Preprint of paper accepted foublicationin Information and Software Technolqodolume 77 Sep2016, Pages 679

A Multi -Case Study of Agile Requirements Engineering and
the Use of Test Cases as Requirements

Elizabeth BjarnasdnMichael UnterkalmsteinérMarkus Bord, Emelie Engstrom

Lund University
SE22100 Lund, Sweden
FirstName.LastName@cs.lth.se
2Blekingelnstitute of Technology
SE-371 79 Karlskrona, Sweden
mun@bth.se

Abstract.

[Context | t is a conundrum that agile projects can succeed
engineering is a known cause for project failures. While agile developmagatts often manage well without extensive
requirements, test cases are commeidyedas requirementand detailed requirements are documented as test cases

[Objectivé We have investigated this agile practice of using test cases as requirements (TCR) to undersé&std how
casesansupport the main requiremerastivities andhow theTCR practice can be varied.

[Method We performed an iterative case studythree companieswith two data collection periods. One in 2009/10
with 12 interviews and one in 2015 with 2 focus groups and 2 interviews.

[Result$ Using test cases as requirements poses both benefits and challengedicitivey) validating, verifying,
andmanagng requirements, anghen usedis a documented agreeméie have identifiedive variants of the TCR
practice, namely de facto, behavidalriven, storytest driven standalone strict and staralone manuafor which the
application of the practice variesncerning théime frame of requirementdocumentationthe requirements format,
the extent to which the test cases aneaghine executable specification @hd use off CR-specific tool support.

[Conclusionf The findings provide empirical insight intew agile development projects manage and communicate
requirements. The identified TCR variants can be used to perfodapit investigations into agile requirements
engineering. The provided recommendations can be used to guide practitioners in glesigrimproving their agile
requirements practices based on project characteristics such as number of stakeholders and rate of change.

Keywords: Agile development, Requirements, Testing, Farsten development, Behaviodriven development,
Acceptanceest, Case study

1 Introduction

Agile development methods strive to be responsive to changing requirements by integrating requirements, design,

implementation and testing processes (Sommerville 2005, Layman 2006}oFace communication is prioritised ew

written requirements documentation and customers are expected to convey their needs directly to the developers (Beck

2001, Ramesh 2010). However, weak customer communication in combination with minimal documentation is reported to

cause problems iousbmer participation and witbcaling and evolving software for agile projects (Ramesh 2010).
Requirements specifications are usaddifferent purposes and support thain requirementactivities ofeliciting and

validatingst ak e h ol d e r s 6ftwareewgrifiGatior, mnacing ad masaging requiremeats] for contractual

purposes by documenting customer agreem#viésuse theet ofmainrequirementsctivities for which the requirements

specification plays a rolasidentified by Lauesen (2002Requirementsre used to communicate wiskakeholdersto

drive design and testing, and to serve as a reference for project managers and in the evolution of the system (Davis 2005).

Due to the central role of requirements in coordinating software devetbpthere exists a plethora of reseaorh

requirementslocumentatiorwith varying degrees of formality depending on its intended use. This spans from formal

requirements specifications (Lamsveerde 2000) and requirements models (Pohl 2010), over t@vteplate2010) to

user stories (Cohn 2004), and natural langugmeeifications Formalrequirements specifications can be automatically

checked for consistency (Heitmeyer 1996) and used to derive other artefacts, e.g. software designs (Dromey 2003) or test

http://www.sciencedirect.com.ludwig.lub.lu.se/science/journal/09505849
http://www.sciencedirect.com.ludwig.lub.lu.se/science/journal/09505849/77/supp/C

cases (Miller 2012)Less formafrequirements documentation is driven by heuristics and best practices for achieving high
quality requirements (Davis 1993).

The coordination of evolving requirements poses a challenge in aligning these with later develagtiviies
including testing usitalo 2008Bjarnason 2014). In a previous study we identifiedptaeticeof documenting detailed
requirements as test cases, i.e. ussg cases as requirements (TCR) as one of several industrial practicekireses
this challenge (Bjarnason 2014). In this paper, we investi@gfurther for the three case companies (of six) from our
previous study that explicitly mentioned this practibe.this papemwe discusshow TCR may support requirements
engineeng (RE) byinvestigatingthe following:

RQ1 How can test cases tiie TCR practicesupportthe main requirements activitieise. elicitation and validation,
verification, managing changeand for contractual purposes (Lauesen 20@8Y thus fill the roleof a requirements
specificatior? In particular, what are the benefits ahé challenges of this approach?

RQ2 What variations are there in applyitige TCR practice

Intermediate results fahese research questioren be found ir{Bjarnason 2018 for the same three case companies
based on 12 interviews fromnprevious study. For this papedditionaldatawas collectedhroughtwo focus group
sessions and tw@mew)interviews In particular,we followed up ontwo of the three previous reported easone of which
was a(previously)planned implementation of TCIRor this paperfurther crosscase analysis and synthesis of the full set
of data has been performed. We rewod additional variants of the practicggndalone strictandstandalonemanual),
andalsodepicttherequirements flowfor each caseompany

The rest of this paper is organized as follows. Se@idescribes background and related work. Se@ipresents the
case companies and Sectibthe applied research method. The results are reported in Seetimhdiscussd in Section
6 wherethe research questions are answerathlly, the paper is concluded in Sectidn

2 Background and Related Work

While requirements engineering (RE) and testing are traditionally viewed as two separate préeedseR practice
studied in this paper is an example of a practice wtieractivities of these two processes are performed concurrently
(Lawson 1994)The work presented in this paper stems fr@search into the coordination and alignmenR&f and
testing (RET) for software development in genémaluding traditional developmenin additian, our work relates tohe
agile approactof integrating the RE activities with those of testing. We will now describsetheo related areas of
research.

2.1 Requirements Engineering and Test (RET) Alignment

Coordinating and aligninRE and testing is a cHahge within software development projects. This challenge relates to a
range of issues including organization, process, people, tools, requirements changes, traceability and measurements
(Bjarnason 2014Sabaliauskait2010). Alignment methods have be¢udsed from the perspective of linking information
between people and/or documentation using mechanisms of varying formalism anex@griignterkalmsteine2014).
Industrial pacticesin this areainclude traceability, modddased approaches and increhg®mmunication, e.g. by
involving testers in requirement reviews (Bjarnason 20Qisitalo 2008). Similarly, in requiremendsiven collaboration
there is close communication between requirements and testing roles; key roles which when absent ctiase dighiip
the development team (Marczak 2011).

