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SUMMARY

Numerous tools automating various aspects of software engineering have been developed, and many of the
tools are highly configurable through parameters. Understanding the parameters of advanced tools often
requires deep understanding of complex algorithms. Unfortunately, sub-optimal parameter settings limit the
performance of tools and hinder industrial adaptation, but still few studies address the challenge of tuning
software engineering tools. We present TuneR, an experiment framework that supports finding feasible
parameter settings using empirical methods. The framework is accompanied by practical guidelines of how
to use R to analyze the experimental outcome. As a proof-of-concept, we apply TuneR to tune ImpRec, a
recommendation system for change impact analysis in a software system that has evolved for more than two
decades. Compared to the output from the default setting, we report a 20.9% improvement in the response
variable reflecting recommendation accuracy. Moreover, TuneR reveals insights into the interaction among
parameters, as well as non-linear effects. TuneR is easy to use, thus the framework has potential to support
tuning of software engineering tools in both academia and industry.
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1. INTRODUCTION

Tools that increase the level of automation in software engineering are often highly configurable
through parameters. Examples of state-of-the-art tools that can be configured for a particular
operational setting include EvoSuite for automatic test suite generation [1], FindBugs for static
code analysis [2], and MyLyn, a task-oriented recommendation system in the Eclipse IDE [3].
However, the performance of these tools, as well as other tools providing decision support, generally
depends strongly on the parameter setting used [4], often more so than the choice of the underlying
algorithm [5]. The best parameter setting depends on the specific development context, and even
within the same context it might change over time.

Finding feasible parameter settings is not an easy task. Automated tools in software engineering
often implement advanced techniques such as genetic algorithms, dimensionality reduction,
Information Retrieval (IR), and Machine Learning (ML). Numerous studies have explored how
tool performance can be improved by tailoring algorithms and tuning parameters, for example in
test data generation [6], test case selection [7], fault localization [8], requirements classification [9],
and trace recovery [10]. We have previously published a systematic mapping study highlighting the
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data dependency of IR-based trace recovery tools [11], and Hall et al. found the same phenomenon
in a systematic literature review on bug prediction, stating that “models perform the best where
the right technique has been selected for the right data, and these techniques have been tuned for
the model rather than relying on default tool parameters” [12]. However, the research community
cannot expect industry practitioners to have the deep knowledge required to fully understand the
settings of advanced tools.

Feasible tuning of parameter settings is critical for successful transfer of Software Engineering
(SE) tools from academia to industry. Unfortunately, apart from some work on Search-Based
Software Engineering (SBSE) [13, 14, 15] there are few software engineering publications that
specifically address parameter tuning. One could argue that academia should develop state-of-the-
art tools, and that the actual deployment in different organizations is simply a matter of engineering.
However, we argue that practical guidelines for tuning SE tools, i.e., finding feasible parameter
settings, are needed to support adaptation to industrial practice.

In this paper we discuss ImpRec [16], a recommendation system for software engineering [17]
developed to support Change Impact Analysis (CIA) in a company developing safety-critical
software systems. ImpRec implements ideas from the area of Mining Software Repositories (MSR)
to establish a semantic network of dependencies, and uses state-of-the-art IR to identify textually
similar nodes in the network. ImpRec combines the semantic network and the IR system to
recommend artifacts that are potentially impacted by an incoming issue report, and presents a
ranked list to the developer. During development of the tool, we had to make several detailed
design decisions, e.g., “how should distant artifacts in the system under study be penalized in the
ranking function?” and “how should we weigh different artifact features in the ranking function to
best reflect the confidence of the recommendations?”. Answering such questions at design time is
not easy. Instead we parametrized several decisions, a common solution that effectively postpones
decisions to the tool user. We have deployed an early version of ImpRec in a pilot development team
to get feedback [18]. However, we did not want to force the study participants to consider different
parameter settings; instead we deployed ImpRec with a default setting based on our experiences.
The question remains however; is the default setting close to the optimum?

We see a need for tuning guidelines for SE tools, to help practitioners and applied researchers
to go beyond trial and pick-a-winner approaches. We suspect that three sub-optimal tuning
strategies [19, pp. 212][20, pp. 4] dominate tuning of SE tools: 1) ad hoc tuning, 2) quasi-exhaustive
search, and 3) Change One Parameter at a Time (COST) analysis. Ad hoc tuning might be a quick
way to reach a setting, but non-systematic tuning increases the risk of deploying tools that do not
reach their potential, therefore not being disseminated properly in industry. Quasi-exhaustive search
might be possible if the evaluation does not require too much execution time, but it does not provide
much insight in the parameters at play unless the output is properly analyzed. COST analysis is a
systematic approach to tuning, but does not consider the effect of interaction between parameters.

We present TuneR, a framework for tuning parameters in automated software engineering tools.
The framework consists of three phases: 1) Prepare Experiments, 2) Conduct Screening, and 3)
Response Surface Methodology. The essence of the framework lies in space-filling and factorial
design, established methods to structure experiments in Design of Computer Experiments (DoCE)
and Design of Experiments (DoE), respectively. As a proof-of-concept, we apply TuneR to find a
feasible parameter setting for ImpRec. For each step in TuneR, we present hands-on instructions
of how to conduct the corresponding analysis using various R packages [21], and the raw data
is available on the companion website∗. Using TuneR we increase the accuracy of ImpRec’s
recommendations, with regard to the selected response variable, by 20.9%. We also validate the
result by comparing the increased response to the outcome of a more exhaustive space-filling design.

The rest of this paper is structured as follows: Section 2 introduces the fundamental concepts
in DoE and DoCE, and discusses how tuning of SE tools is different. In Section 3 we introduce
ImpRec, the target of our tuning experiments. The backbone of the paper, the extensive presentation
of TuneR, interweaved with the proof-of-concept tuning of ImpRec, is found in Section 4. In

∗http://serg.cs.lth.se/research/experiment-packages/tuner/
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Section 5, we report from the exhaustive experiment on ImpRec parameter settings. Section 6
discusses our results, and presents the main threats to validity. Finally, Section 7 concludes the
paper.

2. BACKGROUND

This section introduces design of experiments, both of physical and simulated nature, and presents
the terminology involved. Then we discuss how tuning of automated SE tools differs from traditional
experiments. We conclude the section by reporting related work on experimental frameworks and
parameter tuning in software engineering.

2.1. Design of Experiments

Design of Experiments (DoE) is a branch of applied statistics that deals with planning and analyzing
controlled tests to evaluate the factors that affect the output of a process [20]. DoE is a mature
research field, a key component in the scientific method, and it has proven useful for numerous
engineering applications [22]. Also, DoE is powerful in commercialization, e.g., turning research
prototypes into mature products ready for market release [23]. DoE is used to answer questions such
as “what are the key factors at play in a process?”, “how do the factors interact?”, and “what setting
gives the best output?”.

We continue by defining the fundamental experimental terminology that is used throughout the
paper. For a complete presentation of the area we refer to one of the available textbooks, e.g.,
Montgomery [20], Box et al. (2005) [24], and Dunn [19]. An experiment is a series of experimental
runs in which changes are made to input variables of a system so that the experimenter can observe
the output response. The input variables are called factors, and they can be either design factors
or nuisance factors. Each design factor can be set to a specific level within a certain range. The
nuisance factors are of practical significance for the response, but they are not interesting in the
context of the experiment.

Dealing with nuisance factors is at the heart of traditional DoE. Nuisance factors are classified
as controllable, uncontrollable, or noise factors. Controllable nuisance factors can be set by the
experimenter, whereas uncontrollable nuisance factors can be measured but not set. Noise factors
on the other hand can neither be controlled nor measured, and thus require more of the experimenter.

The cornerstones in the experimental design are randomization, replication, and blocking.
Randomized order of the experimental runs is a prerequisite for statistical analysis of the response,
as not randomizing the order would introduce a systematic bias into the responses. Replication
means to conduct a repeated experimental run, independent from the first, thus allowing the
experimenter to estimate the experimental error. Finally, blocking is used to reduce or eliminate
the variability introduced by the nuisance factors. Typically, a block is a set of experimental runs
conducted under relatively similar conditions.

Montgomery lists five possible goals of applying DoE to a process [20, pp. 14]: 1) factor
screening, 2) optimization, 3) confirmation, 4) discovery, and 5) robustness. Factor screening is
generally conducted to explore or characterize a new process, often aiming at identifying the
most important factors. Optimization is the activity of finding levels for the design factors that
produce the best response. Confirmation involves corroborating that a process behaves in line with
existing theory. Discovery is a type of experiments related to factor screening, but the aim is to
systematically explore how changes to the process affect the response. Finally, an experiment with
a robustness goal tries to identify under which conditions the response substantially deteriorates. As
the goal of the experiments conducted in this paper is to find the best response for an automated
software engineering tool by tuning parameters, i.e., optimization, we focus the rest of this section
accordingly.

The traditional DoE approach to optimize a process involves three main steps: 1) factor screening
to narrow down the number of factors, 2) using factorial design to study the response of all
combinations of factors, and 3) applying Response Surface Methodology (RSM) to iteratively

PREPRINT (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



4 M. BORG

change the setting toward an optimal response [25]. Factorial design enables the experimenter to
model the response as a first-order model (considering main effects and interaction effects), while
RSM also introduces a second-order model in the final stage (considering also quadratic effects).

Different experimental designs have been developed to study how design factors affect the
response. The fundamental design in DoE is a factorial experiment, an approach in which design
factors are varied together (instead of one at a time). The basic factorial design evaluates each design
factor at two levels each, referred to as a 2k factorial design. Such a design with two design factors is
represented by a square, where the corners represent the levels to explore in experimental runs (cf. A
in Fig. 1). When the number of design factors is large, the number of experimental runs required for
a full factorial experiment might not be feasible. In a fractional factorial experiment only a subset
of the experimental runs are conducted. Fractional factorial designs are common in practice, as all
combinations of factors rarely need to be studied. The literature on fractional factorial designs is
extensive, and we refer the interested reader to discussions by Montgomery [20] and Dunn [19].

