
Preprint of paper accepted for publication in Information and Software Technology, Volume 77, Sep 2016, Pages 61ï79

A Multi -Case Study of Agile Requirements Engineering and

the Use of Test Cases as Requirements

Elizabeth Bjarnason1, Michael Unterkalmsteiner2, Markus Borg1, Emelie Engström1

1Lund University

SE-221 00 Lund, Sweden

FirstName.LastName@cs.lth.se
2Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden

mun@bth.se

Abstract.

[Context] It is a conundrum that agile projects can succeed ówithout requirementsô when weak requirements

engineering is a known cause for project failures. While agile development projects often manage well without extensive

requirements, test cases are commonly viewed as requirements and detailed requirements are documented as test cases.

[Objective] We have investigated this agile practice of using test cases as requirements (TCR) to understand how test

cases can support the main requirements activities, and how the TCR practice can be varied.

[Method] We performed an iterative case study at three companies with two data collection periods. One in 2009/10

with 12 interviews and one in 2015 with 2 focus groups and 2 interviews.

[Results] Using test cases as requirements poses both benefits and challenges when eliciting, validating, verifying,

and managing requirements, and when used as a documented agreement. We have identified five variants of the TCR

practice, namely de facto, behaviour-driven, story-test driven, stand-alone strict and stand-alone manual for which the

application of the practice varies concerning the time frame of requirements documentation, the requirements format,

the extent to which the test cases are a machine executable specification and the use of TCR-specific tool support.

[Conclusions] The findings provide empirical insight into how agile development projects manage and communicate

requirements. The identified TCR variants can be used to perform in-depth investigations into agile requirements

engineering. The provided recommendations can be used to guide practitioners in designing and improving their agile

requirements practices based on project characteristics such as number of stakeholders and rate of change.

Keywords: Agile development, Requirements, Testing, Test-driven development, Behaviour-driven development,

Acceptance test, Case study

1 Introduction

Agile development methods strive to be responsive to changing requirements by integrating requirements, design,

implementation and testing processes (Sommerville 2005, Layman 2006). Face-to-face communication is prioritised over

written requirements documentation and customers are expected to convey their needs directly to the developers (Beck

2001, Ramesh 2010). However, weak customer communication in combination with minimal documentation is reported to

cause problems in customer participation and with scaling and evolving software for agile projects (Ramesh 2010).

Requirements specifications are used for different purposes and support the main requirements activities of eliciting and

validating stakeholdersô requirements, software verification, tracing and managing requirements, and for contractual

purposes by documenting customer agreements. We use the set of main requirements activities for which the requirements

specification plays a role as identified by Lauesen (2002). Requirements are used to communicate with stakeholders, to

drive design and testing, and to serve as a reference for project managers and in the evolution of the system (Davis 2005).

Due to the central role of requirements in coordinating software development, there exists a plethora of research on

requirements documentation with varying degrees of formality depending on its intended use. This spans from formal

requirements specifications (Lamsveerde 2000) and requirements models (Pohl 2010), over templates (Mavin 2010) to

user stories (Cohn 2004), and natural language specifications. Formal requirements specifications can be automatically

checked for consistency (Heitmeyer 1996) and used to derive other artefacts, e.g. software designs (Dromey 2003) or test

http://www.sciencedirect.com.ludwig.lub.lu.se/science/journal/09505849
http://www.sciencedirect.com.ludwig.lub.lu.se/science/journal/09505849/77/supp/C

cases (Miller 2012). Less formal requirements documentation is driven by heuristics and best practices for achieving high

quality requirements (Davis 1993).

The coordination of evolving requirements poses a challenge in aligning these with later development activities

including testing (Uusitalo 2008, Bjarnason 2014). In a previous study we identified the practice of documenting detailed

requirements as test cases, i.e. using test cases as requirements (TCR) as one of several industrial practices that addresses

this challenge (Bjarnason 2014). In this paper, we investigate TCR further for the three case companies (of six) from our

previous study that explicitly mentioned this practice. In this paper we discuss how TCR may support requirements

engineering (RE) by investigating the following:

RQ1 How can test cases of the TCR practice support the main requirements activities, i.e. elicitation and validation,

verification, managing changes, and for contractual purposes (Lauesen 2002) and thus fill the role of a requirements

specification? In particular, what are the benefits and the challenges of this approach?

RQ2 What variations are there in applying the TCR practice?

Intermediate results for these research questions can be found in (Bjarnason 2015a) for the same three case companies

based on 12 interviews from a previous study. For this paper, additional data was collected through two focus group

sessions and two (new) interviews. In particular, we followed up on two of the three previous reported cases, one of which

was a (previously) planned implementation of TCR. For this paper, further cross-case analysis and synthesis of the full set

of data has been performed. We report two additional variants of the practice (stand-alone strict and stand-alone manual),

and also depict the requirements flows for each case company.

The rest of this paper is organized as follows. Section 2 describes background and related work. Section 3 presents the

case companies and Section 4 the applied research method. The results are reported in Section 5 and discussed in Section

6 where the research questions are answered. Finally, the paper is concluded in Section 7.

2 Background and Related Work

While requirements engineering (RE) and testing are traditionally viewed as two separate processes, the TCR practice

studied in this paper is an example of a practice where the activities of these two processes are performed concurrently

(Lawson 1994). The work presented in this paper stems from research into the coordination and alignment of RE and

testing (RET) for software development in general including traditional development. In addition, our work relates to the

agile approach of integrating the RE activities with those of testing. We will now describe these two related areas of

research.

2.1 Requirements Engineering and Test (RET) Alignment

Coordinating and aligning RE and testing is a challenge within software development projects. This challenge relates to a

range of issues including organization, process, people, tools, requirements changes, traceability and measurements

(Bjarnason 2014, Sabaliauskaite 2010). Alignment methods have been studied from the perspective of linking information

between people and/or documentation using mechanisms of varying formalism and complexity (Unterkalmsteiner 2014).