We previously investigated RET alignment through a large interview study at six deealopompanies (Bjarnason
2014). The results include 10 main challenges and 10 categories of practices. ExamplestadliRBEges include aligning
goals, requirements specification quality, maintaining alignment during changes, and outsourcing testing. The main
categories of RET practices include change management, tracing, tools, and metrics. The RET study idenhiigge fo
level factors that affect RET alignment. These factors are the human aspects of development, the quality of requirements,
the size of the development, and the incentives for implementing alignmresntices The human side of development
including communication and coordinatias vital for alignment in general, so also between requirements engineers and
testers. Further, the quality and accuracy of requiremeltgrucial starting point for testing the produced software in
line with the agreed gpiirements. In addition, the size of the development organisation and its projects is a key variation
factor that affects which challenges that are faced and which tools and préeteessuitable Finally, the incentive for
applying practices such agod requirements documentation and tracing vary. For companies with-dtfet}
development this incentive is externally motivated, while the motivation is purely internal f@afety critical cases.
This internal motivation for RET practices item weak due to low awareness of the cost vs. benefit of RET alignment.

2.2 The Agile Approach of Integrating Requirements Engineering with Testing

In agile development requirements and tests can be seen as two sides of the same coin. Martin and Melnik (2008)
hypothesize that as the formality of specifications increases, requirements and tests become indistinguishable. This
principle is taken to thextreme by unit tests (Whittaker 2000) where requirements are formalized in executable code.
Practitioners report using unit tests as a technical specification that evolves with the implementation (Runeson 2006).
However, unit tests may be too technicaldastomers and thereby lack the important attribute of being understandable to

all relevant stakeholders.

Acceptance tests are used to show customers that the system fulfils the requirements (Hsia 1997). However, developing
acceptance tests from requirersespecifications is a subjective process that does not guarantee that all requirements are
covered (Hsia 1997). This is further complicated by requirements documentation rarely being updated (Lethbridge 2003),
leading to potentially outdated acceptanststen agile development, automated acceptance tests drive the implementation
and address these issues by documenting requirements and expected outcomes in an executable format (Ramesh 201(
Haugset 2008). This agile practice is known, among others, sisnoer tests, scenario tests, executable/automated
acceptance tests, behavialiiven and storytestdriven development (Park 2010).

Some organisations view and use gh#omated acceptance teatsrequirements thereby fully integrating these two
artefacs (Martin 2008) Automated acceptance teste used to determine if the system is acceptable from a customer
perspective androvide thebasis for customer discussions, thus reducing the risk of building the wrong system. However,
more technicacommunicéon might beneeded whichrequires technical insight of the customer. Melnik et al. (2006)
found that customers in partnership with software engineers could communicate and validate business requirements
throughautomated acceptance testkhough therés an initial learning curve.

The conceptual difficulty of specifying tests before iemkntation (Causevic 2011, Gger2004, Janzen 2007) led to
the conception of behaviowriven development (North 2006T.his approachincorporates aspects of requirertsen
analysis, requirements documentation and communication, and automated acceptance testing. The behaviour of a systen
is defined in a domaispecific language; a common language that reduces ambiguities and misunderstandings. This is
further enhanced byn¢luding terms from the business domain in dieenaintspecific languageSolis and Wang (2011)
reviewed the available literature and a number of imolbehaviourdriven developmerih 2011 They found that the area
was still under development and thhe domainspecific languagesupported by the tools limited the requirements
expressiveness.

Haugset and Hanssen studied acceptance test driven development (ATDD) as an RE practice and report on its benefits
and risks (Haugset 2008). Our work extends as Iy also investigating companies that use the TCR practice without
applying ATDD principles.

3 Case Companies

The three case companies all develop software using an agile development model. However, a number of other factors vary
between the companies. Baefactors are summarisedTiable 1

Table 1. Overview of the case companies.
Company A B C
Tvbe of compan Software development, Consultin Softwaredevelopment, embedde
yp pany embedded products 9 products
#employees in software 250 135 1.000

development

(125150 in 2009)

#employees in typical

Product projects: 46800

project 10 Mostly 4-10, but varies greatly Feature projects-35
Distributed No No Yes

. Computer networking Advisory/technical services,
DoirEinf SysEe equipment application management Telecom

Source of requirement

Market driven

Bespoke

Bespoke, market driven

Main quality focus

Availability, performance,

Depends on customer focus

Performance, stability

security
Certification Not software related No 1ISO9001
Process Model Agile Agile in variants Agile with gate decisions
Project duration 6-18 months No typical project Previously: 2 years

#requirements in typical
project

100 (2030 page$HTML)

No typical project

2,0003,000

#te_st cases in typical ~1,000 test cases No typical project 15,000
project

Product Lines Yes No Yes
Open SourceSW Used Yes Yes Yes

3.1 Company A

Company A develops network equipment consisting of hardware and software. The software development unit covered by
the interview study had around 150 employees in 2009 and grew to 250 employees in 2015. The company is relatively
young but has been growirigst during the past few years. A typical software project has a lead timé&fnths,
around 10 cdocatedsoftware developemnd approximately 100 requirements and 1,000 system test Theeompany
has a mature agile development process with a strong focus on tAstiagketdriven requirements engineering process
is applied. The quality focus for the software is on availability, performance and security. Furthermore, the company applie
a produciline approach and uses opsource software in their developmeifittlosedsource products

The participants from Company A consist of three interviewees from a previous study and five focus group participants.
The interviewees were a producanager, a project manager, and a tester,Tséde 2 The focus group participants
consisted of two product managers, a systems architect, a technical projectmasibg tester, sdable 3

Table 2. Interviewees per company selected from a previous studyoles and experience For Company B, software
developers also perform RE andesting tasks.