All points in the experimental designs represent various levels of a design factor. In DoE, all
analysis and model fitting are conducted in coded units instead of in original units. The advantage
is that the model coefficients in coded units are directly comparable, i.e., they are dimensionless and
represent the effect of changing a design factor over a one-unit interval [20, pp. 290]. We use 1 and
−1 to represent the high and low level of a design factor in coded units.

Factorial design is a powerful approach to fit a first-order model to the response. However, as
the response is not necessarily linear, additional experimental runs might be needed. The first step
is typically to add a center point to the factorial design (cf. B in Fig. 1). If quadratic effects are
expected, e.g., indicated by experimental runs at the center point, the curvature needs to be better
characterized. The most popular design for fitting a second-order model to the response is the
Central Composite Design (CCD) [20, pp. 501] (cf. C in Fig. 1). CCD complements the corners
of the factorial design and the center point with axial points. A CCD is called rotatable if all points
are at the same distance from the center point [26, pp. 50].

RSM is a sequential experimental procedure for optimizing a response (for a complete
introduction we refer the reader to Myers’ textbook [25]). In the initial optimization phase, RSM
assumes that we operate at a point far from the optimum condition. To quickly move toward a
more promising region of operation, the experimenter fits a first-order model to the response. Then,
the operating conditions should be iteratively changed along the path of steepest ascent. When the
process reaches the region of the optimum, a second-order model is fitted to enable an analysis
pinpointing the best point.

DoE has been a recommended practice in software engineering for decades. The approaches
have been introduced in well-cited software engineering textbooks and guidelines, e.g., Basili et
al. [27], Pfleeger [28], and Wohlin et al. [29]. However, tuning an automated software engineering
tool differs from traditional experiments in several aspects, as discussed in the rest of this section.

2.2. Design of Computer Experiments

DoE was developed for experiments in the physical world, but nowadays a significant amount of
experiments are instead conducted as computer simulation models of physical systems, e.g., during
product development [30]. Exploration using computer simulations shares many characteristics of
physical experiments, e.g., each experimental run requires input levels for the design factors and
results in one or more responses that characterize the process under study. However, there are also
important differences between physical experiments and experiments in which the underlying reality
is a mathematical model explored using a computer.

Randomization, replication, and blocking, three fundamental components of DoE, were all
introduced to mitigate the random nature of physical experiments. Computer models on the other
hand, unless programmed otherwise, generate deterministic responses with no random error [31].
While the deterministic responses often originate from highly complex mathematical models,
repeated experimental runs using the same input data generates the same response, i.e., replication is
not required. Neither does the order of the experimental runs need to be randomized, nor is blocking
needed to deal with nuisance factors. Still, assessing the relationship between the design factors
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Figure 1. Overview of experimental designs for two factors. Every point represents an experimental setting.

and the response in a computer experiment is not trivial, and both the design and analysis of the
experiment need careful thought.

Design of Computer Experiments (DoCE) focuses on space-filling designs. Evaluating only two
levels of a design factor, as in a 2k factorial design, might not be appropriate when working with
computer models, as it can typically not be assumed that the response is linear [32, pp. 11]. Instead,
interesting phenomena can potentially be found in all regions of the experimental space [20, pp.
524]. The simplest space-filling designs are uniform design (cf. D in Fig. 1), in which all design
points are spread evenly, and random design (cf. E in Fig. 1). Another basic space-filling design is
the Latin Hypercube design. A two-factor experiment has its experimental points in a latin square
if there is only one point in each row and each column (cf. F in Fig. 1), in line with the solution
to a sudoku puzzle. A Latin Hypercube is the generalization to an arbitrary number of dimensions.
Latin Hypercubes can be combined with randomization to select the specific setting in each cell, as
represented by white points in Fig. 1.

Also RSM needs adaptation for successful application to computer experiments. There are caveats
that need to be taken into consideration when transferring RSM from DoE to DoCE. Vining
highlights that the experimenter need some information about starting points, otherwise there is
a considerable risk that RSM ends up in a local optimum [31]. Moreover, bumpy response surfaces,
which computer models might generate, pose difficulties for optimization. Consequently, a starting
point for RSM should be in the neighborhood of an acceptable optimum. Finally, RSM assumes
that there should be only a few active design factors. Vining argues that both starting points and the
number of design factors should be evaluated using screening experiments [31], thus screening is
emphasized as a separate phase in TuneR.

2.3. Tuning Automated Software Engineering Tools

DoE evolved to support experiments in the physical world, and DoCE was developed to support
experiments on computer models of physical phenomena. The question whether software is tangible
or intangible is debated from both philosophical and juridical perspectives (see e.g., Moon [33] and
Berry [34]), but no matter what, there are differences between software and the entities that are
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typically explored using DoE and DoCE. Furthermore, in this paper we are interested in using
experiments for tuning∗ a special type of software: tools for automated software engineering.
We argue that there are two main underlying differences between experiments conducted to tune
automated SE tools and traditional DoCE. First, automated SE tools are not computer models of an
entity in the physical world. Thus, we often cannot relate the meaning of various parameter settings
to characteristics that are easily comprehensible. In DoCE however, we are more likely to have a
pre-understanding of the characteristics of the underlying physical phenomenon. Second, a tuned
automated SE tool is not the primary deliverable, but a means to an end. An automated SE tool is
intended to either improve the software under development, or to support the ongoing development
process [35]. In DoCE on the other hand, the simulation experiments tend to be conducted on a
computer model of the product under development or the phenomenon under study.

Consequently, an experimenter attempting to tune an automated SE tool must consider some
aspects that might be less applicable to traditional DoCE. The experimenter should be prepared for
unexpected responses in all regions of the experiment space, due to the lack of connection between
parameters and physical processes. Parameter ranges resulting in feasible responses might exist
anywhere in the experiment space, thus some variant of space-filling designs needs to be applied
as in DoCE. However, responses from automated SE tools cannot be expected to behave linearly,
as the response might display sudden steps in the response or asymptotic behavior. While certain
peculiarities might arise also when calibrating physical processes, we believe that they could be
more common when tuning automated SE tools. Other aspects that must be taken into consideration
are execution time and memory consumption. An SE tool is not useful if it cannot deliver its output
in a reasonable amount of time, and it should be able to do so with the memory available in the
computers of the target environment.

When tuning an automated SE tool, we propose that it should be considered a black-box
model (also recommended by Arcuri and Fraser [14]). We define a black-box model, inspired by
Kleijnen [26, pp. 16], as “a model that transforms observable input into observable outputs, whereas
the values of internal variables and specific functions of the tool implementation are unobservable”.
For any reasonably complex SE tool, we suspect that fully analyzing how all implementation details
affect the response is likely to be impractical. However, when optimizing a black-box model we
need to rely on heuristic approaches, as we cannot be certain whether an identified optimum is local
or global. An alternative to heuristic approaches is to use metaheuristics (e.g., genetic algorithms,
simulated annealing, or tabu search [37]), but such approaches require extensive tuning themselves.

The main contribution of this paper is TuneR, a heuristic experiment framework for tuning
automated SE tools using R. TuneR uses a space-filling design to screen factors of a black-box
SE tool, uniform for bounded parameters and a geometric sequence for unbounded parameters as
shown in Fig. 1 (G). Once a promising region for the parameter setting has been identified, TuneR
attempts to apply RSM to find a feasible setting. We complement the presentation of TuneR with
a hands-on example of how we used it to tune the recommendation system ImpRec (described in
Section 3).

Several researchers have published papers on parameter tuning in software engineering. As the
internals of many tools for automated SE involve advanced techniques, such as computational
intelligence and machine learning, academic researchers must provide practical guidelines to
support knowledge transfer to industry. In this section we present related work on tuning automated
SE tools. All tools we discuss implement metaheuristics to some extent, a challenging topic covered
by Birattari in a recent book [38]. He reports that most tuning of metaheurstics is done by hand and
by rules of thumb, showing that such tuning is not only an issue in SE.

Parameter tuning is fundamental in Search-Based Software Engineering (SBSE) [6, 14]. As SBSE
is based on metaheuristics, its performance is heavily dependent on context-specific parameter
settings. However, some parameters can be set based on previous knowledge about the problem
and the software under test. Fraser and Arcuri refer to this as seeding [6], i.e., “any technique that

∗Adjusting parameters of a system is known as calibration when they are part of a physical process, otherwise the activity
is called tuning [36].
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exploits previous related knowledge to help solve the (testing) problem at hand”. They conclude
that seeding is valuable in tuning SBSE tools, and present empirical evidence that the more domain
specific information that can be included in the seeding, the better the performance will be. In line
with the recommendations by Fraser and Arcuri, we emphasize the importance of pre-understanding
by including it as a separate step in TuneR.

Arcuri and Fraser recently presented an empirical analysis on how their tool EVOSUITE, a tool
for test data generation, performed using different parameter settings [14]. Based on more than one
million experiments, they show that different settings cause very large variance in the performance
of EVOSUITE, but also that “default” settings presented in the literature result in reasonable
performance. Furthermore, they find that tuning EVOSUITE using one dataset and then applying it
on others brings little value, in line with the No Free Lunch Theorem by Wolpert and Macready [39].
Finally, they applied RSM to tune the parameters of EVOSUITE, but conclude that RSM did not
lead to improvements compared to the default parameter setting. Arcuri and Fraser discuss the
unsuccessful outcome of their attempt at RSM, argue that it should be treated as inconclusive rather
than a negative result, and call for more studies on tuning in SE. Their paper is concluded by general
guidelines on how to tune parameters. However, the recommendations are on a high-level, limited
to a warning on over-fitting, and advice to partition data into non-overlapping training and test sets.
The authors also recommend using 10-fold cross-validation in case only little data is available for
tuning purposes. Our work on TuneR complements the recommendations from Arcuri and Fraser by
providing more detailed advice on parameter tuning. Also, there is no conflict between the two sets
of recommendations, and it is possible (and recommended) to combine our work with for example
10-fold cross-validation.