Industrial practices in this area include traceability, model-based approaches and increased communication, e.g. by

involving testers in requirement reviews (Bjarnason 2014, Uusitalo 2008). Similarly, in requirements-driven collaboration

there is close communication between requirements and testing roles; key roles which when absent cause disruptions within

the development team (Marczak 2011).

We previously investigated RET alignment through a large interview study at six development companies (Bjarnason

2014). The results include 10 main challenges and 10 categories of practices. Examples of RET challenges include aligning

goals, requirements specification quality, maintaining alignment during changes, and outsourcing testing. The main

categories of RET practices include change management, tracing, tools, and metrics. The RET study identified four high-

level factors that affect RET alignment. These factors are the human aspects of development, the quality of requirements,

the size of the development, and the incentives for implementing alignment practices. The human side of development

including communication and coordination is vital for alignment in general, so also between requirements engineers and

testers. Further, the quality and accuracy of requirements is a crucial starting point for testing the produced software in-

line with the agreed requirements. In addition, the size of the development organisation and its projects is a key variation

factor that affects which challenges that are faced and which tools and practices that are suitable. Finally, the incentive for

applying practices such as good requirements documentation and tracing vary. For companies with safety-critical

development this incentive is externally motivated, while the motivation is purely internal for non-safety critical cases.

This internal motivation for RET practices is often weak due to low awareness of the cost vs. benefit of RET alignment.

2.2 The Agile Approach of Integrating Requirements Engineering with Testing

In agile development requirements and tests can be seen as two sides of the same coin. Martin and Melnik (2008)

hypothesize that as the formality of specifications increases, requirements and tests become indistinguishable. This

principle is taken to the extreme by unit tests (Whittaker 2000) where requirements are formalized in executable code.

Practitioners report using unit tests as a technical specification that evolves with the implementation (Runeson 2006).

However, unit tests may be too technical for customers and thereby lack the important attribute of being understandable to

all relevant stakeholders.

Acceptance tests are used to show customers that the system fulfils the requirements (Hsia 1997). However, developing

acceptance tests from requirements specifications is a subjective process that does not guarantee that all requirements are

covered (Hsia 1997). This is further complicated by requirements documentation rarely being updated (Lethbridge 2003),

leading to potentially outdated acceptance tests. In agile development, automated acceptance tests drive the implementation

and address these issues by documenting requirements and expected outcomes in an executable format (Ramesh 2010,

Haugset 2008). This agile practice is known, among others, as customer tests, scenario tests, executable/automated

acceptance tests, behaviour-driven and story-test-driven development (Park 2010).

Some organisations view and use the automated acceptance tests as requirements thereby fully integrating these two

artefacts (Martin 2008). Automated acceptance tests are used to determine if the system is acceptable from a customer

perspective and provide the basis for customer discussions, thus reducing the risk of building the wrong system. However,

more technical communication might be needed which requires technical insight of the customer. Melnik et al. (2006)

found that customers in partnership with software engineers could communicate and validate business requirements

through automated acceptance tests, although there is an initial learning curve.

The conceptual difficulty of specifying tests before implementation (Causevic 2011, George 2004, Janzen 2007) led to

the conception of behaviour-driven development (North 2006). This approach incorporates aspects of requirements

analysis, requirements documentation and communication, and automated acceptance testing. The behaviour of a system

is defined in a domain-specific language; a common language that reduces ambiguities and misunderstandings. This is

further enhanced by including terms from the business domain in the domain-specific language. Solis and Wang (2011)

reviewed the available literature and a number of tools for behaviour-driven development in 2011. They found that the area

was still under development and that the domain-specific languages supported by the tools limited the requirements

expressiveness.

Haugset and Hanssen studied acceptance test driven development (ATDD) as an RE practice and report on its benefits

and risks (Haugset 2008). Our work extends on this by also investigating companies that use the TCR practice without

applying ATDD principles.

3 Case Companies

The three case companies all develop software using an agile development model. However, a number of other factors vary

between the companies. These factors are summarised in Table 1.

Table 1. Overview of the case companies.

Company A B C

Type of company
Software development,

embedded products
Consulting

Software development, embedded

products

#employees in software

development
250

(125-150 in 2009)
135 1,000

#employees in typical

project
10 Mostly 4-10, but varies greatly

Product projects: 400-500

Feature projects: 3-15

Distributed No No Yes

Domain / System type
Computer networking

equipment
Advisory/technical services,

application management
Telecom

Source of requirement Market driven Bespoke Bespoke, market driven

Main quality focus
Availability, performance,

security
Depends on customer focus Performance, stability

Certification Not software related No ISO9001
Process Model Agile Agile in variants Agile with gate decisions
Project duration 6-18 months No typical project Previously: 2 years
#requirements in typical

project
100 (20-30 pages HTML) No typical project 2,000-3,000

#test cases in typical

project
~1,000 test cases No typical project 15,000

Product Lines Yes No Yes
Open Source SW Used Yes Yes Yes

3.1 Company A

Company A develops network equipment consisting of hardware and software. The software development unit covered by

the interview study had around 150 employees in 2009 and grew to 250 employees in 2015. The company is relatively

young but has been growing fast during the past few years. A typical software project has a lead time of 6-18 months,

around 10 co-located software developers and approximately 100 requirements and 1,000 system test cases. The company

has a mature agile development process with a strong focus on testing. A market-driven requirements engineering process

is applied. The quality focus for the software is on availability, performance and security. Furthermore, the company applies

a product-line approach and uses open-source software in their development of closed-source products.

The participants from Company A consist of three interviewees from a previous study and five focus group participants.

