22:11].

The interviewed system architect pointed out that there is very limited change and maintenance needed for the API test

suites [C22:12], which is one reason why the approach is successful in this context.

5.4.4 Contractual Agreement: Company C API Development

The API specification test suite is the contract between the system architects and the developers involved in implementing

the API and in using it, i.e. implementing the clients of the API [C22:4]. For the developers using the API, the API

specification test suite conveys requirements regarding the API and how to invoke it. The API specification test suite also

ensures consistency over multiple implementations of one API (CB2), e.g. for multiple software configurations each

implemented by different developers [C22:4]. The API specification test suite supports independent and parallel

development [C22:4] and reduces the risk of inconsistencies and varying interpretations of the requirements (CB1).

6 Discussion: TCR Supporting RE and TCR Variants

We will now answer our two research questions by consolidating and discussing the results from the three case companies.

The limitations of these findings will also be discussed.

6.1 How can Test Cases Support the Main Requirements Activities: Benefits and Challenges (RQ1)

For the TCR practice, test case artefacts are central in the coordination between the different roles involved in software

production. This is illustrated in the depicted requirements flows of the studied companies, see Figures 1-4. We will now

discuss how the test cases of the TCR practice can support the main activities of RE, i.e. how the test cases fulfil the role

that the requirements specification traditionally fills as defined by Lauesen (2002), namely in supporting the elicitation and

validation of stakeholders’ requirements, software verification, managing requirements including tracing, and as

documentation of customer agreement. In answering the question of ‘how?’ the practice is applied similar benefits and

challenges were found for our case companies. These are summarised in Table 7 and described below in the context of

how TCR support requirements activities. Furthermore, the context and specific expression of these can be located in the

(previous) results section using the references inserted therein to individual benefits and challenges.

Table 7. Summary of benefits and challenges of using test cases as requirements for the main requirements

activities (based on Lauesen 2002). Coded by RE activity (E, V, T, M or C), (B)enefit or (C)hallenge,

and sequence number.

Benefits Challenges

Elicitation and Validation

EB1: Cross-functional communication EC1: Good Customer-Developer relationship

EB2: Align goals & perspectives between roles EC2: Active customer involvement

EB3: Address barrier of specifying solutions EC3: Sufficient technical and RE competence

EB4: Creativity supported by high-level of

requirements

EC4: Complex requirements incl quality requirements

Verification

VB1: Supports regression testing VC1: Varying (biased) results for manual tests

VB2: Increased requirements quality VC2: Ensuring correct requirements info to test

VB3: Test coverage / RET alignment VC3: Quality requirements

Tracing

TB1: Implicit Requirements - test case tracing TC1: Tool integration

Managing Changes

MB1: Communication of changes MC1: Locating impacted requirements

MB2: Requirement are kept updated MC2: Missing requirement context

MB3: Maintaining RET alignment MC3: Multiple products in one product line

MB4: Detecting impact of changes

Customer Agreement / Contractual

CB1: Facilitate resolving conflicting views CC1: Use-case related structuring

CB2: Support certification of compliance

6.1.1 Elicitation and Validation

Requirements documentation in the form of test cases is mainly used for elicitation and validation at Company B and for

the internal API development process at Company C, while test case are only partly used for this purpose at Company A,

namely for quality requirements. However, the practice also includes the benefit of direct and frequent communication

between business and technical roles (EB1) which further supports requirements elicitation and validation. This was

observed for all of our case companies. This frequent direct interaction supports the integrated RE approach strongly

connected to agile development principles (Sommerville 2005). The customer involvement in combination with (for

Company B) agreeing to requirements at the acceptance test level provides the benefit of aligning the customers’ goals

and perspectives with those of the technical roles (EB2) and thus supports defining valid requirements. This confirms

observations by Melnik and Maurer (2007), Park and Maurer (2009), Haugset and Hanssen (2008) and Latorre (2014).

Furthermore, at Company B, the use of the acceptance criteria format led to customers expressing requirements at a higher

abstraction level instead of focusing on technical details. Thus, expressing requirements as test cases has the benefit of

addressing the elicitation barrier of requesting specific solutions (EB3) rather than expressing needs (Lauesen 2002).

At Company A and Company C, involving the technical roles in the detailing of high-level requirements induces

creativity (EB4) in designing innovative and cost-efficient product features. This confirms findings by Bjarnason and Sharp

(2015b) that a difference (distance) in abstraction level between requested requirements and the final software behaviour

encourages development creativity. For market-driven companies like Company A and Company C this provides an

important competitive advantage that enables them to differentiate on the market.

Nevertheless, the TCR practice requires good customer relations (EC1) and active customer involvement (EC2), which

Company B has achieved but only after investing time and effort on this. Even so the development team, rather than the

customer is still the ones directly managing the detailed requirements, i.e. the acceptance test cases. This is believed to be

due to insufficient technical competence (EC3) to manage requirements as this level of technical detail. A contrasting

example is Company C where test cases are an efficient way of communicating requirements since only technical roles are

involved. Active customer involvement is a known challenge for agile RE due to time and space restrictions for the

customer, but also due to that the customer or customer-proxy role requires a combination of business and technical skills

(Ramesh 2010, Kongsli 2006). In particular, using TCR to define requirements before implementation (as opposed during

the testing process) is facilitated when those involved all have technical roles (EC3). For this reason the practice works

well when only technical roles are involved as for API development at Company C, while TCR is not applied for their

product development where the product managers do not ‘speak source code’.