Wang et al. presented tuning of clone detection tools using EvaClone, another search-
based solution, and refer to the underlying challenge as the “confounding configuration choice
problem” [15]. The authors exemplified their approach by tuning six different clone detection tools
on a benchmark containing Java and C source code. Based on a large empirical study involving 9.3
million tool executions, they showed that EvaClone finds parameter settings that obtain significantly
better clone detection compared to the default settings, with a high effect size. EvaClone is designed
to support tuning of clone detection tools rather than SE tools in general, and the approach requires
understanding of genetic algorithms. Our ambition with TuneR is to present a more general tuning
framework that is also easier for researchers and practitioners to apply.

Da Costa and Shoenauer also worked on parameter tuning in the field of software testing [40].
They developed the software environment GUIDE to help practitioners use evolutionary
computation to solve hard optimization problems. GUIDE contains both an easy-to-use GUI,
and parameter tuning support. GUIDE has been applied to evolutionary software testing in three
companies including Daimler. However, the parameter tuning offered by GUIDE is aimed for
algorithms in the authors’ internal evolution engine, and not for external tools.

Biggers et al. highlighted that there are few studies on how to tune tools for feature location using
text retrieval, and argue that it impedes deployment of such tool support [41]. They conducted a
comprehensive study on the effects of different parameter settings when applying feature location
using Latent Dirichlet Allocation (LDA). Their study involved feature location from six open
source software systems, and they particularly discuss configurations related to indexing the source
code. Biggers et al. report that using default LDA settings from the literature on natural language
processing is suboptimal in the context of source code retrieval.

Thomas et al. addressed tuning of automated SE tools for fault localization [8]. They also
emphasized the research gap considering tuning of tools, and acknowledged the challenge of finding
a feasible setting for a tool using supervised learning. The paper reports from a large empirical study
on 3,172 different classifier configurations, and show that the parameter settings have a significant
impact on the tool performance. Also, Thomas et al. show that ensemble learning, i.e., combining
multiple classifiers, provides better performance than the best individual classifiers. However, design
choices related to the combination of classifiers also introduce additional parameter settings [42].

Lohar et al. discussed different configurations for SE tools supporting trace retrieval [43], i.e.,
automated creation and maintenance of trace links. They propose a machine learning approach,
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referred to as Dynamic Trace Configuration (DTC), to search for the optimal configuration during
runtime. Based on experiments with data extracted from three different domains, they show that
DTC can significantly improve the accuracy of their tracing tool. Furthermore, the authors argue
that DTC is easy to apply, thus supporting technology transfer. However, in contrast to TuneR, DTC
is specifically targeting SE tools for trace retrieval.

ImpRec, the tool we use for the proof-of-concept evaluation of TuneR, is a type of automated SE
tool that presents output as a ranked list of recommendations, analogous to well-known IR systems
for web search. Modern search engines apply ranking functions that match the user and his query
with web pages based on hundreds of features, e.g., location, time, search history, query content,
web page title, content, and domain [44]. To combine the features in a way that yields relevant
search hits among the top results, i.e., to tune the feature weighting scheme, Learning-to-Rank (LtR)
is typically used in state-of-the-art web search [45]. Unfortunately, applying LtR to the ranking
function of ImpRec is not straightforward. The success of learning-to-rank in web search is enabled
by enormous amounts of training data, manually annotated for relevance by human raters [46].
As such amounts of manually annotated training data is not available for ImpRec, and probably not
for other automated SE tools either, TuneR is instead based on empirical experimentation. However,
LtR is gaining attention also in SE, as showed by a recent position paper by Binkley and Lawrie [47].

3. IMPREC: A RECOMMENDATION SYSTEM FOR AUTOMATED CHANGE IMPACT
ANALYSIS

ImpRec† is an open source SE tool that supports navigation among software artifacts [16], tailored
for a development organization in the power and automation sector. The development context is
safety-critical embedded development in the domain of industrial control systems, governed by IEC
61511‡ and certified to a Safety Integrity Level (SIL) of 2 as defined by IEC 61508§. The target
system has evolved over a long time, the oldest source code was developed in the 1980s. A typical
development project in the organization has a duration of 12-18 months and follows an iterative
stage-gate project management model. The number of developers is in the magnitude of hundreds,
distributed across sites in Europe, Asia and North America.

As specified in IEC 61511, the impact of proposed software changes should be analyzed before
implementation. In the case company, the impact analysis process is integrated with the issue
repository. Before a corrective change is made to resolve an issue report, the developer must store
an Change Impact Analysis (CIA) report as an attachment to the corresponding issue report. As part
of the impact analysis, engineers are required to investigate the impact of a change, and document
their findings in a CIA report according to a project specific template. The template is validated by
an external certifying agency, and the CIA reports are internally reviewed and externally assessed
during safety audits.

Several questions explicitly ask for trace links [48], i.e., “a specified association between a pair
of artifacts” [49]. The engineer must specify source code that will be modified (with a file-level
granularity), and also which related software artifacts need to be updated to reflect the changes,
e.g., requirement specifications, design documents, test case descriptions, test scripts and user
manuals. Furthermore, the CIA report should specify which high-level system requirements cover
the involved features, and which test cases should be executed to verify that the changes are correct,
once implemented in the system. In the target software system, the extensive evolution has created
a complex dependency web of software artifacts, thus the CIA is a daunting work task.

ImpRec is a recommendation system that enables reuse of knowledge captured from previous
CIA reports [48]. Using history mining in the issue repository, a collaboratively created trace link

†https://github.com/mrksbrg/ImpRec
‡IEC 61511-1 ed 1.0, Safety Instrumented Systems for the Process Industry Sector, International Electrotechnical
Commission, 2003.
§IEC 61508 ed 1.0, Electrical/Electronic/Programmable Electronic Safety-Related Systems, International Electrotechni-
cal Commission, 2010.
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network is established, referred to as the knowledge base. ImpRec then calculates the centrality
measure of each artifact in the knowledge base. When a developer requests impact recommendations
for an issue report, ImpRec combines IR and network analysis to identify candidate impact. First,
Apache Lucene¶ is used to search for issue reports in the issue repository that are textually similar.
Then, originating from the most similar issue reports, trace links are followed both to related issue
reports and to artifacts that were previously reported as impacted. Each starting point results in a set
of candidate impact (seti). When all sets of candidate impact have been established, the individual
artifacts are given a weight according to a ranking function. Finally, the recommendations are
presented in a ranked list in the ImpRec GUI. For further details on ImpRec, we refer to our previous
publications [16, 18].

Figure 2. Identification of candidate impact using ImpRec. Two related parameters (with an example setting)
are targeted for tuning: 1) The number of starting points identified using Apache Lucene (START ), and 2)

the maximum number of issue-issue links followed to identify impacted artifacts (LEV EL).

This paper presents our efforts to tune four ImpRec parameters, two related to candidate impact
identification, and two dealing with ranking of the candidate impact. Fig. 2 presents an overview
of how ImpRec identifies candidate impact, and introduces the parameters START and LEV EL.
By setting the two parameters to high values, ImpRec identifies a large set of candidate impact. To
avoid overwhelming the user with irrelevant recommendations, the artifacts in the set are ranked. As
multiple starting points are used, the same artifact might be identified as potentially impacted several
times, i.e., an artifact can appear in several impact sets. Consequently, the final ranking value of an
individual artifact (ARTx) is calculated by summarizing how each seti contributes to the ranking
value:

Weight(ARTx) =
∑

ARTx∈seti

ALPHA ∗ centx + (1−ALPHA) ∗ simx

1 + links ∗ PENALTY
(1)

where PENALTY is used to penalize distant artifacts and ALPHA is used to set the relative
importance of textual similarity and the centrality measure. simx is the similarity score of the
corresponding starting point provided by Apache Lucene, centx is the centrality measure of artx in
the knowledge base, and links is the number of issue-issue links followed to identify the artifact (no
more than LEV EL− 1). The rest of this paper presents TuneR, and how we use it to tune START ,
LEV EL, PENALTY , and ALPHA.

¶https://lucene.apache.org/
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4. TUNER: AN EXPERIMENT FRAMEWORK AND A HANDS-ON EXAMPLE

This section describes TuneR, an experiment framework organized in three main phases. As
presented in Fig. 3, the three phases shown in gray boxes are composed by steps. In Phase 1,
four steps cover preparations required before any experiments can commence. In Phase 2, three
steps describe the screening experiment, an experimental design used to identify the most important
parameters. In Phase 3, four steps present how to apply RSM to find the optimal parameter setting.
Finally, TuneR includes an alternative exhaustive search step in case the screening finds RSM to be
infeasible, as well as a concluding evaluation step. For each step in the framework, we first describe
TuneR in general terms, and then we present a hands-on example of how we used it to tune ImpRec.

Figure 3. Overview of TuneR. The three phases are depicted in gray boxes. Dotted arrows show optional
paths.

4.1. Phase 1: Prepare Experiments

Successful experimentation relies on careful planning. The first phase of TuneR consists of four
steps: A) Collect Tuning Dataset, B) Choose Response Metric, C) Identify Parameters and Ranges,
and D) Aggregate Pre-Understanding. All four steps are prerequisites for the subsequent Screening
phase.

4.1.1. A) Collect Tuning Dataset Before any tuning can commence, a dataset that properly
represents the target environment must be collected. The content validity of the dataset refers to the
representativeness of the sample in relation to all data in the target environment [50]. Thus, to ensure
high content validity in tuning experiments, the experimenter must carefully select the dataset, and
possibly also sample from it appropriately, as discussed by Seiffert et al. [51]. Important decisions
that have to be made at this stage include how old data can be considered valid and whether the data
should be preprocessed in any way. While a complete discussion on data collection is beyond the
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scope of TuneR, we capture some of the many discussions on how SE datasets should be sampled
and preprocessed in this section.