The interviewees were a product manager, a project manager, and a tester, see Table 2. The focus group participants

consisted of two product managers, a systems architect, a technical project manager and a tester, see Table 3.

Table 2. Interviewees per company selected from a previous study: roles and experience. For Company B, software

developers also perform RE and testing tasks.

Legend: Experience in role noted as S(enior) = more than 3 years, or J(unior) = up to 3 years. Only interviewees mentioning the

TCR practice were included in this study, these are marked with bold.

Role A B C

Requirements engineer C1:S, C6:S, C7:S

Systems architect C4:S

Software developer B1:J, B2:S, B3:S C13:S

Test engineer A2:S C9:S, C10:S, C11:J, C12:S, C14:S

Project manager A1:J C3:J, C8:S

Product manager A3:S

Process manager C2:J, C5:S, C15:J

3.2 Company B

Company B is a consultancy firm that provides technical services to projects that vary in size and duration. Most projects

consist of one development team of 4-10 people located at the customer site. The company has applied agile development

practices for more than a decade and are active in the agile community. The requirements are defined by a customer

(bespoke).

The three consultants that were interviewed at Company B can mainly be characterised as software developers, see

Table 2. However, they all typically take on a multitude of roles within a project and are involved throughout the entire

lifecycle.

Table 3. Participants in focus group for Company A. Participant ids A21.n where A21 denotes the focus group session

and n the participant in that session.

Roles Experience (years)

Current Previous Current role Previous role At company Total

A21.1 Product manager Systems architect 1 7 18 20

A21.2 Product manager Business manager 10 2 13 30

A21.3 Systems architect Software developer 5 10 19 25

A21.4 Technical project manager Software developer 2 10 5 12

A21.5 Tester Tester 5 3 8 10

3.3 Company C

Company C develops software for embedded products in the telecommunications domain. The software development unit

investigated in this study, consists of 1,000 people. At the time of the initial interviews, the company was transitioning

from a waterfall process to an agile process. Product projects typically run over 12-18 months and include around 400-500

people, while software features are developed in smaller sub-projects consisting of around 3-15 people. The projects handle

a combination of bespoke and market-driven requirements. Including the product-line requirements, they handle a very

complex and large set of requirements.

Six (of fifteen) interviews from a previous study were relevant to include in this study. These interviews were with one

requirements engineer, two project managers, two process managers and one tester, see Table 2. Additional interviews

were held with one systems architect and one account manager at Company C, see Table 4. Furthermore, six software

architects participated in a focus group session. These software architects represent six software development teams, or

feature projects, that develop software ranging from high-level user applications to software utility functions. The user

applications aim to release new software updates every 6 weeks while the utility functions are more tightly coupled to the

hardware and product releases, which have a 6-monthly release cycle. These feature development projects range in size

from 3 to 15 project members.

Table 4. Characterisation of participants in focus group (C21) and interviews (C22, C23) for Company C in iteration 2.

Data collection entity Roles
Experience (years)

Current role Total

C21 Focus group 6 software architects 2-10 5-20

C22 Interview Systems architect 9 20

C23 Interview Account manager 12 30

4 Method

The motivation for this research springs from our previous study on practices used to align RE and Testing (RET)

(Bjarnason 2014), one of which is the use of test cases in lieu of detailed requirements documentation. In order to gain an

in-depth understanding of this practice, we performed a case study in two iterations using a flexible exploratory case study

design and process (Runeson 2012). This approach allowed us to explore and compare variations of the practice found in

the three case companies. In the first iteration we analysed interview data collected during 2009/2010 as part of our previous

study where a wider set of RET practices were identified. The purpose of the first iteration was to gain an understanding

of how the TCR practice is applied in industry; its benefits and challenges. The second iteration was performed based on

the outcome of the first iteration, in particular to follow up and further investigate the situation for the two case companies

for which the practice was less mature (Companies A and C) and to complement the (more extensive) data available for

Company B. We collected additional data through focus groups and interviews for case companies A and C during the

Spring of 2015 to see if the practice had changed or matured, and to investigate the implementation of TCR in more depth.

For each of the two iterations, a case study process (Runeson 2012) was applied consisting of four stages: 1) Definition &

Planning, 2) Data selection/collection, 3) Data analysis and 4) Reporting. An overview of the method for each iteration is

shown in Table 5.

Table 5. Overview of the applied case study process for each of the iterations.

First iteration Second iteration

Definition and Planning

RQ1. How can test cases of the TCR practice support the main requirements activities, i.e. elicitation and validation,

verification, managing changes, and for contractual purposes (Lauesen 2002) and thus fulfil the role of a requirements

specification? In particular, what are the benefits and challenges of this approach?

RQ2. (1st version) Why and how is the TCR practice

applied?

RQ2. What variations are there in applying TCR in practice?

Data Selection / Collection

Selected relevant interview data from previous study (Bjarnason 2013) for Companies A, B and C. In total 12 semi-

structured interviews.

 Collected additional data for Companies A and C through 2

focus group sessions and 2 semi-structured interviews.

Data Analysis

Word-by-word transcripts Transcriptions

Descriptive coding and clustering into benefits and

challenges

Semi-exploratory coding based on Lausenôs set of main

requirements activities (RQ1), and roles and artefacts in the

requirements flow.

Triangulation applied by (at least) one other researcher reviewing each transcription and coding.

Transcripts reviewed by interviewee. Summary of transcript reviewed by participants/interviewee.

 Cross-cases analysis

Reporting

In Bjarnason 2015a In this paper

4.1 First Iteration: Initial Exploration

In the first iteration we analysed existing interview data from our previous (wider) study of industrial practices in aligning

RE and testing (Bjarnason 2014). For the current paper, we analysed the interview data relevant to the TCR practice in

more detail. This iteration consisted of defining research questions, selecting data, analysing this data and reporting of the

results in (Bjarnason 2015a).