Using TCR for complex requirements (EC4) such as usability and quality requirements is a challenge found for all three

companies. This is due to the complexity of these requirements and to the need for the additional competence of the roles

involved. All three companies described the challenges of documenting complex interaction, e.g. between components, as

test cases. For Company A and C, the cost and difficulty of expressing, e.g. usability requirements, as test cases was

mentioned as a reason for not documenting requirements upfront (before implementation) as test cases. Company B also

mentioned that limited technical knowledge affects the customer’s ability to discuss quality requirements. This can lead to

neglecting to elicit them altogether (Ramesh 2010). Similarly, capturing complex requirements with acceptance test cases

is a challenge, mentioned for user interactions and quality requirements. However, the close relationship between

requirements and test cases is utilized by Company A and Company C to facilitate eliciting quality requirements from

working software.

Business domain tools can be used to facilitate the customers in specifying acceptance tests (Park 2009). For example,

Haugset and Hanssen (2008) report that customers used spread-sheets to communicate information and never interacted

directly with actual test cases.

6.1.2 Verification

The TCR practice supports verification of requirements by supporting regression testing (VB1), as seen for all three

case companies even for those using manual test cases. For example, Company A experiences these benefits in ensuring

the agreed requirements which are documented primarily as manual test cases. However, manual test cases are more

expensive to execute, as for the self-certification example for Company C, and also more vulnerable to variations in

execution results (VC1) depending on who performs the testing. This latter aspect is a challenge at both case companies

that use manual test cases, i.e. Company A and C. In contrast, automatic test cases are more efficient and Company B uses

automatic acceptance tests as a safety net that catches problems and enables frequent release of product-quality code. This

was also observed by Kongsli (2006), Haugset and Hanssen (2008), and Latorre (2014). The support for regression test is

especially valuable for ensuring legacy and product-line functionality. However, there are also challenges in efficiently

verifying multiple parallel products based on the same product-line code base. Tool support for managing the requirements

variabilities when applying TCR is missing for Company A and Company C, which both have a large product-line software

base.

The TCR practice supports requirements test coverage (VB3) when all requirements are specified as test cases and then

verified, as seen for Company B. In this case, when the practice is applied with tool support the requirements coverage can

also be measured by executing the test cases.

Requirements quality (VB2) is supported by the TCR practice since test cases are per definition verifiable. In addition,

the format used by Company B supports defining clear requirements and defining the TCRs in connection with the

elicitation (as for Company B) ensures that the agreed requirements details are captured and validated. This is an important

aspect for the verification effort, which relies on correct, verifiable, clear and unambiguous requirements (Davis 2005).

In contrast, documenting requirements details later (after-the-fact of implementation), as part of the testing process,

poses communication issues at Company A and Company C due to incorrect requirements information (VC2). For these

companies it is a challenge to ensure that the requirements knowledge elicited by the development team is communicated

to the testers. Communication gaps result in test cases that suffer from similar quality issues as are known for traditional

requirements specifications (Bjarnason 2011a), e.g. incompleteness and outdated requirements.

This is experienced by Company C concerning the customer test suites used for self-certification. In which case the

incompleteness of these test suites results in failure to capture the majority of the customer issues in the certification testing.

However, test design and selecting a cost-effective test level also cause challenges in achieving good requirements quality

through test cases. For Company C the developers who perform the unit and function testing lack specific test competence,

which tends to result in more white-box than black-box tests, thus more solution-oriented than requirements-oriented test

cases. In addition, expressing TCRs at acceptance or unit test level affects the cost of creating and maintaining these test

cases, something that had been considered for Company B and for Company C.

Companies B mentioned quality requirements (VC3) as a particular challenge in automatically testing these for

embedded devices as this requires actual hardware. This confirms previous findings by Ramesh (2010) and Haugset and

Hansen (2008), i.e. that quality requirements are difficult to capture with automated acceptance tests.

6.1.3 Tracing

Tracing of requirements and test cases is supported by the TCR practice, however the benefits depend on the context.

Merely using test cases as de facto requirements at the detailed level, as in Company A, does not affect tracing since certain

requirements information, e.g. priority and stakeholder, is not noted in the test cases but in a (separate) requirements

specification. Furthermore, when the TCRs to a large extent replace the formal requirements specification as the actual and

most updated source of requirements, as for Company A, it is not always possible to trace to the un-updated (traditional)

requirements specification.

For the behaviour-driven development approach applied at Company B, the tools implicitly trace (TB1) acceptance

criteria and test cases, although there are no traces between the original customer requirements and the acceptance criteria.

Hence, as the requirements evolve this knowledge is reflected purely in the test cases (Mugridge 2008).