In many software development projects, the characteristics of both the system under development
and the development process itself vary considerably. If the SE tool is intended for such a
dynamic target context, then it is important that the dataset does not contain obsolete data. For
example, Shepperd et al. discuss the dangers of using old data when estimating effort in software
development, and the difficulties in knowing when data turns obsolete [52]. Jonsson et al. show
the practical significance on time locality in automated issue assignment [42], i.e., how quickly the
prediction accuracy deteriorates with old training data for some projects.

Preprocessing operations, such as data filtering, influence the performance of SE tools. Menzies
and Shepperd even warn that variation in preprocessing steps might be a major cause of conclusion
instability when evaluating SE tools [53]. Shepperd et al. discuss some considerations related
to previous work on publicly available NASA datasets, and conclude that the importance of
preprocessing in general has not been acknowledged enough. Regarding filtering of datasets,
Lamkanfi and Demeyer show how filtering outliers can improve prediction of issue resolution
times [54], a finding that has also been confirmed by AbdelMoez et al. [55]. Thus, if the SE tools will
be applied to filtered data, then the dataset used for the tuning experiment should be filtered as well.
Another threat to experimentation with tools implementing machine learning is the dataset shift
problem, i.e., the distribution of data in the training set differs from the test set. Turhan discusses
how dataset shift relate to conclusion instability in software engineering prediction models, and
presents strategies to alleviate it [56].

The tuning dataset does not only need to contain valid data, it also needs to contain enough
of it. A recurring approach in SE is to evaluate tools on surrogate data, e.g., studying OSS
development and extrapolating findings to proprietary contexts. Sometimes it is a valid approach, as
Robinson and Francis have shown in a comparative study of 24 OSS systems and 21 proprietary
software systems [57]. They conclude that the variation among the two categories is as big as
between them, and, at least for certain software metrics, that there often exist OSS systems with
characteristics that match proprietary systems. Several SE experiments use students as subjects,
and Höst et al. show that it is a feasible approach under certain circumstances [58]. However, the
validity of experimenting on data collected from student projects is less clear, as discussed in our
previous survey [59]. Another option is to combine data from various sources, i.e., complementing
proprietary data from different contexts. Tsunoda and Ono recently highlighted some risks of this
approach, using a cross-company software maintenance dataset as an example [60]. They performed
a statistical analysis of the dataset, and demonstrated how easy it is to detect spurious relationships
between totally independent data.

As ImpRec was developed in close collaboration with industry, and constitutes an SE tool tailored
for a specific context, the data used for tuning must originate from the same environment. We
extracted all issue reports from the issue repository, representing 12 years of software evolution
in the target organization [16]. As the issue reports are not independent, the internal order must be
kept and we cannot use an experimental design based on cross-validation. Thus, as standard practice
in machine learning evaluation, and emphasized by Arcuri and Fraser [14], we split the ordered data
into non-overlapping training and test sets, as presented in Fig. 4. The training set was used to
establish the knowledge base, and the test set was used to measure the ImpRec performance. The
experimental design used to tune ImpRec is an example of simulation as presented by Walker and
Holmes [61], i.e., we simulate the historical inflow of issue reports to measure the ImpRec response.
Before commencing the tuning experiments, we analyzed whether the content of the issue reports
had changed significantly over time. Also, we discussed the evolution of both the software under
development, and the development processes, with engineers in the organization. We concluded that
we could use the full dataset for our experiments, and we chose not to filter the dataset in any way.

4.1.2. B) Choose Response Metric The next step in TuneR is to choose what metric to base the
tuning on. TuneR is used to optimize a response with regard to a single metric, as it relies on
traditional RSM, thus the response metric needs to be chosen carefully. Despite mature guidelines
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Figure 4. Composition of the ImpRec tuning dataset into training and test sets. The knowledge base is
established using issue reports from Jan 2000 to Jul 2010. The subsequent issue reports are used to simulate

the ImpRec response, measured in Rc@20.

like the Goal-Question-Metric framework [62], the dangers of software measurements have been
emphasized by several researchers, e.g., Dekkers and McQuaid [63]. However, we argue that
selecting a metric for the response of an SE tool is a far more reasonable task than measuring
the entire software development process based on a single metric. A developer of an SE tool
probably already knows the precise goal of the tool, and thus should be able to choose or invent
a feasible metric. Moreover, if more than one metric is important to the response, the experimenter
can introduce a compound metric, i.e., a combination of individual metrics. We refer to guidelines
by Rosenberg for an extensive discussion on both simple and compound metrics in software
engineering [64]. Still, no matter what metric is selected, there is a risk that naı̈vely tuning with
regard to the specific metric leads to a sub-optimal outcome, a threat further discussed in Section 4.4.

Regarding the tuning of ImpRec, we rely on the comprehensive research available on quantitative
IR evaluation, e.g., the TREC conference series and the Cranfield experiments [65]. In line with
general purpose search systems, ImpRec presents a ranked list of candidates for the user to consider.
Consequently, it is convenient to measure the quality of the output using established IR measures for
ranked retrieval. The most common way to evaluate the effectiveness of an IR system is to measure
precision and recall. Precision is the fraction of retrieved documents that are relevant, while recall
is the fraction of relevant documents that are retrieved. As there is a trade-off between precision and
recall, they are often reported pairwise. The pairs are typically considered at fixed recall levels (e.g.,
0.1. . . 1.0), or at specific cut-offs of the ranked list (e.g., the top 5, 10, or 20 items) [66].

We assume that a developer is unlikely to browse too many recommendations from ImpRec; A
simple assumption that is fundamental to our choice of response metric. Consequently, we use a
cut-off point of 20 to disregard all recommendations below that rank, i.e., unless a recommendation
is among the first 20 recommendations we do not value it at all. While 20 is twice as many
as the standardized page-worth output from search engines, CIA is a challenging task in which
practitioners request additional tool support [18, 67], and thus we assume that engineers are willing
to browse additional search hits. Also, we think that engineers can quickly filter out the interesting
recommendations among the top 20 hits. The ImpRec implementation reflects our ideas, as the user
can view 20 recommendations without scrolling.

Several other measures for evaluating the performance of IR systems have been defined. A
frequently used compound measure is the F-score, a harmonized mean of precision and recall. Other
more sophisticated metrics include Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG) [66]. However, for the tuning experiments in this paper, we decide to
optimize the response with regard to recall considering the top-20 results (Rc@20).
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4.1.3. C) Identify Parameters and Specify Ranges for Normal Operation The third step of Phase
1 in TuneR concerns identification of parameters to vary during the tuning experiments. While
some might be obvious, maybe as explicit parameters in settings dialogs or configuration files, other
parameters can be harder to identify. Important variation points may be hidden in the implementation
of the SE tool, thus identifying what actually constitutes a meaningful parameter can be challenging.

Once the parameters have been identified, the experimenter needs to decide what levels should
be used. A first step is, in line with standard DoE practice [19, pp. 214], to identify what range
represents “normal operation” for each parameter. Parameter variations within such a range should
be large enough to cause changes in the response, but the range should not cover extreme values for
which the fundamental characteristics of the SE tool are altered. For some parameters, identification
of the normal range is straightforward because of well-defined bounds, e.g., a real value between 0
and 1 or positive integers between 1 and 10. For other parameters, however, it is possible that neither
the bounds nor even the sign is known. Parameters can also be binary or categorical, taking discrete
values [19, pp. 209].

Regarding ImpRec, Section 3 already presented the four parameters ALPHA, PENALTY ,
START , and LEV EL, parameters that are obvious targets for tuning. Working with textual data
and IR also opens up several variation points, such as pre-processing operations for the issue
descriptions, e.g., introducing a controlled vocabulary, customizing a stop-word list, or trying
different stemming algorithms. Furthermore, the core IR functionality in Apache Lucene can
be overridden by specialized implementations, e.g., tailoring the similarity scoring functions by
replacing term weighting schemes, altering the similarity measures, or boosting terms depending
on their position in an issue report. However, the core functionality of Apache Lucene relies on
state-of-the-art IR that is already calibrated for English text (the language of the issue reports in our
dataset). Moreover, we have previously successfully used Apache Lucene out-of-the-box to identify
similar issue reports, i.e., duplicate detection [68]. Further improving the IR performance of Apache
Lucene is a task for IR researchers, and thus beyond the scope of our tuning activity. On the other
hand, the four parameters ALPHA, PENALTY , START , and LEV EL, invented by us during
development of ImpRec, do not have any default values provided by others. Thus, we continue by
specifying the four parameters’ ranges for normal operation. Since ImpRec has a parameter called
LEV EL, we refer to specific levels of ImpRec’s design factors as parameter values in the rest of
the paper.

Table I shows how we specify the ranges for normal operation for the four parameters. ALPHA
represents the relative importance between textual similarities and centrality measures, i.e., it is a
bounded real value between 0 and 1, and we consider the full range normal. START is a positive
integer, as there must be at least one starting point, but there is no strict upper limit. We consider
200 to be the upper limit under normal operation, as larger values result in infeasible execution
times to deliver the recommendations. Moreover, we suspect that a very large starting set (such as
10% of the entire dataset) would generate imprecise recommendations. LEV EL and PENALTY
both deal with following links between issue reports in the knowledge base. Analogous to the
argumentation regarding START , we suspect that assigning LEV EL a too high value might
be counter-productive. LEV EL must be a positive integer, as 1 represents not following any
issue-issue links at all. We decide to consider [1, 10] as the range for LEV EL under normal
operation. PENALTY downweighs potential impact that has been identified several steps away
in the knowledge base, i.e., impact with a high LEV EL. The parameter can be set to any non-
negative number, but we assume that a value between 0 and 5 represents normal operation. Already
LEV EL = 5 would make the contribution of distant issue reports practically zero, see Equation 1.