4.1.1 Definition of Research Questions and Planning.

Since we are interested in how agile development can be successful ówithout requirementsô we selected to investigate the

practice of using test cases as requirements. We formulated the research questions, (RQ1) How can the test case of the

TCR practice support the main requirements activities? and (RQ2, 1st version) Why and how is the TCR practice applied?

4.1.2 Data Selection

We selected to use word-by-word transcriptions from our previous study of RE-Testing coordination (RET), which also

included agile processes. The research questions of this iteration are within the broader scope of the previous study on RET

(Bjarnason 2014), i.e. the previously collected data contains information relevant to these questions. Furthermore, the semi-

structured interviews provided rich material since the interviewees could freely describe how practices (of which TCR was

one) supporting RET were applied including benefits and challenges. Data selection was facilitated by the rigorous coding

performed in the previous study. We selected the interview parts coded for the TCR practice. In addition, the transcripts

were searched for key terms such as óacceptance testô and óspecificationô to further ensure that all relevant interview parts

were selected to be included in this study.

4.1.3 Data Analysis

The analysis of the selected interview data was performed in two steps. First the transcripts were descriptively coded. These

codes were then categorised into benefits and challenges and reported per case company in (Bjarnason 2015a). The analysis

was performed by the first author. The results were validated independently by the third author. The third author analysed

and interpreted a fine-grained grouping of the interview data produced in the previous RET study (Bjarnason 2014), and

compared this against the results obtained by the first researcher. No conflicting differences were found.

4.2 Second Iteration: Complementary and Focused Investigation

The aim of the second iteration was to complement the insights of the first iteration and to gain a deeper understanding of

the variations of the TCR practice. For this we collected new empirical data focused specifically on the TCR practice and

also performed further analysis of the full set of empirical data.

4.2.1 Case Study Design: Definition of Research Questions and Planning

The authors defined and planned the second iteration of this case study over a period of one month. The two research

questions of the first iteration were selected to be included also for this iteration, however RQ2 was rephrased to more

specifically focus on variations in applying TCR in practice (RQ2), i.e. how the practice is applied in different contexts.

Thus, motivation (how) for applying the practice was removed for the final version of RQ2.

We decided to gather new empirical data to complement our set of data for the two companies where the practice was

previously found to be weaker and for which there was less data in the first iteration, namely Company A and C. For

Company B there was already a substantial amount of relevant data from the first iteration. Thus, we decided to investigate

the practice further at Company A and B. This also allowed us to follow-up on the implementation of TCR that was planned

as part of the agile transition at Company C during the first iteration.

A data collection protocol was defined based on the research questions. This protocol contains questions on how TCR

was applied or could be applied to the companyôs current requirements information flow and how each main requirements

activity was fulfilled by TCR. The data collection protocol was designed and agreed jointly by the researchers and is

available on-line (Bjarnason 2015c).

The data collection method used was mainly focus group sessions due to the interactive nature of agile RE, which

involves collaboration between many different roles. A focus group allows for eliciting a holistic view of the situation from

multiple perspectives, as well as, providing value in itself to the participants through group reflection and learning (Robson

2002). Semi-structured interviews using the same data collection protocol were used as a compliment to the focus group

sessions. The data collection is further described below.

Sampling of participants was done with the aim of covering all roles throughout the life cycle from customer to testing.

However, due to practical reasons (limited time frame and participant availability) this was combined with convenience

sampling and adaptions to the data collection method. A characterization of the participants is provided in Table 3 and

Table 4.

4.2.2 Data Collection

In the second iteration data was collected from Company A through one focus group session and from Company C through

one focus group session and two semi-structured interviews. The interviews were used to investigate two additional

applications of TCR within Company C, mentioned by company representatives during the planning phase, namely API

implementation and self-certification of customer requirements.

Each focus group session was attended by two researchers; one moderator who lead the discussion and one note-taker

who asked follow-up questions when needed. The interviews were performed by one researcher. The focus group sessions

and the interviews were audio recorded after permission was granted by the participants.

The data collection protocol, available on-line (Bjarnason 2015c), was used as a guide during the focus group sessions

and the interviews. In the introduction part the participants were informed of the aim of the study, how it would be

performed, and confidentiality. The participants were then asked to introduce themselves and their role. The overall

information flow between requirements and testing including the used artefacts and involved roles was then explored. This

was followed by semi-structured discussions on how test cases can fulfil the various main requirements activities. The

meeting was then closed with a summary discussion around strengths and weaknesses with the practice and possible

improvements.

The duration of the data collection sessions varied between 30 minutes for the interviews through 45 minutes for the

focus group at Company C and 2 hours for the focus group at Company A. The reason for the short focus group session at

Company C was limited availability of the participants, which also meant that only project architects were present at this

session. The longer meeting duration for the focus group at Company A allowed for more individual reflection time and

jointly constructing an overview of the requirements flow using post-it notes produced individually by the participants and

then presented and jointly discussed.

4.2.3 Data Analysis

The audio recordings of the focus group sessions and the interviews were transcribed. The focus group sessions were

transcribed by the note-taking researcher and checked by the moderating researcher. The interviews were transcribed by

the interviewing researcher.

The transcripts were coded using a semi-exploratory coding approach using initial codes based on the research questions,

e.g. main requirements activities, involved artefacts and roles. For each transcript the coding was performed by one

researcher and reviewed by another. These codes for artefacts and roles were used to construct the diagrams depicting the

flow of requirements information for each case, see Figure 1, 2 and 3.