6.1.4 Managing Changes

The TCR practice, when consistently applied, provides benefits in managing requirements in an efficient way throughout

the development life-cycle. As mentioned for Companies A and B, the practice facilitates a joint understanding of

requirements that provides a base for discussing and making decisions regarding changes. The practice, thus supports

communication of changes (MB1) although this requires effort in involving development engineers in the requirements

discussion. When requirements are documented upfront (before implementation) this benefit is even more prominent, as

seen in Company B and for API development at Company C. In these cases, the benefits also include requirements being

kept updated (MB2) and aligned with test cases (MB3) through the integration of requirements and test cases. This is also

seen to some degree for Company A where the test cases act as the requirements and are kept updated. Keeping

requirements updated after changes is a known challenge (Bjarnason 2014). In contrast, when the test cases are not kept

aligned with the formal requirements this causes additional work with managing and resolving issue reports on correctly

implemented functionality. This was seen for the customer’s self-certification test suite used by Company C and at times

at Company A when the developers did not communicate changes to the testers.

When the requirements are documented in an executable format, conflicting new or changed requirements are likely to

cause existing test cases to fail, thus test cases can be used to detect the impact of changes (MB4). All three companies

utilise this benefit by catching the impact after having implemented a change rather than through upfront change impact

analysis, as part of the change decision process.

Locating requirements in a set of test cases (MC1) was mentioned as a challenge for Company B due to badly structured

test cases. The difficulty of organizing and sorting automated tests has also been reported by Park (2010) and Erman (2015).

Contextual requirements information (MC2), e.g. purpose and priority (Lauesen 2002), is seldom retained in the test

cases. This was described as a challenge for Company A in managing requirements changes. This kind of information can

support impact analysis and managing failed test cases. Without access to contextual information from the test cases,

additional effort is required to enable informed decision making.

For all three case companies we see that suitable tool support (TC1) is required for the practice to work well. At

Company B this is achieve, while this is not the case for Company A and Company C. At Company C challenges in

implementing tool support for connecting requirements and testing is one reason why TCR has not been implemented as

planned. As part of the agile transition the intention was to detail user stories into acceptance test cases and to retain traces

between them as a manual, albeit straight forward task. The responsibility for these traces was clearly defined in the

development process, a practice identified by Uusitalo (2008) as supporting traceability.

Using the TCR practice for developing many different product variant based on a common product line (MC3) requires

adequate TCR tool support. This is experienced as a challenge at Company A, where requirements variations are managed

by noting these directly in the test cases, which later poses problems since not everyone reads this information. Company

C also mentioned this challenge related to managing requirements variations for multiple products in a product line using

test cases.

6.1.5 Documentation of Customer Agreement

For all three companies, the TCR practice was described as providing documentation of the agreement between the

customer and the developers during elicitation. This documentation can be beneficial in later development stages, e.g. to

resolve conflicts regarding requirements (CB1) (e.g. scope or interpretation). An example of this was found for the

behaviour-driven development approach applied by Company B. In this case the specific and clear format for defining

these TCRs was described by the engineers as being very useful documentation to refer to when the customer requested

different (non-agreed) requirements, which could then be resolved by consulting the TCRs. Similarly, for API development

at Company C the TCRs provided a unified interpretation of the requirements ensuring consistent understanding and

implementation of them throughout the company.

Another situation where test cases can act as a formal agreement is in certifying that an implementation is compliant

(CB2) to a standard specification, as is the case with customer requirements for Company C. In this case, the customer uses

the same certification test suite for multiple customers to manage and ensure similar functionality between manufacturers.

The TCRs fill a similar purpose for the API development at Company C by requiring that these test cases pass before a

new software version is accepted internally.

TCR documentation is a suitable format for formal requirements agreements, in particular when interacting with a

technical customer. This is the case for the API development within Company C where the ‘customer’ and the

‘requirements engineer’ are both software architects who can communicate via source code. In this case the TCR practice

was well established while it had failed to be implemented for software development in general at this company.

The firm and structured format used for Company B as part of behaviour-driven development seems to provide a clear

way of documenting requirements. In contrast, it was suggested that the readability of Company A’s de facto TCR

documentation was a challenge since the requirements information per use case (CC1) could not be easily extracted. With

a use-case related structure of the TCR documentation the accessibility of these requirements may be improve and their

use extended to customers and other non-technical roles.

6.2 Variations in Applying the TCR Practice (RQ2)

Each case company uses the TCR practice differently, leading to variations in how the practice is applied. Our description

of these variations is structured around four facets of the practice that emerged while performing a cross-case analysis of

the results. These facets facilitate a comparative description of the practice variations across different applications, and are

as follows:

1. the documentation time frame for defining the TCRs, either upfront during elicitation and validation, or after-the-fact

during the testing process

2. the requirements format used for the TCRs, which ranges from a formal domain-specific language structure to natural

language test cases

3. the machine executable specification aspect of the practice that allows the requirements to be verified automatically

4. the tool support used to facilitate the main requirements activities when applying the practice

The application of the TCR practice varies over these facets for the studied cases. The time frame within which the

requirements are captured as test cases varies between being documented upfront before implementation, and during the

test process, i.e. after-the-fact once the requirements have been implemented. Upfront TCR is applied as part of the

behaviour-driven development approach used by Company B and in the API development process used by Company C. In

addition, upfront TCR was planned to be implemented for Company C as part of their transition to agile, but the practice

is no longer applied there for product development. After-the-fact TCR is applied as part of the de facto TCR

implementation at Company A.