4.1.4. D) Aggregate Pre-Understanding Successful tuning of an SE tool requires deep knowledge.
The experimenter will inevitably learn about the tool in the next two phases of TuneR, but
probably there are already insights before the experimentation commences. In line with the view
of Gummesson, we value this pre-understanding as fundamental to reach deep understanding [69,
pp. 75]. The pre-understanding can provide the experimenter with a shortcut to a feasible setting, as
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Table I. The four parameters studied in the tuning experiment, and the values that represent their range for
normal operation.

Parameter Type of range Normal range
ALPHA Non-negative bounded continuous [0-1]
PENALTY Non-negative continuous [0-5]
START Positive discrete [1-200]
LEV EL Positive discrete [1-10]

it might suggest in what region the optimal setting is located. To emphasize this potential, TuneR
consists of a separate step aimed at recapitulating what has already been experienced.

The development of ImpRec was inspired by test-driven development, thus we tried numerous
different parameter settings in test cases during development. By exploring different settings in
our trial runs during development, an initial parameter tuning evolved as a by-product of the tool
development, i.e., the development and parameter tuning were intertwined. While we performed this
experimentation in an ad hoc fashion, we measured the output with regard to Rc@20, and recorded
the results in a structured manner. Recapitulating our pre-understanding regarding the parameters
provides the possibility to later validate the outcome of the screening in Phase 2 of TuneR.

The ad hoc experiments during development contain results from about 100 trial runs. During
development we had explored ALPHA ranging from 0.1 to 0.9, obtaining the best results for high
values. START had been varied between 3 and 20, and again high values appeared to be a better
choice. Finally, we had explored LEV EL between 3 and 10, and PENALTY between 0 and
8. Using a high LEV EL and low PENALTY yielded the best results. Our trial runs eventually
converged to a parameter setting that we considered promising enough for deployment of ImpRec
to a development team in industry, discussed in depth in another paper [18]. We refer to this as the
default setting: ALPHA = 0.83, START = 17, LEV EL = 7, PENALTY = 0.2 . The default
setting yields a response of Rc@20=0.41875, i.e., about 40% of the true impact is delivered among
the top-20 recommendations. We summarize our expectations as follows:

• The ranking function should give higher weights to centrality measures than textual similarity
(0.75 < ALPHA < 1)

• The identification of impact benefits from many starting points (START > 15)
• Following related cases several steps away from the starting point improves results

(LEV EL > 5)
• We expect an interaction between LEV EL and PENALTY , i.e., that increasing the number

of levels to follow would make penalizing distant artifacts more important
• Completing an experimental run takes about 10-30 s, depending mostly on the value of
START .

4.2. Phase 2: Conduct Screening Experiment

Phase 2 in TuneR constitutes three steps related to screening. Screening experiments are conducted
to identify the most important parameters in a specific context [25, pp. 6] [19, pp. 239]. Traditional
DoE uses 2k factorial design for screening, using a wide span of values (i.e., high and low levels
within the range of normal operation) to calculate main effects and interaction effects. However, as
explained in Section 2.3, space-filling design should be applied when tuning SE tools. The three
screening steps in TuneR are: A) Design Space-Filling Experiment, B) Run Experiment, and C) Fit
Low-Order Models. Phase 2 concludes by identifying a promising region, i.e., a setting that appears
to yield a good response, a region that is used as input to Phase 3.

4.2.1. A) Design a Space-Filling Experiment The first step in Phase 2 in TuneR deals with
designing a space-filling screening experiment. The intention of the screening is not to fully analyze
how the parameters affect the response, but to complement the less formal pre-understanding. Still,
the screening experiment will consist of multiple runs. As a rule of thumb, Levy and Steinberg
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approximate that the number of experimental runs needed in a DoCE screening is ten times the
number of parameters involved [36].

Several aspects influence the details of the space-filling design, and we discuss four considerations
below. First, parameters of different types (as discussed in Phase 1, Step B) require different
experimental settings. The space of categorical parameters can only be explored by trying all
levels. Bounded parameters on the other hand can be explored using uniform space-filling designs
as presented in Section 2.2. Unbounded parameters however, at least when the range of normal
operation is unknown, requires the experimenter to select values using other approaches. Second,
our pre-understanding from Phase 1, Step D might suggest that some parameters are worth to
study using more fine-granular values than others. In such cases, the pre-understanding has already
contributed with a preliminary sensitivity analysis [70, pp. 189], and the design should be adjusted
accordingly. Third, the time needed to perform the experiments limits the number of experimental
runs, in line with discussions on search budget in SBSE [71]. Certain parameter settings might
require longer execution times than others, and thus require a disproportional amount of the search
budget. Fourth, there might be known constraints at play, forcing the experimenter to avoid certain
parameter values. This phenomenon is in line with the discussion on unsafe settings in DoE [19, pp.
256].

Unless the considerations above suggest special treatment, we propose the following rules-of-
thumb as a starting point:

• Restrict the search budget for the screening experiment to a maximum of 48 h, i.e., it should
not require more than a weekend to execute.

• Use the search budget to explore the parameters evenly, i.e., for an SE tool with i parameters,
and the search budget allows n experimental runs, use i

√
n values for each parameter.

• Apply a uniform design for bounded parameters, i.e., spread the parameter values evenly.
• Use a geometric series of values for unbounded parameters, e.g., for integer parameters

explore values 2i, i = 0, 1, 2, 3, 4 ...

When screening the parameters of ImpRec, we want to finish the experimental runs between two
workdays (4 PM to 8 AM, 16 h) to enable an analysis of the results on the second day. Based on our
pre-understanding, we predict that on average four experimental runs can be completed per minute,
thus about 3,840 experimental runs can be completed within the 16 h search budget. As we have
four parameters, we can evaluate about 4

√
3, 840 ≈ 7.9 values per parameter, i.e., 7 rounded down.

Table II shows the values we choose for screening the parameters of ImpRec. ALPHA is a
relative weighting parameter between 0 and 1. We use a uniform design to screen ALPHA, but
do not pick the boundary values to avoid divisions by zero. PENALTY is a positive continuous
variable with no upper limit, and we decide to evaluate several magnitudes of values. A penalty of 8
means that the contribution of distant artifacts to the ranking function is close to zero, thus we do not
need to try higher values. START and LEV EL are both positive discrete parameters, both dealing
with how many impact candidates should be considered by the ranking function. Furthermore, our
pre-understanding gives that the running time is proportional to the value of START . As we do
not know how high values of START are feasible, we choose to evaluate up to 512, a value that
represents about 10% of the full dataset. Exploring such high values for LEV EL does not make
sense, as there are no such long chains of issue reports. Consequently, we limit LEV EL to 64,
already a high number. In total, this experimental design, constituting 3,430 runs, appears to be
within the available search budget.

When the design of the screening experiment is ready, the next step is to run the experiment.
To enable execution of thousands of experimental runs, a stable experiment framework for
automatic execution must be developed. Several workbenches are available that enable reproducible
experiments, e.g., frameworks such as Weka [72] and RapidMiner [73] for general purpose machine
learning and data mining, and SE specific efforts such as the TraceLab workbench [74] for
traceability experiments, and the more general experimental Software Engineering Environment
(eSSE) [75]. Furthermore, the results should be automatically documented as the experimental runs
are completed, in a structured format that supports subsequent analysis.
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Table II. Screening design for the four parameters ALPHA, PENALTY , START , and LEV EL.

Parameter #Levels Values
ALPHA 7 0.01, 0.17, 0.33, 0.5, 0.67, 0.83, 0.99
PENALTY 7 0.01, 0.1, 0.5, 1, 2, 4, 8
START 10 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
LEV EL 7 1, 2, 4, 8, 16, 32, 64

We implement a feature in an experimental version of ImpRec that allows us to execute a
sequence of experimental runs. Also, we implement an evaluation feature that compares the ImpRec
output to a ‘gold standard’ (see the ‘static validation’ in our parallel publication [18] for a detailed
description), and calculates established IR measures, e.g., precision, recall, and MAP at different
cut-off levels. Finally, we print the results of each experimental run as a separate row in a file of
Comma Separated Values (CSV). Listing 1 shows an excerpt of the resulting csv-file, generated
from our screening experiment. The first four columns show the parameter values, and the final
column is the response measured in Rc@20.

Listing 1: screening.csv generated from the ImpRec screening experiment.
a lpha , p e n a l t y , s t a r t , l e v e l , r e s p
0 . 0 1 , 0 . 0 1 , 1 , 1 , 0 .059375
0 . 0 1 , 0 . 0 1 , 1 , 2 , 0 .078125
0 . 0 1 , 0 . 0 1 , 1 , 4 , 0 .1125
0 . 0 1 , 0 . 0 1 , 1 , 8 , 0 .115625
0 . 0 1 , 0 . 0 1 , 1 , 16 , 0 .115625
. . .
( 3 , 4 2 0 a d d i t i o n a l rows )
. . .
0 . 9 9 , 8 , 512 , 4 , 0 .346875
0 . 9 9 , 8 , 512 , 8 , 0 .315625
0 . 9 9 , 8 , 512 , 16 , 0 .31875
0 . 9 9 , 8 , 512 , 32 , 0 .321875
0 . 9 9 , 8 , 512 , 64 , 0 .328125

4.2.2. C) Fit Low-order Polynomial Models The final step in Phase 2 of TuneR involves analyzing
the results from the screening experiment. A recurring observation in DoE is that only a few factors
dominate the response, giving rise to well-known principles such as the ‘80-20 rule’ and ‘Occam’s
razor’ [76, pp. 157]. In this step, the goal is to find the simplest polynomial model that can be used to
explain the observed response. If neither a first nor second-order polynomial model (i.e., linear and
quadratic effects plus two-way interactions) fit the observations from the screening experiment, the
response surface is complex. Modelling a complex response surfaces is beyond the scope of TuneR,
as it requires advanced techniques such as neural networks [25, pp. 446], splines, or kriging [77].
If low-order polynomial models do not fit the response, TuneR instead relies on quasi-exhaustive
space-filling designs (see Fig. 3). We discuss this further in Section 5, where we use exhaustive
search to validate the result of the ImpRec tuning using TuneR.