Legend: Experience in role noted as S(enior) = more than 3 years, or J(unior) = up to 3 years. Only interviewees mémioning t
TCR practice were included in this study, these are markedwith

Role A B C

Requirements engineel C1:S,C6:S,C7:S

Systems architect C4:S

Software developer B1:J, B2:S, B3:S | C13:S

Test engineer A2:S C9:S5,C10:S C11:J, C12:S, C14:S
Project manager Al:J C3:J, C8:S

Product manager A3:S

Process manager C2.J,C5:S, C15:J

3.2 Company B

Company B is a consultancy firm that provides technical services to projects that vary in size and duration. Most projects
consist of one development team e1@ people located at the customer Siiee companyas appliedggile development
practicesfor more than a decadend are active in the agimommunity The requirements are defined by a customer
(bespoke).

The three consultants that were interviewed at Company B can mainly be characterised as software developers, see
Table 2 However, they all typically take on a multitude of roles within a project and are involved throughout the entire
lifecycle.

Table 3. Participants in focus group for Company A. Participant ids A21n where A21 denotes the focus group session
and n the participant in that session.

Roles Experience (years)
Current Previous Current role Previous role | At company | Total
A21.1 Product manager Systems architect | 1 7 18 20
A21.2 Product manager Businessnanager | 10 2 13 30
A21.3 Systems architect Software developer| 5 10 19 25
A21.4 Technical project manager| Software developer| 2 10 5 12
A21.5 Tester Tester 5 3 8 10

3.3 Company C

Company C develops software for embedded products in the telecommunidatiosigs. The software development unit
investigated in this study, consists of 1,000 people. At the time of the initial interviews, the company was transitioning

from a waterfall process to an agile process. Product projects typically run e¥8mi@nthsand include around 46800
people, while software features are developed in smallepmajbcts consisting of aroundl® people. The projects handle
a combination of bespoke and markeiven requirements. Including the prodlioe requirements, they hele a very
complex and large set of requirements.

Six (of fifteen) interviews from a previous study were relevant to include in this study. These interviews were with one
requirements engineer, two project managers, two process managers and one eéckabie s& Additional interviews
were held with one systems architect and one account manager at Companyl &hlsek Furthermore, six software
architects participated in a focus group session. These software architects represent six software development teams, ot
feature projects, that develop software ranging from-teghl user applications to softwarelityi functions. The user
applications aim to release new software updates every 6 weeks while the utility functions are more tightly coupled to the
hardware and product releases, which havara#gthly release cycle. These feature development projects margize
from 3 to 15 project members.

Table 4. Characterisation of participants in focus group (C21) and interviews (C2, C23) for Company C in iteration 2.

Data collection entity Roles Experience (years)
Current role Total

Cc21 Focus group |6 softwarearchitects |2-10 5-20

C22 Interview Systems architect 9 20

c23 Interview Account manager 12 30

4 Method

The motivation for this research springs from our previous study on practices used to align RE and(RESting
(Bjarnason 204), one of which is the use of test cases in lieu of detailed requirements documentation. Ingathearno
in-depth understanding ofithpracticewe performed &ase study in two iterations using a flexible exploratory case study
design and process (Reson 2012)This approachallowed us to explorand compareariations of the practiciund in

the three case companiésthe first iteration we analysed interview data collected during 2009&%fart of our previous
study where a wider set of RETqutices were identifiedThe purpose of thfirst iteration was to gain an understanding
of how the TCR practice is applied in industry; its benefits and challenges. The second iteration was peasethed

the outcome of the first iteration, in partiar to follow up andfurtherinvestigate the situation for the two case companies
for which the practice was less mature (Companies A and C) and to complem@nbtaesxtensivedata available for
Company B. We collected additional dateough focus groups and interviews frase companie& and Cduring the
Spring of 2015 to see if the practice had changed or matured, and to investigate the implementation of TCR in more depth.
For each of the two iterationacase study process (Runes012) was applied consisting of four stage®éfinition &
Planning 2) Data selection/collection3) Data analysisand 4)Reporting An overview of the method for each iteration is
shown inTable 5

Table 5. Overview of the applied case study process for each of the iterations.

First iteration | Second iteration

Definition and Planning
RQ1. Howcan test cases difie TCR practicesupportthe main requirements activitieisg. elicitation and validation
verification, managing changes, and for contractual purposes (Lauesera@0)s fulfil the role of a requiremen
specificatior? In particular, what are the benefits and challenges ofipsoach?

RQ2. (1%t version)Why and how is the TCR practi¢ RQ2.What variations are there in applying TCR in praice
applied?

Data Selection / Collection

Selected relevant interview data from previous study (Bjarnason 2013) for Companies A, B and C. Indenai
structurednterviews.

Collected additional data for Companies A and C throug
focus group sessions ang@mistructurednterviews.
Data Analysis

Word-by-word transcripts Transcriptions
Descriptive coding and clustering into benefits and| Semie x p| or at ory <c o disetgfmaia s e
challenges requirementsctivities(RQ1), and roles and artefacts in the

requirements flow

Triangulation applied by (at least) one other researcher reviewing each transcription and coding.
Transcripts reviewedy interviewee. Summary of transcript reviewed by participgimterviewee.
Crosscases analysis
Reporting
In Bjarnason 201& | In this paper

4.1 First Iteration: Initial Exploration

In the first iteration we analysed existing interview data foamprevious(wider) study of industrial practices in aligning

RE and testing (Bjarnason 2014). For the current paper, we analysed the interview data relevant to the TCR practice in
more detail. This iteration consisted of defining research questions, selecting data, gtiailysiata and reporting of the

results in (Bjarnason 20&p

4.1.1 Definition of Research Questions and Planning.

Since we are interested in how agile development <can b
practice of using testases as requirements. We formulated the research questions,HB®Tan the test case tie
TCR practicesupportthe main requirements activitesind (RQ21% versior) Why and how is the TCR practice applred

4.1.2 Data Selection

We selected to use wofw-word transcriptions from our previous study of-REsting coordination (RET), which also

included agile processes. The research questions of this iteration are within the broader scope of the previous study on RET
(Bjarnason 2014).e. the previously cadcted data contains information relevant to these queskarthermore, the semi

structured interviews provided rich material since the interviewees could freely describe how practices (of which TCR was
one) supporting RET were applied including beneditd challenges. Data selection was facilitated by the rigorous coding
performed in the previous study. We selected the interview parts coded for the TCR practice. In addition, the transcripts
were searched for key ter msfiscuacthi oans6 O6taoc cfeuprttahnecre etnessutrée
were selected to be included in this study.