The format used to document requirements as test cases varies from a formal to natural language structure. An example

of a formal structure is seen at Company B where a domain-specific language is used to specify acceptance criteria and

test cases as part of their behaviour-driven development approach. At the opposite end of the scale we find the manual test

cases used for product development at Company A, which require execution by the same person to ensure consistent test

results. The automatic test cases complemented by natural language comments, as applied in Company C’s API

development process can be seen to be of an intermediate level of formalization with a combination of formal and informal

requirements format.

A machine executable specification where the test cases (that are requirements) can be automatically executed allows

for efficient regression testing and short turn-around times in verifying requirements after changes. We observe that this

aspect varies from fully machine executable with automatic test cases to a combination of manual and automatic test cases.

An example of fully automated is found for the TCR API specification at Company C and for the behaviour-driven TCR

as applied at Company B. Company C is an example of a combination of manual and automatic test cases.

The final TCR facet is the tool environment available to specifically support the TCR practice including the combination

and integration of RE and testing aspects. Among our case companies only Company B uses a tool that explicitly supports

the requirements activities of the TCR practice including the requirements format and tracing between TCRs and to higher-

levels of requirements. Lack of suitable TCR tool support is one of the reasons for the practice being implemented to a

lower degree at Company C than what was originally planned, e.g. tracing between user stories and test cases.

Using the four facets above, we can characterize the variations of the TCR practice we have encountered as illustrated

in Table 8. Based on this, we find five categories, or variants of the TCR practice namely de facto, behaviour-driven, story-

test driven, stand-alone strict and stand-alone manual TCR. Additional variants may be envisioned by further varying the

facets and by investigating additional cases.

Table 8. Overview of the variations of TCR implementations for the studied case companies characterized by four facets

of the practice.

TCR Variant

Case Company

Facets of the TCR Practice

Documentation time

frame

Upfront or after-the-

fact TCR

Requirements

format

General or

structured

Machine

executable

specification

TCR-

specific tool

support

de facto A After-the-fact General Partly No

behaviour-driven B Upfront Structured Yes Yes

(unimplemented)

story-test driven

C – Product

development (failed

implementation)

After-the-fact (Upfront

was planned)

Semi-structured

(Structured was

planned)

No

(Planned to

be partly, but

not realized)

No

(Planned, but

not realized)

stand-alone strict C – API development Upfront Semi-structured Yes No

stand-alone manual C – Customer

certification

Upfront General No No

At Company A TCR has become a de facto practice due to strong development and test competence, and weak RE

processes. This is similar to what Wnuk (2014) reported from another case study of agile development in the embedded

software domain. However, merely viewing test cases as requirements does not fully compensate for a lack of RE.

Company A faces challenges in managing requirements changes and ensuring test coverage of requirements, that have

spawned research into traceability recovery between source code and test cases (Unterkalmsteiner 2015). The requirements

documentation does not satisfy the information needs of all stakeholders. Furthermore, staff turnover may result in loss of

(undocumented) product knowledge. As size and complexity increase so does the challenge of coordinating customer needs

with testing effort (Bjarnason 2014).

Company B applies the practice consciously using behaviour-driven TCR including tool support. This facilitates

customer communication through which the engineering roles gain requirements insight. The automated acceptance tests

provide a feedback system confirming the engineers’ understanding of the business domain (Park 2009). However, it is a

challenge to get customers to specify requirements in the automated acceptance tests tools. Letting domain experts or

customers provide information via e.g. spread-sheets may facilitate this (Park 2009).

The third variant, namely story-test driven TCR with tool support was seen originally in Company C where TCR was

intended to be part of a transition to agile processes. Story-test driven development (Park 2010) includes collaboration

around requirements between business and development roles using user stories and automated acceptance test cases with

tool support. In contrast to the de facto context (at Company A), Company C envisioned this practice as enabling analysis

and maintenance of requirements. To achieve this, the requirements aspects of TCR including traceability to test cases and

requirements priorities needed to be supported by the test management tools. This necessary tool support was not

implemented, which can partly explain why this practice variant was not realized. In addition, user interaction has a stronger

focus within Company C than testing (as for Company A), which has resulted in the user interaction artefacts becoming

the main requirements documentation (rather than the test cases).

The fourth and fifth practice variants are found at Company C, where stand-alone TCR specifications are used in a strict

fashion to specify internal APIs and in a more manual fashion to enable self-certification of compliance to customer

requirements (Morris 2001). In these two variants, requirements are documented primarily as test cases, i.e. stand-alone

with no, or very weak, connection to a formal requirements documentation level. These TCRs are agreed upfront before

implementation starts similar to traditional phase-based development. The main difference between these two related

variants lies in the use of automatic or manual test cases. The internal API development is an example of stand-alone strict

TCR where the test cases form a machine executable specification. The customer TCR requirements consisting of manual

test cases which are very costly and time consuming to execute are an example of the stand-alone manual variant. For both

of these variants, the TCR practice is used to certify that the implementation matches the requirements.