When a low-order polynomial model has been fit, it might be possible to simplify it by removing
parameters that do not influence the response much. The idea is that removal of irrelevant and noisy
variables should improve the model. Note, however, that this process known as subset selection in
linear regression, has been widely debated among statisticians, referred to as “fishing expeditions”
and other derogatory terms (see for example discussions by Lukacs et al. [78] and Miller [79, pp. 8]).
Still, when tuning an SE tool with a multitude of parameters, reducing the number of factors might
be a necessary step for computational reasons. Moreover, working with a reduced set of parameters
might reduce the risk of overfitting [80]. A standard approach is stepwise backward elimination [81,
pp. 336], i.e., to iteratively remove parameters until all that remain have a significant effect on the
response. While parameters with high p-values are candidates for removal [82, pp. 277], all such
operations should be done with careful consideration. We recommend visualizing the data (cf. Fig. 5
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and 6), and trying to understand why the screening experiment resulted in the response. Also, note
that any parameter involved in interaction or quadratic effects must be kept.

To fit low-order polynomial models for ImpRec’s response surface, we use the R package
rsm [83], and the package visreg [84] to visualize the results. Assuming that screening.csv has
been loaded to screening, Listing 2 and 3 fit a first-order and second-order polynomial model,
respectively.

Listing 2: Fitting a first-order polynomial model with rsm [83]. The results are truncated.
1 > FO model <− rsm ( r e s p ˜ FO( a lpha , p e n a l t y , s t a r t , l e v e l ) , d a t a = s c r e e n i n g )
2 > summary ( FO model )
3
4 C a l l :
5 rsm ( f o r m u l a = r e s p ˜ FO( a lpha , p e n a l t y , s t a r t , l e v e l ) , d a t a = s c r e e n i n g )
6
7 E s t i m a t e S td . E r r o r t v a l u e Pr (>| t | )
8 ( I n t e r c e p t ) 2 .4976 e−01 4 .2850 e−03 58 .2855 <2e−16 ∗∗∗
9 a l p h a 4 .9432 e−02 5 .7393 e−03 8 .6129 <2e−16 ∗∗∗

10 p e n a l t y 8 .8721 e−04 7 .0248 e−04 1 .2630 0 .2067
11 s t a r t 1 .2453 e−04 1 .2052 e−05 10 .3327 <2e−16 ∗∗∗
12 l e v e l 6 .9603 e−05 8 .8805 e−05 0 .7838 0 .4332
13 −−−
14 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
15
16 M u l t i p l e R−s q u a r e d : 0 . 0 5 0 7 6 , A d j u s t e d R−s q u a r e d : 0 .04965
17 F− s t a t i s t i c : 45 .79 on 4 and 3425 DF , p−v a l u e : < 2 . 2 e−16
18
19 A n a l y s i s o f V a r i a n c e Tab le
20
21 Response : r e s p
22 Df Sum Sq Mean Sq F v a l u e Pr (>F )
23 FO( a lpha , p e n a l t y , s t a r t , l e v e l ) 4 2 .234 0 .55859 45 .789 < 2 . 2 e−16
24 R e s i d u a l s 3425 41 .782 0 .01220
25 Lack of f i t 3425 41 .782 0 .01220
26 Pure e r r o r 0 0 .000

The second order model fits the response better than the first order model; the lack of fit sum
of squares is 29.1841 versus 41.782 (cf. Listing 3:62 and Listing 2:25). Moreover, Listing 3:44-
47 shows that the parameters PENALTY , START , and LEV EL have a quadratic effect on
the response. Also, interaction effects are significant, as shown by alpha:start, penalty:start, and
start:level (cf. Listing 3:38-43). Fig. 5 visualizes∗ how the second order model fits the response,
divided into the four parameters. As each data point represents an experimental run, we conclude
that there is a large spread in the response. For most individual parameter values, there are
experimental runs that yield an Rc@20 between approximately 0.1 and 0.4. Also, in line with
Listing 3, we see that increasing START appears to improve the response, but the second order
model does not fit particularly well.

Listing 3: Fitting a second-order polynomial model with rsm [83]. The results are truncated.
27 > SO model <− rsm ( r e s p ˜ SO( a lpha , p e n a l t y , s t a r t , l e v e l ) , d a t a = s c r e e n i n g )
28 > summary ( SO model )
29 C a l l :
30 rsm ( f o r m u l a = r e s p ˜ SO( a lpha , p e n a l t y , s t a r t , l e v e l ) , d a t a = s c r e e n i n g )
31
32 E s t i m a t e S td . E r r o r t v a l u e Pr (>| t | )
33 ( I n t e r c e p t ) 2 .1502 e−01 6 .1700 e−03 34 .8493 < 2 . 2 e−16 ∗∗∗
34 a l p h a 2 .6868 e−02 1 .8997 e−02 1 .4143 0 .1573604
35 p e n a l t y 4 .1253 e−03 2 .4574 e−03 1 .6787 0 .0932935 .
36 s t a r t 1 .2814 e−03 4 .1704 e−05 30 .7247 < 2 . 2 e−16 ∗∗∗
37 l e v e l 1 .2045 e−03 3 .2053 e−04 3 .7579 0 .0001742 ∗∗∗
38 a l p h a : p e n a l t y −4.5460 e−04 1 .7894 e−03 −0.2541 0 .7994640
39 a l p h a : s t a r t 3 .3458 e−04 3 .0698 e−05 10 .8993 < 2 . 2 e−16 ∗∗∗
40 a l p h a : l e v e l 5 .5608 e−05 2 .2620 e−04 0 .2458 0 .8058257

∗R command: > visreg(SO model)
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41 p e n a l t y : s t a r t 3 .3783 e−06 3 .7573 e−06 0 .8991 0 .3686588
42 p e n a l t y : l e v e l 6 .7390 e−05 2 .7687 e−05 2 .4340 0 .0149839 ∗
43 s t a r t : l e v e l −4.9485 e−06 4 .7499 e−07 −10.4182 < 2 . 2 e−16 ∗∗∗
44 a l p h a ˆ2 −1.1659 e−02 1 .7181 e−02 −0.6786 0 .4974522
45 p e n a l t y ˆ2 −5.8485 e−04 2 .7071 e−04 −2.1604 0 .0308128 ∗
46 s t a r t ˆ2 −2.5851 e−06 7 .3816 e−08 −35.0212 < 2 . 2 e−16 ∗∗∗
47 l e v e l ˆ2 −1.2702 e−05 4 .4041 e−06 −2.8840 0 .0039508 ∗∗
48 −−−
49 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
50
51 M u l t i p l e R−s q u a r e d : 0 . 3 3 7 , A d j u s t e d R−s q u a r e d : 0 .3342
52 F− s t a t i s t i c : 124 on 14 and 3415 DF , p−v a l u e : < 2 . 2 e−16
53
54 A n a l y s i s o f V a r i a n c e Tab le
55
56 Response : r e s p
57 Df Sum Sq Mean Sq F v a l u e Pr (>F )
58 FO( a lpha , p e n a l t y , s t a r t , l e v e l ) 4 2 .2343 0 .55859 65 .363 < 2 . 2 e−16
59 TWI( a lpha , p e n a l t y , s t a r t , l e v e l ) 6 2 .0014 0 .33356 39 .032 < 2 . 2 e−16
60 PQ( a lpha , p e n a l t y , s t a r t , l e v e l ) 4 10 .5963 2 .64907 309 .983 < 2 . 2 e−16
61 R e s i d u a l s 3415 29 .1841 0 .00855
62 Lack of f i t 3415 29 .1841 0 .00855
63 Pure e r r o r 0 0 .0000

Listing 3 suggests that all four parameters are important when modelling the response surface.
The statistical significance of the two parameters START and LEV EL is stronger than for
ALPHA and PENALTY . However, ALPHA is involved in a highly significant interaction effect
(alpha:start in Listing 3:39). Also, the quadratic effect of PENALTY on the response is significant
(penaltyˆ2 in Listing 3:45). Consequently, we do not simplify the second order model of the ImpRec
response by reducing the number of parameters.
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Figure 5. Visualization of the second order model using visreg [84].

Fig. 6 displays boxplots of the response per parameter, generated with ggplot2∗ [85]. Based on
the boxplots, we decide that a promising region for further tuning appears to involve high ALPHA
values, START between 32 and 128, and LEV EL = 4. The parameter value of PENALTY
however, does not matter much, as long as it is not too small, thus we consider values around
1 promising. An experimental run with the setting ALPHA = 0.9, PENALTY = 1, START =
64, LEV EL = 4 gives a response of Rc@20=0.46875, compared to 0.41875 for the default setting.
Thus, this 11.9% increase of the response confirms the choice of a promising region.

We summarize the results from screening the ImpRec parameters as follows:

• Centrality values of artifacts are more important than textual similarity when predicting
impact (ALPHA close to 1). Thus, previously impacted artifacts (i.e., artifacts with high
centrality in the network) are likely to be impacted again.

• The low accuracy of the textual similarity is also reflected by the high parameter value of
START ; many starting points should be used as compensation.

• Regarding LEV EL and PENALTY we observe that following a handful of issue-issue links
is beneficial, trying even broader searches however is not worthwhile.

∗R commands for the START parameter:
> start box < − ggplot(screening, aes(factor(start), resp))
> start box+ geom boxplot()
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Figure 6. Value of the response for different parameter settings. Note that the x-axis is only linear in the first
plot (ALPHA).

• Also, severely penalizing distant artifacts does not benefit the approach, i.e., most related
issues are meaningful to consider.

• A promising region, i.e., a suitable start setting for Phase 3, appears to be around ALPHA =
0.9, PENALTY = 1, START = 64, LEV EL = 4.