Finally, a cross-case analysis was performed per research questions through comparative analysis of the full set of

empirical data using the existing coding to locate parts of the transcripts concerning similar topics. This analysis was

performed by comparing the use of the TCR practice between the companies, thereby identifying common themes and thus

synthesizing the findings of our multi-case study. For example, for RQ1 while analysing how the TCR was applied similar

benefits and challenges were identified thus enabling comparing and contrasting the pros and cons of the practice between

cases. Similarly for RQ2, a set of varying facets of the practice emerged while analysing the variations between the case

companies concerning how they apply the TCR practice.

Full traceability was maintained from the transcript through the coding and into the reporting, i.e. this article. This is

denoted by references from the results to the empirical data, using the format Nn:mm where N is company A, B or C), and

chunk mm. These traces were also used for reviewing and validating the reported results against the data. (Comment to

reviewers: the chunk information will be removed in the final version to ease the information load on the reader.)

4.2.4 Reporting

As a first step of reporting the results of the newly collected data, a summary was produced per transcript structured per

main requirements activity. This summary was sent to the participants to review and contribute with possible additional

information or corrections. The results from both from both iterations were merged to providing a uniform story of TCR

for the three case companies.

In order to convey the rich data concerning the requirements information flows derived from the focus group sessions

we decided to visualise these flows using the FLOW notation by Stapel and Schneider (2012). The reason for choosing

this notation is that it is designed to convey communication situations and patterns, rather than a formal process. The

notation conveys the use of both documented (solid) information and un-documented (fluid) information, of which the

latter in particular plays an important role within agile development. Information storage is represented by a document

symbol for solid information, and a smiley for fluid, or un-documented information, see Table 6. Fluid information storage

is typically a role or an individual, we also use it to denote a function, e.g. development team to indicate all the roles within

a development team. The flow of fluid information is denoted by a dashed line, while a solid line is used to represent

communication of solid information.

Table 6. The notation used to illustrate the requirements flows for the case companies (see Section 5), based on FLOW notation

(Stapel and Schneider 2012).

In this paper we use flow diagrams to present information flow for each of the main requirements activities (e.g.

elicitation, validation) and high-light the relevant entities by encircling the people (fluid information storages) involved in

each requirements activity with a dashed lines (an addition to standard FLOW notation). The information that flows to and

from a circle is shared by all the fluid information storages within the circle. If a specific storage (role or function) is

involved in a flow, e.g. produces an artefact, this is denoted by a line to/from the icon representing that specific storage

rather than to the circle.

Most fluid information storages and some artefacts are duplicated and thus appear several times in the same figure. This

is to provide an overview of the requirements flow for each main requirements activities. Flows between requirements

activities is primarily denoted by connections to common artefacts (solid information storages). Furthermore, timing

aspects are not captured by the notation, e.g. different versions of an artefact or the order of activities.

5 Results: Applications of TCR in Practice

All of the investigated companies apply the TCR practice, however the context, extent and maturity of the practice varies.

Based on the data collected for each company, we will now describe how TCR is involved in eliciting, validating, verifying

and managing requirements, and in documenting the agreement with the customer. For each case company the application

of TCR for software development is described. In addition, for Company C the TCR practice was also found to be used for

API development. The requirements flow for each case context is depicted in Figure 1 ï Figure 4 based on the FLOW

notation (Stapel and Schneider 2012). The notation shows the flow of non-documented (fluid) and artefact-based (solid)

requirements communication, see Section 4.2.4.

5.1 Company A: TCR as a De Facto Practice

The test cases have become the de facto requirements at Company A since the most extensive set of requirements are

documented as test cases as part of the testing process [A21:81], i.e. once the requirements details have been implemented

[A21:58].The test cases consist of a combination of unit, function and system level test cases produced by the system

testers, the developers and the system architects [A21:8]. These test cases are kept updated [A21:66, 67, 81] and are the

most accurate requirements documentation [A21:69, 92]. Other requirements documentation, e.g. the product requirements

specification, is not maintained past the initial implementation stage [A21:52, 66]. The same basic process was identified

in both iterations of our study. An overview of the requirements flow is shown in Figure 1.

The test cases provide valuable requirements information [A21:81] and are used to understand product details [A21:10,

73] by product managers with technical competence [A21:15, 16, 19, 20, 73] and roles within development, such as system

architects and developers [A21:8, 9, 10]. The product manager said: óI read test cases é because that is what we can say

actually worksô [A21:15]. The test cases are also used as a source of requirements information in selecting the test scope

for integration of new features [A21:74] and for analysing the impact of changes [A21:21].

At times the test results are used in the requirements communication, in particular concerning unspecified quality

requirements. Senior engineers and developers then view the test results, and if they agree to the test outcome, it becomes

a requirement that is included in the test cases [A21:30, 82].

This co-located organisation finds TCR to be an efficient way of managing requirements (A1) that decreases the number

of documents to maintain and thus the overhead of coordinating RE and testing [A21:82]. The lack of formal requirements

is only experienced as a problem when test case validity is questioned, e.g. when a test fails. The requirementôs motivation

and priority, which is not documented, then have to be re-investigated (MC2). The navigation of the test case órequirementsô

is simplified by similar structuring in test cases and source code [A1:39]. A product manager suggested that the descriptions

noted in the test cases of the verified use case and (sometimes) its motivation could be extracted and thereby be made more

readily available to the development projects (CC1) [A21:87]. This is useful requirements information and could possibly

be extended and replace other artefacts [A21:87].

Implementation is managed in a Scrum-like way with a backlog prioritized by the product manager from which the

development project select work items based on priority, cost and feasibility [A21:42]. The backlog contains new

requirements, issues and change requests, which are all handled in a similar way.

1Nn:mm refers to interviewee or transcript Nn (where N is company A, B or C), and chunk mm. These references provide

traces from the presented results to the empirical data. (Comment to reviewers: the chunk information will be removed in

the final version to ease the information load on the reader.)