6.3 Limitations

We discuss limitations of our results using guidelines provided by Runeson et al. (2012).

6.3.1 Construct Validity

A main threat to validity lies in that parts of the analysed data stem from interviews exploring the broader area of RET

(requirements engineering and test) alignment, namely the 12 interviews analysed in the first iteration. This limits the depth

and extent of the results from this data to what the interviewees spontaneously shared around the TCR practice in focus in

this paper. In addition, these re-used interviews do not allow for drawing conclusions based on the absence of information

since specific questions about the practice were not asked. For example, concerning support for a certain requirements

activity. In particular, the fact that the practice was not yet fully implemented at Company C at the time of the interviews

limits the insights gained from those interviews. However, we believe that the broad approach of the original study

(Bjarnason 2013) in combination with the semi-structured interviews provide valuable, though limited, insights.

Furthermore, this limitation was addressed by collecting new data in the second iteration, thus complementing the data

used in the first iteration. This additional data collection allowed for a focused and in-depth investigation of the practice

for companies A and C. Company B was not further investigated due to lack of research access to this company, but also

due to the fact that the available data for Company B in the first iteration was more extensive than for the other two

companies. However, there is a risk of missing results for the behaviour-driven development variant of the TCR practices

for which further in-depth studies is needed.

The varying set of roles from each case under study poses a risk of missing important perspectives, in particular, for the

limited set of roles from which data was collected for Company C in the second iteration poses. The data was collected

from software and systems architects, and one technical account manager. This poses a risk of missing important aspects

and perspectives experienced by other roles, even if this limitation was not intended, but occurred due to limited availability

of participants during the available time frame. Due to the seniority of the software architects and the close collaboration

within the development teams we believe that their views align well with those of the developers. However, the system

testing perspective was not investigated for Company C, but rather how TCR is used within a development team. Further

investigations of how TCR is perceived by business-oriented roles, e.g. product managers, and by system testers at

Company C would complement these results. In general, more research is needed into how the practice affects business

versus technical roles including testers at different levels.

6.3.2 External Validity

The fact that our results are based on data from three case companies limits the completeness and general applicability of

our findings. For example, there are most likely more variants of the TCR practice than the ones we have identified.

However, we believe that the findings can be valid beyond the three investigated case companies and may be generalized

to some extent to companies applying an agile development model. However, this needs to be assessed through theoretical

generalization (Robson 2002, Runeson 2012) on a case-by-case basis by comparing to characteristics of the case companies

(reported in Section 3) and the context of the specific implementation of the practice.

6.3.3 Internal Validity

As for all case studies, the main threat to internal validity is caused by the difficulty of identifying which part of the TCR

practice or other surrounding practices that cause an observed impact. For example, when considering the support for

elicitation it is hard to separate between the impact of documenting test cases as requirements and the impact of having

close and frequent requirements communication. In particular, this poses the risk of drawing incorrect conclusions for RQ1

regarding how the documentation of requirements as test cases supports the requirements activities. This open risk could

be addressed through more cases studies and through systematic theory building based on such empirical data.

6.3.4 Reliability

There is a risk of researcher bias in the analysis and interpretation of the data. This was partly mitigated by applying

triangulation both within the group of researchers and towards the participants. For each step in the research process, the

output produced by another research, i.e. transcripts, coding, summaries, and reporting, was reviewed by and agreed with

another researcher. The transcripts were validated by the interviewees and participants. For the first iteration the transcripts

were sent to the interviewees for validation. For the second iteration, an intermediate summary of the focus group session

or interview was reviewed by the participants to correct any misunderstandings. Furthermore, a rigorous process was

applied in the (original) data collection including researcher triangulation of interviewing, transcription and coding, which

increases the reliability of the data selected for the first iteration. Furthermore, traces to the empirical data (interview

transcripts) were retained into the reporting step by one of the authors and thus enabled validation by another author through

triangulation of the reported results against the data.

There is a risk of biased results for the two additional development contexts investigated at Company C, i.e. API

development and self-certification due to investigating each of these through only one interview. The risk of incomplete

results for these two examples of TCR usage would be mitigated through further data collection.

7 Conclusions and Future Work

Coordinating and aligning frequently changing business needs is a challenge in any software development project. In agile

projects this is mainly addressed through frequent and direct communication between the customer and the development

team, i.e. through integrated requirements engineering (RE) (Sommerville 2005, Bjarnason 2011b). The detailed

requirements are often documented as test cases rather than in a separate requirements specification, thereby reducing the

effort required to keep two separate artefacts updated and aligned.

Our case study provides insights into how this practice of using test cases as requirements (TCR) supports the main

requirements activities (RQ1). The results suggest that the direct and frequent communication enforced by this practice

supports eliciting, validating and managing new and changing customer requirements. Furthermore, specifying

requirements as acceptance test cases allows the requirements to become a living document that supports verifying and

tracing requirements through the development life cycle. However, TCR also poses challenges in relation to requirements

engineering activities, including the elicitation and verification of quality requirements, and managing changes with

missing requirements context leading to difficulties in impact analysis. In all companies we have observed both benefits

and challenges of TCR, explaining why in practice there is no single, commonly agreed TCR practice but variants that are

adapted to the specific context and demands of the developing organization.