4.3. Phase 3: Apply Response Surface Methodology

The third phase in TuneR uses RSM to identify the optimal setting. The first part of RSM is an
iterative process. We use a factorial design to fit a first-order model to the response surface, and
then gradually modify the settings along the most promising direction, i.e., the path of the steepest
ascent. Then, once further changes along that path do not yield improved responses, the intention is
to pin-point the optimal setting in the vicinity. The pin-pointing is based on analyzing the stationary
points of a second-order fit of that particular region of the response surface, determined by applying
an experiment using CCD (cf. Fig. 1). We describe Steps A and B (i.e., the iterative part) together
in the following subsection, and present Steps C and D in the subsequent subsections.
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When applying RSM, an important aspect is to use an appropriate coding transformation. The
way the data are coded affects the results of the steepest ascent analysis. If all coded variables in
the experiment vary over the same range, typically -1 and 1, each parameter gets an equal share in
potentially determining the steepest ascent path [83]. On the other hand, if the scaling factors are
not equal, the path of steepest ascent obtained by fitting a model to the raw predictor values will
differ from the path obtained in the coded units, decoded to the original scale.

4.3.1. A and B: Factorial designs, First-order Models, and Iteration Iteration of the first two steps
is intended to quickly move toward the optimum. To find the direction, we design an experiment
using 2k factorial design and fit a first-order model of the response surface. The factorial design
uses the outcome from Phase 2 as the center point, and for each parameter, we select a high value
and a low value, referred to as the factorial range [19]. Selecting a feasible factorial range is one of
the major challenges in RSM, another one is to select an appropriate step size.

Selecting a suitable factorial range for a computer experiment is a bit different than for a physical
experiment. In traditional DoE, a too narrow range generates a factorial experiment dominated by
noise. While noise is not a threat in experiments aimed at tuning SE tools, a too narrow range will
instead not show any difference in the response at all. On the other hand, the range can also be
too broad, as the response surface might then be generalized too much. Dunn reports that selecting
extreme values is a common mistake in DoE, and suggests selecting 25% of the extreme range as
a rule-of-thumb [19]. Since the number of tuning experiments typically is not limited in the same
way as physical experiments, it is possible to gradually increase the factorial range until there is a
difference in the response.

The factorial experiment yields the direction of the steepest ascent, but the next question is how
much to adjust the setting in that direction, i.e., the step size. Again we want the difference to be
large enough to cause a change in the response in a reasonable amount of experiments, but not so
large that we move over an optimum. A good decision relies on the experimenter’s understanding
of the parameters involved in the SE tool. Otherwise, a rule-of-thumb is to choose a step size equal
to the value of the largest coefficient describing the direction of the steepest ascent [86].

For tuning ImpRec, we decide to fit a first-order model in the region: ALPHA =
0.9± 0.05, PENALTY = 1± 0.5, START = 64± 4, LEV EL = 4± 1. Our experience from the
screening experiments suggests that these levels should result in a measurable change in the
response. Table III shows the 2k factorial design we apply, and the results from the 16 experimental
runs. We report the experimental runs in Yates’ standard order according to the DoE convention,
i.e., starting with low values, and then alternating the sign of the first variable the fastest, and the
last variable the slowest [20, pp. 237]. Finally, we store the table, except the coded variables, in
rsm1 factorial.csv. Listing 4 shows the analysis of the results, conducted in coded variables. The
standard coding transformation from a natural variable vN to a coded variable vC in DoE is [19, pp.
247]:

vc =
vn − centerv

∆v/2
(2)

where ∆v is the factorial range of vn, and centerv is its center point. For the four parameters of
ImpRec, the coding is presented in Listing 4:65.

Listing 4 reveals that x1 and x3 (i.e., ALPHA and START in coded values) affect the response
the most. As visualizing the response surface in more than two variables is difficult, Fig. 7 shows
the contour plot∗ wrt. x1 and x3, generated using visreg [84]. Our experiments suggest that higher
responses can be achieved if we increase ALPHA and START , and decrease PENALTY and
LEV EL. We decide to use the step size provided by the direction of the steepest ascent in original
units, as it already constitutes actionable changes to the parameters (cf. Listing 4:96). Table IV
shows the experimental results when gradually changing the ImpRec setting in the direction:
(+0.046,−0.0223,+1.338,−0.111). Note that START and LEV EL are integer parameters and
thus rounded off accordingly (highlighted in italic font), and that ALPHA has a maximum value
of 1 (or 0.99 for practical reasons). We observe that the response is monotonically increasing until
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Table III. First RSM iteration, 2k factorial design for the four parameters ALPHA, PENALTY , START ,
and LEV EL.

Coded variables Natural variables
Exp. Run x1 x2 x3 x4 ALPHA PENALTY START LEVEL Resp.

1 -1 -1 -1 -1 0.85 0.8 60 3 0.468750
2 1 -1 -1 -1 0.95 0.8 60 3 0.481250
3 -1 1 -1 -1 0.85 1.2 60 3 0.468750
4 1 1 -1 -1 0.95 1.2 60 3 0.478125
5 -1 -1 1 -1 0.85 0.8 68 3 0.478125
6 1 -1 1 -1 0.95 0.8 68 3 0.484375
7 -1 1 1 -1 0.85 1.2 68 3 0.475000
8 1 1 1 -1 0.95 1.2 68 3 0.484375
9 -1 -1 -1 1 0.85 0.8 60 5 0.471875

10 1 -1 -1 1 0.95 0.8 60 5 0.478125
11 -1 1 -1 1 0.85 1.2 60 5 0.471875
12 1 1 -1 1 0.95 1.2 60 5 0.478125
13 -1 -1 1 1 0.85 0.8 68 5 0.468750
14 1 -1 1 1 0.95 0.8 68 5 0.484375
15 -1 1 1 1 0.85 1.2 68 5 0.468750
16 1 1 1 1 0.95 1.2 68 5 0.481250

step 10 (in bold font in Table IV). Two additional steps in the same direction confirm the decreased
response.

Figure 7. Contour plot displaying the two most important parameters (ALPHA and START ) in coded
variables, generated using visreg [84]. We have added an arrow showing the direction of the steepest ascent.

[NOTE: Color figure can be viewed in the online issue.]

Listing 4: Using rsm [83] to find the direction of the steepest ascent.
64 > rsm1 <− r e a d . csv ( ” r s m 1 f a c t o r i a l . c sv ” )
65 > r sm1 coded <− coded . d a t a ( rsm1 , x1 ˜ ( a lpha − 0 . 9 ) / 0 . 0 5 ,
66 x2 ˜ ( p e n a l t y −1 ) / 0 . 2 , x3 ˜ ( s t a r t −64) /4 , x4 ˜ ( l e v e l −4 ) /1 )
67 > rsm1 model <− rsm ( r e s p ˜FO( x1 , x2 , x3 , x4 ) , d a t a = rsm1 coded )
68 > summary ( rsm1 model )
69
70 C a l l :
71 rsm ( f o r m u l a = r e s p ˜ FO( x1 , x2 , x3 , x4 ) , d a t a = rsm1 coded )
72

∗R command: > visreg(rsm1 model, ”x1”, ”x3”)
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Table IV. Iterative exploration along the direction of the steepest ascent. The tenth step, presented in bold
font, results in a decreased response. Values in italic font are rounded off to the nearest integer value.

Step ALPHA PENALTY START LEV EL Resp.
0 0.9 1 64 4 0.46875
1 0.946456 0.977701 65.33793 3.888506 0.471875
2 0.992912 0.955402 66.67586 3.777012 0.4875
3 0.99 0.933104 68.01379 3.665518 0.4875
4 0.99 0.910805 69.35172 3.554024 0.4875
5 0.99 0.888506 70.68965 3.442529 0.490625
6 0.99 0.866207 72.02758 3.331035 0.49375
7 0.99 0.843908 73.36551 3.219541 0.5
8 0.99 0.821609 74.70344 3.108047 0.50625
9 0.99 0.799311 76.04137 2.996553 0.50625
10 0.99 0.777012 77.37929 2.885059 0.49375
11 0.99 0.754713 78.71722 2.773565 0.490625
12 0.99 0.732414 80.05515 2.662071 0.490625

73 E s t i m a t e S td . E r r o r t v a l u e Pr (>| t | )
74 ( I n t e r c e p t ) 0 .47636719 0 .00069429 686 .1210 < 2 . 2 e−16 ∗∗∗
75 x1 0 .00488281 0 .00069429 7 .0328 2 .175 e−05 ∗∗∗
76 x2 −0.00058594 0 .00069429 −0.8439 0 .41668
77 x3 0 .00175781 0 .00069429 2 .5318 0 .02788 ∗
78 x4 −0.00058594 0 .00069429 −0.8439 0 .41668
79 −−−
80 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
81
82 M u l t i p l e R−s q u a r e d : 0 . 8 3 8 9 , A d j u s t e d R−s q u a r e d : 0 .7804
83 F− s t a t i s t i c : 14 .32 on 4 and 11 DF , p−v a l u e : 0 .0002442
84
85 A n a l y s i s o f V a r i a n c e Tab le
86
87 Response : r e s p
88 Df Sum Sq Mean Sq F v a l u e Pr (>F )
89 FO( x1 , x2 , x3 , x4 ) 4 0 .00044189 1 .1047 e−04 14 .324 0 .0002442
90 R e s i d u a l s 11 0 .00008484 7 .7130 e−06
91 Lack of f i t 11 0 .00008484 7 .7130 e−06
92 Pure e r r o r 0 0 .00000000
93
94 D i r e c t i o n o f s t e e p e s t a s c e n t ( a t r a d i u s 1 ) :
95 x1 x2 x3 x4
96 0 .9291177 −0.1114941 0 .3344824 −0.1114941
97
98 C o r r e s p o n d i n g i n c r e m e n t i n o r i g i n a l u n i t s :
99 a l p h a p e n a l t y s t a r t l e v e l

100 0 .04645588 −0.02229882 1 .33792946 −0.11149412

The second iteration starts where the first ended, i.e., using the ninth step in Table IV as its center
point. The parameter ALPHA is already at its maximum value, thus we focus on PENALTY ,
START , and LEV EL. We decide to use the following factorial ranges: PENALTY = 0.80±
0.04, START = 78± 2, and LEV EL = 3± 1. Table V shows the corresponding 2k factorial
experiment. We store the table, except the coded variables, in rsm2 factorial.csv. Listing 5 shows
the analysis of the results, including the coding transformation of the parameters.