4.1.3 Data Analysis

The analysis of the selected interview data was performed in two steps. First the transcripts were descriptively coded. These
codes wee then categorised into benefits and challenges and reported per case company in (Bjarnasdmg@talysis

was performed by the first author. The results were validated independently by the third author. The third author analysed
and interpreted arfie-grained grouping of the interview data produced in the previous RET study (Bjarnason 2014), and
compared this against the results obtained by the first researcher. No conflicting differences were found.

4.2 Second lteration: Complementary and Focused Inveggation

The aim ofthe second iterationasto complement the insights of the first iteration and to gaieeper understanding of
thevariations ofthe TCR practicef-or this wecollected new empiricadatafocused specifically on the TCR practiaed
also performed further analysis of the full set of empirical.data

421 Case Study Design: Definition of Research Questions and Planning

The authors defined and planned the second iteration of this case study over a period of one momthreEearch
guestions of the first iteration were selected to be included also for this itefadwaver RQ2 was rephrased to more
specifically focus orvariations in applying TCR in practig®Q?2), i.e. how the practice is appligd different contexts.
Thus, motiation (how) for applying the practice was removed for the final version of RQ2.

We decided to gather new empirical data to complement our set of data for the two companies where the practice was
previously found to be weaker and for which there was letsidahe first iteration, namely Company A and C. For
Company B there was already a substantial amount of relevant data from the first iteration. Thus, we decided to investigate

the practice further at Company A and B. This also allowed us to faifpaenthe implementation of TCR that was planned
as part of the agile transition at Company C during the first iteration.

A data collection protocolwas defined based on the research questions. This protocol contains questions on how TCR
was appliedorcouldbeppl i ed to the companyds curr entmaneguuemensment s
activity was fulfilled by TCR. The data collection protocol was designed and agreed jointly by the researchers and is
availableortline (Bjarnason 2015c)

The data collection methodused was mainly focus group sessions due to the interactive nature of agile RE, which
involves collaboration between many different roles. A focus group allows for eliciting a holistic view of the situation from
multiple perspectivess well as, providing value in itself to the participants through group reflection and le@alpn
2002) Semistructured interviews using the same data collection protocol were used as a compliment to the focus group
sessionsThe data collection iurther described below.

Sampling of participants was done with the aim of covering all roles throughout the life cycle from customer to testing.
However, due to practical reasons (limited time frame and participant availability) this was combined wéthiciore
sampling and adaptions to the data collection method. A characterization of the participants is provideed 8and
Table 4

4.2.2 Data Collection

In the second iteration data was collected from Company A through one focus group session and from Company C through
one focus group session and two sstnictured intervie®. The interviews were used to investigate two additional
applications of TCR within Company C, mentioned by company representatives during the planning phase, namely API
implementation and setfertification of customer requirements.

Each focus group sdes was attended by two researchers; one moderndtoread the discussicand one notéaker
who asked followup questions when needékhe interviews were performed by one researcher. The focus group sessions
and the interviews were audio recorded genmission was granted by the participants.

The data collection protocavailableortline (Bjarnason 2015c)yas used as a guide during the focus group sessions
and the interviews. In the introduction part the participants were informed of the aim sthitye how it would be
performed, and confidentiality. The participants were then asked to introduce themselves and their role. The overall
information flow between requirements and testing including the used artefacts and involved roles was thenExiglored
was followed bysemistructureddiscussions on how test cases can fulfil the varioas requirementsctivities The
meeting was then closed with a summary discussion around strengths and weaknesses with the practice and possible
improvements.

Theduration of the data collection sessions varied between 30 minutes for the interviews through 45 minutes for the
focus group at Company C and 2 hours for the focus group at Company A. The reason for the short focus group session at
Company C was limitedvailability of the participants, which also meant that only project architects were present at this
session. The longer meeting duration for the focus group at Company A allowed for more individual reflection time and
jointly constructing an overview of ¢trequirements flow using pestotes producethdividually by the participantand
then presented and jointly discussed

4.2.3 Data Analysis

The audio recordings of the focus group sessionstlamdhterviews were transcribed. The focus group sessions were
transcribed by the notiaking researcher and checked by the moderating researcher. The interviews were transcribed by
the interviewing researcher.

The transcripts were coded using a serplorabry coding approachsinginitial codes based on the research questions
e.g. main requirementsactivities involved artefacts and roles. For each transcript the coding was performed by one
researcher and reviewed by anotfidrese codes for artefacts amwdes were used to construbediagrams depicting the
flow of requirements informatiofor each casesee Figire1, 2 and 3

Finally, a crosscase analysis was perfoech per research questiotisough comparative analysis of the full set of
empirical daa usingthe existing codingo locate parts of the transcripts concerning similar togits analysiswas
performed bycomparing the use of the TCR practice between the compéméesby identifying commotihemesandthus
synthesizing the findings @fur multicase study-or examplefor RQ1while analysing how the TCR was applied similar
benefis and challenge wereidentified thusenabling comparing and contrasting the pros and cons of the practice between
casesSimilarly for RQ2,a set of varyindacets of the practice emerge#hile analysing the variations between the case
companiegoncerning how thegpply the TCR practice

Full traceability was maintained from the transcript through the caatidgnto the reporting, i.e. this articl@his is
denoted by references from the results to the empirical data, using the Normmesh where N is company A, B or C), and
chunk mm. These traces were also used for reviewing and validating the reported results against{@wrdaént to
reviewers: the chok information will be removed in tlimal version to ease thiaformationload on the reader.)

4.2.4 Reporting

As a first step of reporting the results of the newly collected data, a summary was produced per transcript peuctured
main requirementsctivity. This summary was sent to the participants to review and contribute with possible additional
information or correctionsThe results fronboth from bothiteratiors were mergedo providing a uniform story of TCR
for the three case companies.