We have identified five TCR variants (RQ2) namely de facto, behaviour-driven, story-test driven, stand-alone strict and

stand-alone manual TCR. For each identified variant, TCR is applied different for a set of facets of the practice. These

facets can be useful in considering how to configure the practice for a specific case. The facet of documentation time frame

influences the quality of the requirements, which in turn affects the requirements communication between project roles. In

upfront TCR the documentation of test cases is done during elicitation and validation of the requirements, positively

affecting requirements quality in terms of completeness through the close involvement of the business roles. Upfront TCR

supports the coordination and alignment in projects with many stakeholders, for example, if certification for a standard or

against customer requirements is needed. The test cases thereby serve as a firm and reliable source of requirements

information, since they are used and actively maintained. After-the-fact TCR is a valid strategy in organizations where test

cases, in contrast to requirements documents, are maintained over the product life-time and reused in different products.

The facet of the requirements format determines the extent to which specialized knowledge is required to interpret the

requirement as a customer need, as well as a mean to verify that need. Formalization reduces the risk of ambiguity and

makes machine-based processing of information straightforward, however presumes a certain competence level from all

involved stakeholders. For some variants, the TCR practice produces executable specifications that are either evaluated

manually by humans or automatically by machines. This facet is important to consider in situations for which the rate of

requirements changes is high, in which case regression testing with automated executable specifications can be of great

value. However, the degree to which automation can be realized depends on the possibility to which the requirements

documentation can be formalized, which in turn depends on stakeholder needs. Executable specifications, independently

of whether they are manually or automatically evaluated, also support the certification of an implementation. Finally,

certain TCR variants require that the facet of TCR-specific tool support is present, enabling for example efficient regression

testing or the coordination of multiple stakeholders.

The wide range of variants identified through our case study indicates that contextual factors affect how TCR is applied.

For this reason, we cannot provide any general guidelines for how to apply TCR for a specific case. However, our findings

indicate that a successful application of TCR requires a combination of factors such as strong testing competence, a

customer or product manager who is technical enough to read and understand test cases, adequate tool support for tracing

requirements to automatic test cases, and a consistent implementation throughout the development life cycle. In addition,

TCR seems to be less suitable to apply to requirements such as usability and quality aspects due to the challenges in defining

good and efficient test cases for these complex requirements.

To summarize, the results provide empirically-based insights that can aid practitioners in improving their agile

requirements practices. Furthermore, the facets used to characterize TCR variants can be used by practitioners to pin-point

a particular TCR variant suitable to their needs. The facets also provide a basis for further research. For example, future

studies could investigate how requirements format and TCR-specific tool support can support the RE activities and thereby

improve the coordination and effectiveness of agile development. This could involve document studies of the TCR artefacts

for our case companies. Another interesting research direction could be to investigate factors, relationships and limits at

play when introducing TCR and how these are affected by different contexts with the aim of providing more specific

recommendations for which TCR variant to apply depending on, e.g. project size, requirements volatility, number and

types of stakeholders involved. An interesting outcome of such research would be a TCR reference process that can be

parameterized by contextual factors.

Acknowledgement. We want to thank all the participants in the interviews and the focus group sessions. This work was

funded by EASE (ease.cs.lth.se).

References

1. Beck K, Beedle M, van Bennekum A et al. (2001) Manifesto for Agile Development, http://agilemanifesto.org/ (latest access: 2015-

07-17)

2. Bjarnason, E., Wnuk, K., Regnell, B. (2011a): Requirements are slipping through the gaps – a case study on causes & effects of

communication gaps in large-scale software development. Proc of 19th IEEE International Requirements Engineering Conference,

2011, pp. 37–46.

3. Bjarnason, E., Wnuk, K. Regnell, B. (2011b): A case study on benefits and side-effects of agile practices in large-scale requirements

engineering. Proceedings of the 1st Workshop on Agile Requirements Engineering. ACM, 2011.

4. Bjarnason, E., Runeson, P., Borg, et al.: Challenges and practices in aligning requirements with verification and validation: a case

study of six companies. Empir. Softw. Eng. 19, 1809–1855 (2014).

5. Bjarnason, E., Unterkalmsteiner, M., Engström, E., Borg, (2015a) An Industrial Case Study on Test Cases as Requirements.

Proceeding of Agile Processes, in Software Engineering, and Extreme Programming. Springer International Publishing, 2015. 27-

39.

6. Bjarnason, E., Sharp, H. (2015b) The Role of Distances in Requirements Communication: A Case Study. Requirements Engineering

Journal, 2015.