5.1.1 Elicitation and Validation: Company A

Early and very high-level requirements are documented by the product manager in business plan, product strategy and

roadmap documents [A21:13], who also creates a project order and a product proposal [A21:13]. The requirements are

then detailed in close collaboration between project roles (EB12), i.e. integrated with software design [A21:34],

implementation, and testing [A21:48]. This is believed to be due to having a strong testing competence within the company,

but no RE-specific role or competence (EC3) [A2:50]. Instead, the product manager acts as the proxy for market and

customers with whom the development-near roles have no direct contact (EC2). During development, direct

communication between the product manager and the development-near roles is the main requirements communication

channel [A21:89] complimented by a high-level product requirements specification produced by the project manager

[A21:3] and architectural artefacts created by the system architect during software design [A21:34]. These architectural

documents include an overview of the software architecture and functional descriptions of the product, and represent a

contract between the product manager (who orders the product) and the developing project (who implements it) [A21:34].

Thus the architectural documents contain requirements-related information.

Customer input is sought for complex functionality, through interviews and direct communication between stakeholders

and senior engineers [A21:40, 58]. The high requirements level provides the development engineers with freedom to design

innovative solutions (EB4), which the system architect believes has led to producing very creative products [A21:48].

However communicating these details to system testing is challenging (EC4) [A21:49] and lack of requirements

information forces testers to elicit further requirements, primarily from working software [A21:30, 37]. The testersô

2 EBn, ECn, VBn, VCn, TBn, TCn, MBn, MCn, CBn, and CCn denote benefits and challenges common for the case companies. These

are presented in Section 6.1 and traces provided here for supporting cross referencing to the results.

Figure. 1. Overview of requirements flow for Company Aôs product development. Notation described in Section 4.2.4.

requirements understanding of functional and, in particular quality requirements, is primarily obtained by executing the

source code [A21:82] and then documented as test cases [A21:37, 66, 69]. Thus, a lack of requirements documentation

during implementation is compensated by developer-tester interactions, in particular when the test case requirements fail

[A21:38, 65].

Similarly, requirements are validated through close interaction between roles (EB1), in particular between the product

manager, systems architects, developers and testers [A21:30, 37, 55, 93]. For complex functionality, customers are

provided with working software for which they provide feedback and validation [A21:40, 58, 76].

5.1.2 Verification: Company A

The product requirements specification [A21:32, 33, 64, 69, 70] and the architectural documents [A21:29, 31, 49] provide

input to the testers in designing test cases. However, due to incompleteness, inaccuracy and unavailability of this

requirements information, additional work is required to identify the full and correct requirements necessary to verifying

the product (VC2) [A21:41, 49, 64, 66, 71, 84, 92, 93]. In addition, documenting TCRs as part of the testing process makes

verification uncertain since the requirements are less formal and more vulnerable to being changed as part of updating test

cases [A21:71, 84]. Manual system tests [A21:82, 85] and automated function and unit tests [A21:85] are used to verify

the implementation. The function test cases are used by the system architect in selecting the test scope when integrating

new functionality (VB1) [A21:74]. The company wants to increase the use of automatic testing since this is more efficient

[A21:86] and less prone to variability in testing due to who performs them (VC1) [A21:79].

When implementing a change, test cases for the affected software areas provide an executable specification for verifying

that the legacy functionality is intact [A21:21, 72, 82]. The TCR practiceôs support for regression testing (VB1) supports

efficient regression testing of the many products based on the companyôs software product line [A21:21, 72].

5.1.3 Tracing and Managing Changes: Company A

Requirements changes can be proposed by any project role through a change requests [A21:15, 63], while issue reports are

used for smaller changes [A21:15]. Test cases are used by the product manager to analyse the impact of issue reports and

change requests (MB4) [A21:73, 75]. Even so, much time and effort is spent on discussing and identifying the actual

requirements; óhow it is supposed to workô [A21:77], since there are no documented requirements for around half of the

incoming issue reports [A21:77]. Thus, there is insufficient coverage of the full set of requirements expected by the

customer and the users. Requirements coverage is considered during the initial test design, but not kept updated due to

weak tracing between TCRs and the formal product requirements specification [A1, A3, A1:41, A2]. In addition, the test

cases lack requirements-related information (MC2) needed when a test case fails [A2] or is updated [A3], e.g. priority and

stakeholders. The challenge of insufficient requirements coverage is partly mitigated by adding test cases for resolved issue

reports [A21:80]. As a product manager said: óThatôs how we record the new requirement.ô [A21:80] However, as the test

lead said ówe cannot test everythingô [A21:77].

Communication of requirements changes is a challenge at Company A where requirements are not documented as test

case upfront, but rather after they have been implemented [A1, A2]. In particular, the system testers suffer from not being

aware of all changes (MB1) [A21:63]. They can then not add or update the corresponding test cases (MB2), which then

causes (incorrect) test cases to fail for intended behaviour [A21:64]. In particular, this is the case for quality requirements

which are difficult to specify and communicate on paper [A21:41, 42].

The product line set-up used to develop many products on the same software base causes challenges in managing

requirements variations between the products both in general, and specifically using TCR (MC3). Since the tool

infrastructure does not support managing such variations in the test cases (TC1) the requirements variations are currently

handled by noting these directly in the test cases, information which everyone does not read [A21:92].

5.2 Company B: Tool-Supported Behaviour-Driven Development TCR

Company B actively applies the TCR practice through behaviour-driven development supported by tools such as Cucumber

and FitNesse. The customer and the product manager (often the same person) define product and customer requirements,

see Figure 2. Based on these the development team identify user scenarios or stories that describe óhow this feature can

interact with a customer or another systemô [B2:77]. Then, for each iteration, the development engineers produce

acceptance criteria and acceptance test cases from these requirements [B1:46, 85, B3:32]. These criteria describe scenarios

using a domain-specific language [B2:78]. There is a close working relationship between the product owner and the

development team. The product owner is available to the development team who is usually located at the customerôs site.