In order to onvey the rich data concerning the requirements information flows derived from the focus group sessions
we decided to visualise these flows using the FLOW notation by Stapel and Schneider{B8I2gason for choosing
this notation is that it is designéd convey communication situations and patterns, ratheratharmal processThe
notation conveys the use of badbcumented (solid) informatioand un-documented (fluid) informatigrof which the
latter in particular plays an important role wittagile developmentinformation storage is represented by a document
symbol for solid information, and a smiley for fluid, o-dacumented information, sé&@ble 6 Fluid information storage
is typically a role or an individual, we also use it to denote a functiordevglopment tearo indicateall the roleswithin
a development teanThe flow of fluid information is denoted by a dashed line, while a solidifinesed to represent
communication of solid information

Table 6. The notation used to illustrate the requirements flows for the case com{zaei&zectiod), based on FLOW notation

State of Storage Information Flow

Information

Solid -

(documented) <Cor'1tent>

(optional)

<Artefact>

Flud — (P0) e >

(undocumented)] <Cor‘1tent>
<Role or (optional)
Function>

Activity consuming &/ .
producing information <Activity>

Grouping of entities

Sm———

Grouping of roles T <N>
involved in <N> (main
requirements activity)

Note: Information to/from groups flows
to/from all entities of that group.

(Stapel and Schneider 2012).

In this paper we uslow diagramsto present inforration flow for each of themain requirementsactivities (e.g.
elicitation, validatior) and highlight the relevant entitieky encircling he people (fluidnformationstoragesjnvolved in
each requiremengctivity with adashed linesap additiorto standard-LOW notation).The information that flows to and
from a circleis shared by <he fluid information storagesvithin the circle. If a specifistorage(role or function)is
involved inaflow, e.g. produces an artefact, this is denoted by a line toffnenicon representinthat specific storage
rather tharto the circle.

Most fluid information storages drsome artefacts are duplicated and thus appear several times in the same figure. This
is to provide an overview of the requirements flow for eagin requirementsctivities Flows ketween requirements
activities is primarily denoted by connections to common artefdstdid information storaggsFurthermore, itning
aspects are not captured by the notation, e.g. different versions of an anéf@corder of activities

5 Results Applications of TCR in Practice

All of the investigated companies apply the TCR practice, however the context, extent and maturity of the practice varies.
Based on the data collectext £ach companyve will now descrite how TCR is involved ireliciting, validatng, verifying
andmanagng requirementsandin documening the agreement with the customEor each case company the application

of TCR for software development is described. In addition, for Company C the TCR practice was also found to be used for
API developmentThe requiremest flow for each case conteist depicted irFigure 11 Figure 4based on the FLOW
notation(Stapel and Schneider 2012). Tir@ationshows the flow of nolocumented (fluid) and artefabased(solid)
requirements communication, see Sectid.

5.1 Company A: TCR as a De Facto Practice

The test cases have become the de facto requireragi@empany A sincehe most extensive set of requirements are
documented as tesases as part of the testing process [A21i&. once the requirements details have been implemented
[A21:58].The test cases consist of a combination of unit, function and system level test cases produced by the system
testers, the developers and the system architects [AZh8%e test cases are kept updated [A21:66, 67ar&lre the

most accurate requirentsrdocumentation [A21:69, 92Dther requirements documentation, ¢hg.product requirements
specificationis not maintained past the initial implementation stage [A21:52, Biéé same basic process was identified

in both iterations of our studyAn overview of the requirements flow is shownHigure 1.

The €st cases provide valuable requirements information [A21:81] and are used to understand product details [A21:10,
73] by product managergith technical competend@21:15, 16, 19, 20, 73] and raevithin development, such as system
architects and developers [A21:8,9, 10]. pheo duct manager sai d: 61 read test ¢
actual | y woThé&tesbcadestabddousedsal a source of requirements informatiogelecting the test scope
for integration of new featurd$21:74] and for analysing the impact of changes [A21:21].

At times the test results are used in the requirements communication, in particular concerning unspecified quality
requirementsSenior engieersand developerthenview the test resulf@nd if they agree to the test outcome, it become
arequirementhat is included in the test cagé21:30, 82.

This calocated organisation finds TCR to be an efficient way of managing requirements (Adgdtedses the number
of documents to maintain atldusthe overhead of coordinating RE and testing [A21:88& lack of formal requirements
is only experiencd as a problenwvhentest casealidity is questioned, e.g. when a tists. Ther e qui r ement 6 s mo
and priority, which is not documented, theave to be rénvestigatedMC?2). Thenavigation of theestcasé r e qu i r e me nt
is simplified by similaistructuring in test cases and source code [Al:3®fofluct manager suggested that the descriptions
noted in the test cases of the verified use case and (sometimes) its motivation could be extracted and thereby be made mor
readily available to the devaggment project§CC1)[A21:87]. This is useful requirements information and could possibly
be extended and replace other artefacts [A21:87].

Implementation is managed in a Scrike way with a backlog prioritized by thgroduct manager from which the
development project select work items based on priority, cost and feasibility [A21:42]. The backlog contains new
requirements, issues and change requests, which are all handled in a similar way.

INn:mm refers to interviewee or transcript Nn (where N is company A, B or C), and chunk mm. These references provide
traces from the presented results to the empirical @temment to reviewers: the chunk information will be removed in
thefinal version b ease thénformationload on the reader.)

Venflcatmn

E
,,
v \\
/ \
s \
/ \
/ \
i

Architectural
/ System Product
doc ! - \
/ architect manager \

]
y

Elicitation & Test results / Developer \
’ — % Valldatlon Implementation --- He facto reqts Syst.em \i
v e p : Architect i
1 A A v K
1 - 5 /
Ptroiluct : System iject System
STrateey : Requests, . v, ______ t §§t_E[_ . _rr_la_n_ager *‘ Tester ,’.1("‘3
i needs.” :’ . SN T AT N ¥ T 3
1 - A |
L~/ ! T ' . . R T N S » lestscope .~ :
Business : - '~i @takeholder 'Sr englneer, Developer' : selection ;
plan | ““‘*-_'"""' ::_'___-_'_‘._ ________ - Test
i Ve e R e, . cases
(PRSI pereenenen 3 g Impact
1 * N A .
Roadmap ! Product Backlog ana!ysw
— i Svstem ‘
| ~MANAEET architect - "
1 e —— N o M/ TR
L~ *
Project | X Softv?rare
! design
1
1
1
1
1
1
1
1
1
I

f ':
‘]
i I
“\ “‘
\ Project / Issue

%, manager @ System reports
tester ./ @

Developers -

RO - Change
Managing changes requests

Figure. 1. Overviewofe qui rement s fl ow f or C o nNotatiorydeséribed injSectisdliict dev el