7. Bjarnason E, Unterkalmsteiner M, Engström E, Borg M (2015c) Research material for study on Test Cases as Requirements

including data collection protocol (latest access: 2015-07-19) http://serg.cs.lth.se/research/experiment_packages/TCR/

8. Causevic, A., Sundmark, D., Punnekkat, S.: Factors Limiting Industrial Adoption of Test Driven Development: A Systematic

Review. 4th Int’l Conf. on Software Testing, Verification and Validation. pp. 337–346. IEEE, Berlin, Germany (2011).

9. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley Professional, Boston (2004).

10. Davis, A., Overmyer, S., Jordan, K., et al.: Identifying and measuring quality in a software requirements specification. 1st Int Softw

Metrics Symp. pp 141–152. Baltimore, USA (1993).

11. Davis, A.M.: Just Enough Requirements Management: Where Software Development Meets Marketing. Dorset House, New York

(2005).

12. Dromey, R.G.: From requirements to design: formalizing the key steps. 1st Int’l Conf. on Software Engineering and Formal

Methods. pp. 2–11. IEEE, Brisbane, Australia (2003).

13. Erman, N., Tufvesson, V., Borg, M. et al: Navigating Information Overload Caused by Automated Testing - A Clustering Approach

in Multi-Branch Development, 8th Int’l Conf. on Software Testing, Verification and Validation, pp. 1-9, IEEE, Graz, Austria (2015).

14. George, B., Williams, L.: A structured experiment of test-driven development. Information Software Technology 46, 337–342

(2004).

15. Haugset, B., Hanssen, G.K.: Automated Acceptance Testing: A Literature Review and an Industrial Case Study. Agile Conf. pp.

27–38. IEEE, Toronto, Canada (2008).

16. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated Consistency Checking of Requirements Specifications. ACM Trans

Software Engineering Methodology, 5, 231–261 (1996).

17. Hsia, P., Kung, D., Sell, C.: Software requirements and acceptance testing. Ann. Softw. Eng. 3, 291–317 (1997).

18. Janzen, D.S., Saiedian, H.: A Levelled Examination of Test-Driven Development Acceptance. 29th Int’l Conf. on Software

Engineering. pp. 719–722. IEEE, Minneapolis, USA (2007).

19. Kongsli, V.: Towards Agile Security in Web Applications. 21st ACM SIGPLAN Symp on Object-oriented Program Systems,

Languages, & Applications pp. 805–808. Portland, USA (2006).

20. Lamsweerde, A. van: Formal Specification: A Roadmap. Conf. on the Future of Software Engineering. pp. 147–159. ACM,

Limerick, Ireland (2000).

21. Latorre, R.: A successful application of a Test-Driven Development strategy in the industrial environment. Empirical Software

Engineering 19, 753–773 (2014).

22. Lawson M, Karandikar HM (1994) A Survey of Concurrent Engineering. Concurrent Engineering 1994 2:1. doi:

10.1177/1063293X9400200101

23. Lauesen, S.: Software Requirements: Styles & Techniques. Addison-Wesley Professional, Harlow (2002).

24. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an agile case study. J. Syst. Archit. 52, 654–667

(2006).

25. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documentation: the state of the practice. IEEE Softw. 20,

35–39 (2003).

26. Marczak S, Damian D (2011) How Interaction between Roles Shapes the Communication Structure in Requirements-Driven

Collaboration. 19th IEEE Int Requirements Engineering Conf., pp. 47-56.

27. Martin, R.C., Melnik, G.: Tests and Requirements, Requirements and Tests: A Möbius Strip. IEEE Software 25, 54–59 (2008).

http://serg.cs.lth.se/research/experiment_packages/TCR/

28. Mavin, A., Wilkinson, P.: Big Ears (The Return of ‘Easy Approach to Requirements Engineering’). 18th Int Reqts Engineering

Conf. pp. 277–282. IEEE, Sydney, Australia (2010).

29. Melnik, G., Maurer, F., Chiasson, M.: Executable Acceptance Tests for Communicating Business Requirements: Customer

Perspective. IEEE Agile Conf pp. 35–46. USA (2006).

30. Melnik, G., Maurer, F.: Multiple Perspectives on Executable Acceptance Test-driven Development. 8th Int’l Conf. on Agile

Processes in Software Engineering and Extreme Programming. pp. 245–249. Springer, Como, Italy (2007).

31. Miller, T., Strooper, P.: A case study in model-based testing of specifications and implementations. Software Testing Verification

Reliability. 22, 33–63 (2012).

32. Morris, J., Lee, Gareth, Parker, K., Bundell, G.A., Chiou Peng Lam. : Software component certification, Computer , vol. 34, no.9,

pp.30,36, (2001) doi: 10.1109/2.947086

33. Mugridge, R.: Managing Agile Project Requirements with Storytest-Driven Development. IEEE Software 25, 68–75 (2008).

34. North, D.: Behavior Modification: The evolution of behavior-driven development, (2006).

35. Park, S., Maurer, F.: A Literature Review on Story Test Driven Development. 11th Int Conf on Agile Processes in Software

Engineering and Extreme Programming pp. 208–213. (2010).

36. Park, S., Maurer, F.: Communicating domain knowledge in executable acceptance test driven development. 10th Int’l Conf. on

Agile Processes in Software Engineering and Extreme Programming. pp. 23–32. Springer, Pula, Italy (2009).

37. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer, Berlin, Germany (2010).

38. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and challenges: an empirical study. Inf. Syst. J. 20,

449–480 (2010).

39. Robson C (2002) Real World Research. Blackwell Publishing. (2002)

40. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering: Guidelines and Examples. Wiley,

Hoboken, USA (2012).

41. Runeson, P.: A survey of unit testing practices. IEEE Software 23, 22–29 (2006).

42. Sabaliauskaite G, Loconsole A., Engstrom E, Unterkalmsteiner M, Regnell B, Runeson P, Gorschek T, Feldt R (2010) Challenges

in Aligning Requirements Engineering and Verification in a Large-Scale Industrial Context. 16th Int Working Conf on

Requirements Eng. Foundation for Software Quality (REFSQ), pp. 128-142.

43. Solis C, Wang X (2011) A Study of the Characteristics of Behaviour Driven Development, 37th EUROMICRO Conf. on Softw.

Eng. and Advanced Applications (SEAA), pp.383-387.

44. Sommerville, I.: Integrated Requirements Engineering: A Tutorial. IEEE Softw. 22, 16–23 (2005).

45. Stapel, K. and Schneider, K. (2012), Managing knowledge on communication and information flow in global software projects.

Expert Systems. doi: 10.1111/j.1468-0394.2012.00649.x

46. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking Requirements and Testing in Practice. 16th Int Conf Reqts

Engineering. pp. 265–270. IEEE, Catalunya, Spain (2008).

47. Whittaker, J.A.: What is software testing? And why is it so hard? IEEE Software 17, 70–79 (2000).

48. Wnuk, K., Ahlberg, L., Persson, J.: On the delicate balance between RE and Testing: Experiences from a large company.

Proceedings of 2014 IEEE 1st International Workshop on Requirements Engineering and Testing (RET), pp.1,3, 26-26 Aug. 2014

49. Unterkalmsteiner, Michael, Robert Feldt, and Tony Gorschek. "A taxonomy for requirements engineering and software test

alignment." ACM Transactions on Software Engineering and Methodology (TOSEM) 23.2 (2014): 16.

50. Unterkalmsteiner, M., Gorschek, T., Feldt, R., and Lavesson, N., “Large-scale Information Retrieval in Software Engineering - An

Experience Report from Industrial Application,” Empirical Software Engineering, 2015, In Print.

1 Introduction ... 1
2 Background and Related Work .. 2

2.1 Requirements Engineering and Test (RET) Alignment .. 2
2.2 The Agile Approach of Integrating Requirements Engineering with Testing ... 3

3 Case Companies .. 3
3.1 Company A ... 4
3.2 Company B ... 4
3.3 Company C ... 4

4 Method ... 5
4.1 First Iteration: Initial Exploration ... 6

4.1.1 Definition of Research Questions and Planning. .. 6
4.1.2 Data Selection ... 6
4.1.3 Data Analysis.. 6

4.2 Second Iteration: Complementary and Focused Investigation .. 6
4.2.1 Case Study Design: Definition of Research Questions and Planning ... 6
4.2.2 Data Collection ... 7
4.2.3 Data Analysis.. 7
4.2.4 Reporting .. 8

5 Results: Applications of TCR in Practice .. 9
5.1 Company A: TCR as a De Facto Practice ... 9

5.1.1 Elicitation and Validation: Company A.. 10
5.1.2 Verification: Company A ... 11
5.1.3 Tracing and Managing Changes: Company A .. 11

5.2 Company B: Tool-Supported Behaviour-Driven Development TCR ... 12
5.2.1 Elicitation and Validation: Company B .. 12
5.2.2 Verification: Company B .. 13
5.2.3 Tracing and Managing Changes: Company B .. 13
5.2.4 Customer Agreement: Company B ... 14

5.3 Company C: Failed Story-Test Driven TCR and Stand-Alone Manual TCR ... 14
5.3.1 Elicitation and Validation: Company C .. 15
5.3.2 Verification: Company C .. 16
5.3.3 Tracing and Managing Changes: Company C .. 16
5.3.4 Customer Agreement: Company C ... 16

5.4 Company C: API Development with Stand-Alone Strict TCR ... 17
5.4.1 Elicitation and Validation: Company C API Development .. 17
5.4.2 Verification: Company C API Development .. 18
5.4.3 Tracing and Managing Changes: Company C API Development .. 18
5.4.4 Contractual Agreement: Company C API Development .. 18

6 Discussion: TCR Supporting RE and TCR Variants ... 18
6.1 How can Test Cases Support the Main Requirements Activities (RQ1) ... 18

6.1.1 Elicitation and Validation ... 19
6.1.2 Verification ... 20
6.1.3 Tracing .. 20
6.1.4 Managing Changes ... 21
6.1.5 Documentation of Customer Agreement .. 21

6.2 Variations in Applying the TCR Practice (RQ2) .. 22
6.3 Limitations .. 23

6.3.1 Construct validity ... 23
6.3.2 External validity ... 24
6.3.3 Reliability ... 24

7 Conclusions and Future Work ... 25
References .. 26