5.2.1 Elicitation and Validation: Company B

Requirements are elicited through directly communication between business and engineering roles around acceptance test

cases (EB1) [B1:46, 86]. Requirements validity is ensured by bi-weekly meetings [B1:27] through which the customer and

the engineering roles óunderstand each other even though we are not on the same technical levelô (EB2) [B3:7]. A working

version of the software was mentioned as further supporting this interaction [B3:32]. The communication is also facilitated

by the engineers adapting higher and less technical level of communication [B3:7] and adapting to domain terminology in

the code design (for the test cases) [B2:68]. Furthermore, the specific format used for requirements raised the technical

discussion to a more conceptual level; to communicating more about needs and goals than about solutions (EB3) [B3:82].

Figure 2. Overview of requirements flow for Company Bôs product development using tool-supported behavior-driven development.

Notation described in Section 4.2.4.

This communication level was seen to enable non-technical experts to participate in the elicitation, e.g. usability designers

[B3:82]. However, customers find it hard to be fluent in the structured format for acceptance criteria (EC3) [B3:77], similar

to a domain-specific language.

The elicited requirements are primarily documented as acceptance test cases in a tool. Interviewee B1 stated that the

clarification of requirements and specification of test cases ógo well together because we understand more of the requirement.

They concretized what we will doô [B1:86, 92]. In complex cases (EC4), informal summaries are also produced [B1:90].

The interviewees described that acceptance test cases are useful as a system specification. However, interviewee B3 indicated

that they are not fully stand-alone, i.e. the documentation can be read óto get an impression. But, if you wonder what it

means, you look at the implementation.ô [B3:51]

Over time the company has achieved active customer involvement and effective requirements communication with this

practice (EB1, EB2), despite challenges to ensure this involvement and that ówe [customer and development team] spoke

the same languageô (EC1) [B3:6]. Interviewee B1 said that active business involvement strengthens requirements validation

and ensures a common view of requirements (EB2) [B1:94].

Similarly, it is a challenge to get business roles to write or revise the user stories or the acceptance test cases (EC2), in

particularly directly in the tools [B3:84]. Interviewee B1 believes this requires technical skills (EC3) [B1:97]. This may

also be due to the customer not trusting the technical systems or seeing the value in working on the same requirements base

[B3:80]. However, the added benefit of customer directly editing requirements is believed to be smaller than the cost of

training them to do this [B1:97]. The company has also experienced issues with setting up common access across networks

[B1:97].

The interviewees see that customer competence affects the communication and the requirements picture produced with

this practice (EC3) [B3:25]. In particular, non-technical customers seldom focus on quality requirements (EC4) [B3:24].

In contrast, engineers find it hard to match high-level requirements to the code required for automatic test cases [B1:32].

Complex interactions and dependencies between requirements (EC4), e.g. for user interfaces [B1:25] and quality

requirements [B2:75], are a challenge to capture with acceptance test cases. For user interfaces the issue is connected to

the complexity of between components. All interviewees mentioned the challenge to motivate engineers to write

acceptance-level test cases [B2:75].

5.2.2 Verification: Company B

One of the main benefits of TCR stated by the interviewees is the strengthened alignment of business requirements with

verification of the agreed requirements (VB2) [B1:44, 152] and support for efficient regression testing (VB1) [B1:24, 152].

The acceptance test cases verify that the system meets the requirements that were agreed as acceptance criteria [B1:44].

Similarly these test cases (connected to acceptance criteria, i.e. requirements) allow for status tracking based on

requirements coverage (VB3) [B2:79].

The executable specification provided by this practice, in combination with unit tests, acts as a safety net that enables

projects to órebound from anythingô [B1:57] by its support for regression testing (VB1) which allows for efficiently

managing bugs and performance issues. This makes engineers confident in frequently releasing production code; weekly

for the described project. Interviewee B3 said that with this approach projects ódeliver on time and almost on budgetô

[B3:4]. The set-up has enabled projects to efficiently manage bugs and performance issues.

However, there are also challenges in creating automated tests and achieving a good executable specification [B1:24].

The right balance between acceptance and unit test cases needs to be found. Interviewee B3 described that ówriting too

many acceptance criteria that deal with smaller thingsô can be very costly if they need changing later on [B3:60, 62].

Furthermore, for quality requirements there is a challenge in automatically testing performance and other quality aspects

on actual hardware and in a live testing environment (VC3) [B1:77].

5.2.3 Tracing and Managing Changes: Company B

The alignment of business and technical aspects through TCR is supported when managing requirements changes by the

use of acceptance test cases as formal requirements (MB3) [B2:43, B3], thus having implicit requirements-test traces

(TB1). Any agreement on changes made, e.g. in face to face meetings, must be reflected in the test cases before they

become an actual change (MB2) and at the end of a project the acceptance test cases show ówhat weôve doneô [B2:43].

The support for regression testing provided by TCR (see Section 5.2.2) ólimits the danger of changing somethingô

[B2:88] and thus acts as a risk mitigator when managing requirements changes since the impact of changes are

automatically caught (MB4) [B3:76].

Locating requirements information in TCRs, e.g. when performing impact analysis for a requirements change, can be

hard for badly structured acceptance test cases (MC1). This requires tacit knowledge [B3:72] without which it is time

consuming to locate the requirements. Interviewee B3 suggested that the tools could be extended to support searching for

certain logic rather than just syntax.

Maintenance of the acceptance test cases is an issue that needs to be considered when applying this practice [B1, B2,

B3]. Interviewee B3 pointed out that test cases are more rigid than requirements and thus more sensitive to change [B3:72].