51.1 Elicitation and Validation: Company A

Early and very higHevel requirenents are documented by the product managbusinessplan productstrategy and
roadmap documen{#\21:13], who also creates a project order and a product proposal [A2Th8]requirements are
then detailedin close collaboration between project rol@EB1?), i.e. integrated with software design [A21:34],
implementation, and testing [A21:48]his is believed to be due to havimgtrong testing competenagthin the company,
but no RE-specific role or competenq&C3) [A2:50]. Instead the product maager acts as the proxy for market and
customers with whom the developmemar roles have no direct conta(EC2) During development, direct
communication between the product manager and the developeentoles is the main requirements communication
channel[A21:89] complimented by a higlevel product requirements specificatiproduced by the project manager
[A21:3] and architectural artefactseated by the system architect during software dgsigh:34]. These architectural
documents include an owéew of the software architecture and functional descriptions of the product, and represent a
contract between the product manager (who orders the product) and the developing project (who implements it) [A21:34].
Thus the architectural documegtantain equirementselated information

Customer input is sought for complex functionality, through interviews and direct communloetifegen stakeholders
and senioengineer$A21:40, 58]. The highrequirementsevel providesthe development engineers witkedom to design
innovative solution§EB4), which the system architect believlas led to producing very creative products [A21:48].
However communicating these details to system tesBnghallenging(EC4) [A21:49] and kck of requirements
information forces testersto elicit further requirements, primarily from working softwg#21:30, 37]. Thet e st er s 6

2EBn, ECn, VBN, VCn, TBn, TCn, MBn, MCn, CBn, and CCn dermeefits and challenges common for the case companies. These
are presented in Sectiénl and traces provided here for supporting cross referencing to the results.

requirements understanding of functional and, in particular quality requirements, is primarily obtaieeztuting the
source cod¢A21:82] and the documented as test cases [A21:88, 69. Thus, alack of requirements documentation
during implementatioiis compensated by develogester interactionsn particular when the test case requirements fail
[A21:38, 65].

Similarly, requirements are vdatedthrough close interaction between ro{&81), in particular between the product
manager, systems architects, developers and testers3[A237,55, 93. For complex functionality, customeise
providedwith working softwardor which theyprovidefeedbackand validatiorfA21:40, 58 76].

5.1.2 Verification: Company A

Theproductrequirements specification [A21:32, 33, 64, 69, 70] and the architectural documents [A21:29, 31, 49] provide
input to the testers in designing test cases. However, duecaeonpleteness, inaccuracy and unavailability of this
requirements information, additional work is required to identify the full and correct requirements necessary to verifying
the produc{VC2) [A21:41, 49, 64, 66, 71, 84, 92, 93]. In addition, documegnli@Rs as part of the testing process makes
verification uncertain since the requirements are less formal and more vulnerable to being changed as part of updating test
cases [A21:71, 84]. Manual system tests [A21:82, 85] and automated function andtsiiA2&<35] are used to verify
the implementation. The function test cases are used by the system architect in selecting the test scope when integrating
new functionality(VB1) [A21:74]. The company wants to increase the use of automatic testing sinsatbi efficient
[A21:86] and less prone to variability in testing due to who performs (V&) [A21:79].

When implementing a change, test cases for the affected software areas provide an executable specification for verifying
that the legacy functiomai t y i s intact [A21:21, 72, 82] . (WVBi)esuppo@sR pr a
efficient regression testing of the many products basect

5.1.3 Tracing and Managing Changes Company A

Requirements changes can be proposedipyeoject roleghrough achange requests [A21:163, while issue reports are

used for maller changes [A21:15T est cases are used limnetproduct manageéo analy® the impact ofssue reports and

change requesi{MB4) [A21:73, 75].Even so, much time and effort is spent on discussing and identifying the actual
requirements; 6how it i s thereigeno doeuhented requicemdatéarofindtalfofther] , s
incoming issue reportfA21:77]. Thus, there is isufficient coverage ofhe full set of requirements expected by the
customer and the useiRequirementsaverage is considered during the initial test design, but not kept updated due to
weak tracingpetweenTCRs and the formgroductrequrementsspecification[Al, A3, Al:41, A2]. In addition, the test

cases lack requirementslated informatiofMC2) needed when a test case f§A&] or is updatedA3], e.g. priority and
stakeholdersThe challenge of insufficient requirements coveliaggartly mitigated by adding test cases for resolved issue
reports [A21:80]. As a product manager said: O0Thatds hec
|l ead said 6we cannot test everythingd [A21:77].

Communication of requirementhangess a challengeat Company A where requirements are not documented as test
case upfront, but rather after they have been implemeAtied¥2]. In particularthe system testers suffer from not being
aware of all changed/B1) [A21:63]. They can the not add omupdatethe correspondingest case$MB2), which then
cau®s (incorrect}est cases to fail for intended behaviour [A21:64]. In particular, this is the case for quality requirements
which are difficult to specify and communicate on paper [441:42].

The product line satp used to develop many products on the same software base causes challenges in managing
requirements variations between the produmish in general, and specifically using TCR (MC3jince the tool
infrastructure does not pport manaipg such variations in the test cag€€1) the requirements variations are currently
handled by noting these directly in the test cases, information which everyone does not read [A21:92].

Elicitation & Validation

D. R Bi-weekly meeting

Customer

Customer \ Isoftware
requirements /Product \ {behaviour
manager i | Contractual
: ’ Detailed reqts LT ..

! | ey

D A UASY) Aty By Vd
User stories & ., Devteam /¥ Software ¢ c i
Acceptance g i /l;stc;metr Dev team |

o s /Produc /

criteria / test T - " /
cases '\[nanager s

User stories,
Acceptance test
cases (in tool)

————————

Informal / \
” v \\ 1
regts ‘ i
)]
/ !

summary \ ‘ Devteam |
__ O ! ‘ '
Request for change | Developer Customer/ ; T
Customer, \ Product / Verification
Stakeholder or manager
Developer h ’

Managing changes

Figure2.O0verview of requirements fl ow f or-supmmemdehaviordrBeénslevglopnoedtuct de
Notation described in Sectigh2.4

5.2 Company B: Tool-Supported Behaviour-Driven DevelopmentTCR

Company B actively applies the TCR practice through behadiouen development supported by tosleh as Cucumber

and FitNesseThe customer and the product manggé&en the same persodgfine productind customer requirements

see Figure2 Based on these the devel opment team identify wus
interact with a customer or another systemd |[&dce77] .
acceptance criteria and acceptance test cases from these requirements [BB3t828T hese criteria describe scenarios

using a domairspecific language [B2:78]There is a close working relationship between the product owner and the
developmenteam. The product owner is available to the development teanswbaoallylocatedat t he cust omer

5.2.1 Elicitation and Validation: Company B

Requirements are elicited throudinectly communication betweednusines&ndengineeringolesaroundacceptace test
caseqEB1)[B1:46, 86].Requirements validity is ensured biyweeklymeetinggB1:27] through whichthe customer and
theengineering ol es Ounderstand each ot her evenEB)B8 U AwWworking ar e
version of the software was mentionedwthersupporting tfs interaction [B3:32]. The communication is also facilitated

by the engineers adapting higher and less technicaldéeeimmunicatiorjB3:7] andadapthgto domain terminology in

the code design (for the test casgBP:68]. Furthermore, the specific format used for requiremeaited the technical
discussion to a more conceptual le¥elcommunicatingnore about needs and go#ian about solutiond&EB3) [B3:82].

Thiscommunicatiorevel wasseerto enable nottechnical experts participate in the elicitatiore.g. usability designers
[B3:82]. Howevergcustomers find it hard to be fluenttime structured format for acceptance critéE@3)[B3:77], similar
to a domairspecific knguage

The elicited requirementare primarily documented as acceptance test cases in a tool. Interviewee Bl stated that the
clarification of requirements and specification of test
They concretized wh%tincamplexcasetECadinfadmalls@rimark$Hare also produced [B1:90].
The interviewees described that acceptance testaasesefuls a system specification. However, interviewe@BRated
thatthey arenot fully standalone, i.e. the documentatenan be read O6to get an | mpress,]|
means, you look at the implementation [B3 : 51]

Over time the company has achieved active customer involvemdrdffective requirements commurioa with this
practice(EB1, EB2) despitechallengs to ensurehis involvement and h a t [customer and development teaspoke
t he s ame (ECY[R3HLIatarviedvee Bl said that active business involvement strengthens requirements validation
and ensues acommon view of requiremen{&B2) [B1:94].

Similarly, it is a challenge tget business roles to weibr revie the user stories or the acceptance test ¢&se2), in
particularly directly in the toolfB3:84]. Interviewee B1 believetis requirestechnicalskills (EC3) [B1:97]. This may
also be due to the customer not tinggthe technical systenm seeing the value in working on the same requirements base
[B3:80]. However, the added benefit of customer directly editing requiremehtdiéed to be smaller than the cost of
training them to do thi$B1:97]. The company lsalso experienced issues with setting up common access across networks
[B1:97].

The interviewees see that customer competence affects the commuraaatilba requirements picture produced with
this practic EC3)[B3:25]. In particular,norttechnical customers seldom focus on quality requiren{&tg) [B3:24].
In contrast, engineers find it hard to match Hig¥el requirements to the code required fooaatic test casd81:32].

Complex interactions and dependencies between reqemtstEC4), e.g. for user interfaceB]:29 and quality
requirement§B2:75], are a challenge to capture with acceptance test damesgser interfaces the issue is conngdte
the complexity of between componentsll interviewees mentioned the challenge to motivate engineers to write
acceptancéevel test cases [B2:75].

5.2.2 Verification: Company B

One of the main benefits of TCR stated by the interviewees is the strengthened alignment of business requirements with
verification of the agreed requireme#42) [B1:44, 152] and support for efficient regression tes(vig1) [B1:24, 152].

The acceptaretest cases verify that the system meets the requirethabtsereagreed as acceptance criteria [B1:44]
Similarly these test cases (connected to acceptaritaria i.e. requirementspllow for status tracking based on
requirements coverad¥B3) [B2:79].

The executable specification provided by this practice, in combination with unit tests, acts as a safety net that enables
projects to O6rebound from anyt hi ng@®Bl)whith: aBowd for lefficieritit s s u
managing bgs and performance issues. Thiakes engineers confident in frequently releasing production code; weekly
for the described project. I nterviewee B3 said that wi
[B3:4]. The setup has enableprojects to efficiently manage bugs and performance issues.

However, there are also challenges in creating automated tests and achieving a good executable specification [B1:24].
The rightbalance between acceptance and unit test cases needs to be foumd. ni ewee B3 described
many acceptance criteria that deal with smaller things
Furthermore, dr quality requirements there is a challenge in automatically testing perforraancether quality aspects
on actual hardware and in a live testing environnfeéat3) [B1:77].

5.2.3 Tracing and Managing Changes Company B

The alignment of business and technical aspects throughiF€iRported when managing requirements changes by the
use ofacceptance test cases as formal requirem@fiB8) [B2:43, B3], thus having implicit requirementsst traces
(TB1). Any agreement on changes made, e.g. in face to face meetings, must be reflected in the test cases before they
become an actual chanfjddB2) andat he end of a project the acceptance tes
The support for regression testing provided by TCR (see Segtibd 0l imits the danger of
[B2:88] and thus acts as a risk mitigator when managing requirencbatggessince the impact of changes are
automatically caught (MB4B3:76].
Locating requirements information in TCRs, e.g. when performing impact analysis for a requirements change, can be
hard for badly structured acceptance test c@gsl). This requires tacit knowledge [B3:72] without which it is time

consuming to locate the neigements. Interviewee B3 suggested that the tools could be extended to support searching for
certain logic rather than just syntax.