The same issue surfaces when new requirements affect old ones or when requirements misunderstandings are detected

resulting in updates to the (old) acceptance test cases. Thus, there is a risk of deteriorating test case quality and subsequently

also to requirements quality when testers make frequent fixes to get the tests to pass [B2:90].

Interviewee B1 described that when an acceptance test case fails an engineer analyses and discusses this with a business

role, ideally the one originally involved [B1:47]. However when larger changes are needed interviewee B3 had experienced

that this was best handled by the developer themselves using requirements documentation in the form of the existing test

cases and the informal requirements summaries to guide them in revising the requirements aspects of the acceptance criteria

(MB3) [B3:64].

5.2.4 Customer Agreement: Company B

The agreed requirements documented as test cases are seen as a contract between the customer and the development project.

If the customer later proposes conflicting requirements, the originally agreed acceptance test cases have then been referred

(CB1), thus supporting the project in the customer dialog [B3:7].

5.3 Company C: Failed Story-Test Driven TCR and Stand-Alone Manual TCR

The TCR practice was introduced as part of the agile transition that was ongoing in 2009/10, however our reinvestigation

shows that the practice is limited to the self-certification of customer requirements and for internal API development (see

Section 5.4). For software development in general, the only aspect of TCR found to be applied is as support for regression

testing, where test cases are viewed as requirements documentation for legacy functionality. Thus, test cases are not used

as requirements during development of new functionality. The initial intention was to define requirements as user stories

and acceptance test cases within a team consisting of a product manager, developers and testers. Acceptance criteria were

to specify óhow the code should workô (C8) and be documented by testers as acceptance test cases traced to user stories.

Another team was to maintain the software including the user stories, test cases and traces. Integrating the differing

characteristics and competences of RE and testing was seen as a major challenge (C5, C10). Tool support for integrating

RE aspects in the test cases was needed for noting requirement source, connections, dependencies, and validity for different

products (C5).

The current requirements flow (shown in Figure 3) partly corresponds to the one planned, although user stories and test

cases are no longer defined upfront and the planned tool support for connecting these artefacts has not been put in place

(TC1) [C21:2] and was mentioned as one reason for not fully implementing TCR. Despite being a large company,

requirements communication is primarily managed through informal communication with the development teams although

complemented by documentation, see Figure 3. Documentation is primarily used internally for scoping of high-level

requirements, and towards customers to agree on requirements for which customer requirements specifications and

requirements compliance documents are used. In addition, some customers provide a certification test suite that is to verify

support for the customerôs requirements. Internally, feature definitions and user interface specifications are used as

requirements documentation by the development teams. For large and complex customer-specific requirements, the

development teams have direct communication with the customers to clarify and detail requirements. This interaction often

also involves providing the customer with working software.

During implementation high-level requirements are detailed by the development team in collaboration with the product

owner and a usability designer. These detailed requirements are implemented and function and unit tested by the

developers. Once the software is integrated into the software product line it is system tested and the customer certification

test suite is executed.

The main reason for moving away from the TCR practice, mentioned by a senior systems architect, is a shift in priority

from quality to speed [C21:31, 61]. Faster software update channels enable the company to óact fast, fix them [problems]

quicklyô [C21:61] and frequently release new and improved software to the market. In addition, the development teams are

freer now to decide for themselves how they work [C21:32] with little documentation mandated by the development process

[C21:64], which has resulted in the current process.

5.3.1 Elicitation and Validation: Company C

Development teams elicit and validate requirements in close collaboration with a product manager (EB1) [C21:16, 32].

The formal input consists of a one-page document (feature definition) describing the business case and top-level scenarios,

and for customer functionality there is a high-level customer requirements specification [C23:8]. This high level of formal

requirements input (often at vision level) [C21:32] provides the development teams with freedom in detailing requirements

and encourages them to contribute with their creativity (EB4). Further input is elicited through stakeholder analysis

[C21:10, 51], interviews with users [C21:7] and direct interaction with customers. Additional requirements are identified

throughout the development life-cycle in an exploratory fashion [C21:7, 12, 15, 51], and ódiscovered when implementingô

[C21:7] rather than defined upfront before design [C21:10]. The product manager role is vital in facilitating the exploratory

requirements elicitation, but the role requires a combination of technical and business knowledge which is hard to fill (EC3)

[C21:11, 50]. The requirements are validated by customers and other stakeholders by using working software [C21:58].

Several participants stressed that it is expensive [C21:24, 58] and óhard to write any test cases at all beforehandô [C21:51].

This would require the stakeholders to be able to express their requirements as test cases (EC3) [C21:56].

The development team produce a user interface (UI) specification [C21:16, 34, 43], and unit test cases in-line with the

implemented requirements. Defining test cases for user interactions was mentioned as a challenge (EC4) [C21:15]. Rather,

the UI specification is seen by the development team as óour requirements document é that lives together with the

development.ô [C21:34] Albeit this document is not used to communicate requirements outside of the development team,

although it was suggested to óbe a good start for communicating.ô [C21:43] This lack of requirements documentation leads

to a large amount of questions from team-external roles concerning how the software is supposed to work, i.e. the

requirements [C21:47], more questions than they can answer [C21:48]. However, the participants do not see this as a

problem but rather an opportunity to elicit future requirements based on this feedback [C21:48].

 Concerning communicating requirements through TCR some participants believed they could provide ósome help to

understandô detailed requirements [C21:26]. Although, as the technical account manager said óa test case is not as clear to

read as a requirementô and it ótakes longer to understand a test case than to read a requirementô [C23:22]. Furthermore, one

systems architect pointed out that a dedicated tester with less coding experience may óhave a hard time to ñreadò the

functionality from the [unit test] codeô (EC3) [C21:27]. Thus, (automated) test cases require a certain level of technical

Figure 3. Overview of requirements flow for the software product development within Company Côs. The notation is described in

Section 4.2.4.