Maintenance of the acceptance test cases is an issue that needs to be considered when applying tfid pEititice
B3]. Interviewee B3 pointed out that test cases are more rigid than requirements and thus more sensitive to change [B3:72].
The same issue surfaces when new requirements affect old ones or when requirements misunderstandings are detecte
resulting in updates tihe (old) acceptance test casdsus, there is a risk of deteriorating test case quality and subsequently
also to requirements quality when testers make frequent fixes to get the tests to pass [B2:90].

Interviewee B1 described that when an acceptantedss fails an engineer analyses and discusses this with a business
role, ideally the one originally involved [B1:47]. However wharger changes are needed interviewee B3 had experienced
that this was best handled by the developer themselves usingeregnis documentation in the form of the existing test
cases and the informal requirements summaries to guide them in revising the requirements aspects of the acceptance criteri
(MB3) [B3:64].

5.2.4 Customer Agreement: Company B

Theagreed requirementidcumengdas test casese seels a contract between the customer and the development project.
If the custometaterproposes conflicting requirementke originally agreed acceptance test casegthen benreferred
(CB1), thus supporting the project in thestomer dialogB3:7].

5.3 Company C. Failed Story-Test Driven TCR and Stand-Alone Manual TCR

The TCR practice was introduced as parthef agile transition that was ongoing in 2009/10, however our reinvestigation
shows that the practice is limited to tle@f<ertification of customer requirements and for internal APl development (see
Section5.4). For software development in genethk only aspect 6fCR found tobe applieds as support for regression
testing where test cases are viewed as requirements documentatiegdoy functionalityThus, test cases are not used
as requirements during development of new functiondlitye initial intentionwasto definerequirementss user stories
and acceptance test cagathin a team consisting of a product manager, developers and tésteeptance criterisvere
tospeci fy O6how t he andlbedocuméntedy tedtersvsoacckpbance € gases tracedser stories.
Anotherteamwas tomaintain the software including the user stories, test cases and traces. Integrating the differing
characteristics and competences of RE and testaggeen as a major challenge (C5, CI®ol support foiintegrating

RE aspecti the test cases waseadfor notingrequiremensource connectionsdependenciesind validity for different
products (C5).

The current requirements flo@ghown in Figure 3partly corresponds to the optanned although user stories arsbt
cases are no longer defined upfront and the planned tool sdippoannecting these artefadtas not been put in place
(TC1) [C21:2] and was mentioned as one reason for foby implementing TCR Despite being a large company,
requirements communication is primarily managed through informal communiegétiothe development tearatthough
complemented by documentatjosee Figure 3. Documentation is primarily used internally for scoping ofléngh
requirements, and towardsistomers to agree on requirements for which customer requirements specifications and
requirements compliance documents are used. In additiorg sustomers provide a certification test suite that is to verify
support for t he c Lntemaltynfeatu definitieng andsereimerface specifications are used as
requirements documentation by the development teams. For large and complex ceptmifier requirements, the
development teams have direct communication with the customers tg alatitletail requirementghis interaction often
also involves providing the customer with working software.

During implementationilgh-level requirements are detailed by the development team in collaboration with the product
owner and a usability designeThese detailed requirements are implemented and function and unit tested by the
developers. Once the software is integrated into the software product line it is systerartéstericustomer certification
test suite is executed

The mainreason for mowg away from the TCR practicenentioned by a senior systems architect, is a shift in priority
from quality to speeflC21:31, 61]. Faster software update channels enable the compéngtot f ast, fi x t h.
g ui c[&21:g1Pandfrequently relese new and improved software to the marketaddition the development teams are
freer now to decide for themselves how they work [C21:32] with little documentation mandated by the development process
[C21:64] which has resulted in the current process

Figure 3.Overviewo f r equi rements fl ow for the soft wa otationisdesalihe¢ih devel
Section 4.2.4.

5.3.1 Elicitation and Validation: Company C

Development teams elicéind validaterequiremerg in close collaboration witla product managefEB1) [C21:16,32].

The formal input consists af onepage documenféaturedefinition) describing the business case andleyel scenarias

and for customer functionality there is a higlhrel ausomer requirements specificatif@23:8]. This high level of formal
requirements input (often at vision level) [C21:32] provides the development teams with freedom in detailing requirements
and encourages them to contribute with their creatiff4). Further input iselicited through $akeholder analysis

[C21:10, 51, interviewswith users [C21:7hnd direct interaction with customersdditional requirements are identified
throughout the development lifgycle in an exploratory fashion [C21:7,12,851] , and &édi scovered wl
[C21:7] rather than defined upfront before design [C21TB& product manager role is vital in facilitating the exploratory
requirements elicitation, but the role requires a combination of technical and busioetedge which is hard to fi{EC3)

[C21:11, 50]. The requirements are validated by customers and other stakeholders by using working software [C21:58].
Sever al participants stressed that it idslebpédmsienan[dO2]
This would require the stakeholders to be able to express their requirements as t¢EGH$ER1:56].

The development team produce a user interface (Ul) specification [C21:16, 34, 43], and unit testlicesestinthe
implemented requirement®efiningtest cases for user interactions was mentioned as a challeEdgHC21:15]. Rather,
the Ul specification is seeby the development teaas6 o u r requirements document e t
devel op me ntlbeithi§ dimentdshdt usAd to communicate requirements outside of the developmgent team
althoughitwassuggesit o 6be a good st art Thilack ofcequmamentsaaumenmtagaon eadf C2 1
to a large amount of questions from teaxternal roles concerning how the software is supposed to work, i.e. the
requirements [C21:47], more questions than they can answer [C21:48]. However, the participants do not see this as a
problem but rather an opportunity to elicit future requirementscbasehis feedback [C21:48].

Concerningcommunicating requirements through TGBme participants believed they copld ovi de 06s o me |
understandd detail ed r e cgheiechricaleaccoustmn@geidi: @ 6da teésthoauaghe i
read as a requirementd and it &t arkeeosu il rieABg@ehRurtheomore,mtke r st a
systems architect pointed outttlat dedi cated tester with Ilheasrsd ctodmen gt oe xfipre
functionality fr (E@3)[CIH.E7] [Thus) jautomatedstes] casesaaljairé a certain level of technical