Listing 5 shows that the direction of the steepest ascent involves changing the value of START
and LEV EL, but not PENALTY . We also know that the setting (0.99, 0.80, 76, 3) yields 0.50625
(cf., step 9 in Table IV). Table VI shows the results from iteratively moving from this setting along
the direction of the steepest ascent. As we do not observe any increases in the response when
changing the two integer parameters START and LEV EL, we conclude that this ImpRec setting
is in the region of the maximum. In the next TuneR step, the goal is to pin-point the exact position
of the stationary point.
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Table V. Second RSM iteration, 2k factorial design for the three parameters PENALTY , START , and
LEV EL.

Coded variables Natural variables
Exp. Run x1 x2 x3 PENALTY START LEV EL Resp.

1 -1 -1 -1 0.76 76 2 0.465625
2 1 -1 -1 0.84 76 2 0.5
3 -1 1 -1 0.76 80 2 0.4625
4 1 1 -1 0.84 80 2 0.490625
5 -1 -1 1 0.76 76 4 0.465625
6 1 -1 1 0.84 76 4 0.5
7 -1 1 1 0.76 80 4 0.4625
8 1 1 1 0.84 80 4 0.490625

Listing 5: Second RSM iteration, using rsm [83] to find a new direction of the steepest ascent.
101 > rsm2 <− r e a d . csv ( ” r s m 2 f a c t o r i a l . c sv ” )
102 > r sm2 coded <− coded . d a t a ( rsm2 , x2 ˜ ( p e n a l t y −0 . 8 0 ) / 0 . 0 4 ,
103 x3 ˜ ( s t a r t −78) /2 , x4 ˜ ( l e v e l −3 ) /1 )
104 > rsm2 model <− rsm ( r e s p ˜FO( x2 , x3 , x4 ) , d a t a = rsm2 coded )
105 > summary ( rsm2 model )
106
107 C a l l :
108 rsm ( f o r m u l a = r e s p ˜ FO( x2 , x3 , x4 ) , d a t a = rsm2 coded )
109
110 E s t i m a t e S td . E r r o r t v a l u e Pr (>| t | )
111 ( I n t e r c e p t ) 4 .7969 e−01 7 .8125 e−04 614 4 .222 e−11 ∗∗∗
112 x2 6 .7465 e−18 7 .8125 e−04 0 1 .00000
113 x3 −3.1250 e−03 7 .8125 e−04 −4 0 .01613 ∗
114 x4 1 .5625 e−02 7 .8125 e−04 20 3 .688 e−05 ∗∗∗
115 −−−
116 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
117
118 M u l t i p l e R−s q u a r e d : 0 . 9 9 0 5 , A d j u s t e d R−s q u a r e d : 0 .9833
119 F− s t a t i s t i c : 138 .7 on 3 and 4 DF , p−v a l u e : 0 .0001695
120
121 A n a l y s i s o f V a r i a n c e Tab le
122
123 Response : r e s p
124 Df Sum Sq Mean Sq F v a l u e Pr (>F )
125 FO( x2 , x3 , x4 ) 3 0 .00203125 0 .00067708 138 .67 0 .0001695
126 R e s i d u a l s 4 0 .00001953 0 .00000488
127 Lack of f i t 4 0 .00001953 0 .00000488
128 Pure e r r o r 0 0 .00000000
129
130 D i r e c t i o n o f s t e e p e s t a s c e n t ( a t r a d i u s 1 ) :
131 x2 x3 x4
132 4 .233906 e−16 −1.961161 e−01 9 .805807 e−01
133
134 C o r r e s p o n d i n g i n c r e m e n t i n o r i g i n a l u n i t s :
135 p e n a l t y s t a r t l e v e l
136 0 .0000000 −0.3922323 0 .9805807

4.3.2. C: CCD and a Second-order Polynomial Model The final step in RSM is to fit a second-order
polynomial model to the region close to the maximum, and to locate the stationary point. The most
popular design for fitting a second-order model is CCD [20, pp. 501] (cf. C in Fig. 1). In traditional
DoE, it is recommended to conduct three to five experimental runs at the center point. When tuning
an SE tool, we do not need more than one, thus the only choice for the experimental design is the
distance of the axial runs. As presented in Fig. 1, we recommend a rotatable design, i.e., that all
settings in the tuning experiment should be at the same distance from the center point.

In the CCD experiment for tuning ImpRec, we focus on the two parameters START and
LEV EL. Listing 5:134 shows that these two parameters dwarf PENALTY in this region.
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Table VI. Iterative exploration along the new direction of the steepest ascent. No changes result in an
increased response, indicating that the current ImpRec setting is close to the optimum. Values in italic font

are rounded off to the nearest integer value.

Step ALPHA PENALTY START LEV EL Resp.
0 0.99 0.80 76 3 0.50625
1 0.99 0.80 75.60777 3.980581 0.5
2 0.99 0.80 75.21554 4.961161 0.5
3 0.99 0.80 74.8233 5.941742 0.48125
4 0.99 0.80 74.43107 6.922323 0.45625

Table VII. Central composite design for the two parameters START and LEV EL. Values in italic font are
rounded off to the nearest integer value.

Coded variables Natural variables
Exp. Run x3 x4 START LEV EL Resp.

1 -1 -1 72 2 0.453125
2 1 -1 80 2 0.4625
3 -1 1 72 4 0.490625
4 1 1 80 4 0.490625
5 0 0 76 3 0.50625
6 -1.414 0 70.344 3 0.490625
7 +1.414 0 81.656 3 0.48125
8 0 -1.414 76 4.414 0.5
9 0 +1.414 76 1.586 0.465625

Furthermore, the parameter ALPHA is already at its maximum value. Table VII shows the CCD
experiment and the corresponding responses. We store the table, except the coded variables, in
ccd.csv. Listing 6 shows the analysis of the results, including the coding transformation of the
parameters. In the final step in Phase 3 of TuneR, the outcome of the CCD experiment is analyzed.

Listing 6: Using rsm [83] to fit a second-order model of the response surface in the vicinity of the
optimal response.

137 > ccd <− r e a d . csv ( ” ccd . csv ” )
138 > c c d c o d e d <− coded . d a t a ( ccd , x3 ˜ ( s t a r t −76) /2 , x4 ˜ ( l e v e l −3 ) /1 )
139 > ccd mode l <− rsm ( r e s p ˜SO( x3 , x4 ) , d a t a = c c d c o d e d )
140 > summary ( ccd mode l )
141
142 C a l l :
143 rsm ( f o r m u l a = r e s p ˜ SO( x3 , x4 ) , d a t a = c c d c o d e d )
144
145 E s t i m a t e S td . E r r o r t v a l u e Pr (>| t | )
146 ( I n t e r c e p t ) 0 .50614821 0 .00268418 188 .5672 4 .745 e−09 ∗∗∗
147 x3 −0.00027574 0 .00068784 −0.4009 0 .7090065
148 x4 0 .01666667 0 .00163740 10 .1788 0 .0005247 ∗∗∗
149 x3 : x4 −0.00117188 0 .00100270 −1.1687 0 .3074152
150 x3 ˆ2 −0.00223432 0 .00039648 −5.6354 0 .0048794 ∗∗
151 x4 ˆ2 −0.02310668 0 .00268905 −8.5929 0 .0010078 ∗∗
152 −−−
153 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
154
155 A n a l y s i s o f V a r i a n c e Tab le
156
157 Response : r e s p
158 Df Sum Sq Mean Sq F v a l u e Pr (>F )
159 FO( x3 , x4 ) 2 0 .00166925 0 .00083463 5 .1884 e +01 0 .001378
160 TWI( x3 , x4 ) 1 0 .00002197 0 .00002197 1 .3659 e +00 0 .307415
161 PQ( x3 , x4 ) 2 0 .00137822 0 .00068911 4 .2838 e +01 0 .001990
162 R e s i d u a l s 4 0 .00006435 0 .00001609
163 Lack of f i t 3 0 .00006435 0 .00002145 4 .4547 e +29 1 .101 e−15
164 Pure e r r o r 1 0 .00000000 0 .00000000
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165
166 S t a t i o n a r y p o i n t o f r e s p o n s e s u r f a c e :
167 x3 x4
168 −0.1573278 0 .3646356
169
170 S t a t i o n a r y p o i n t i n o r i g i n a l u n i t s :
171 s t a r t l e v e l
172 75 .685344 3 .364636
173
174 E i g e n a n a l y s i s :
175 $ v a l u e s
176 [ 1 ] −0.002217888 −0.023123113
177
178 $ v e c t o r s
179 [ , 1 ] [ , 2 ]
180 x3 −0.9996068 0 .0280393
181 x4 0 .0280393 0 .9996068

4.3.3. D: Evaluate Stationary Point The purpose of the previous TuneR step was to locate a
stationary point in the vicinity of the optimal setting. The stationary point can either represent a
maximum response, a minimum response, or a saddle point. The nature of the stationary point is
given by the signs of the eigenvalues: for a maximum response all are negative, and for a minimum
response all are positive. Thus, if the eigenanalysis resulted in a maximum point, the tuning
experiments have resulted in a pin-pointed optimal setting for the SE tool. If the eigenvalues have
different signs on the other hand, then the CCD experiment located a saddle point. The experimenter
should then perform ridge analysis [87], i.e., conducting additional experimental runs following the
ridge in both directions.

Regarding the stationary point identified for the tuning of ImpRec, it is located close
to START = 76, LEV EL = 3 as shown in Listing 6:170. The eigenanalysis gives that it
represents a maximum point (cf. Listing 6:174). Fig. 8 visualizes the response surface in this
region∗ using visreg [84], confirming that a setting representing a maximum response has
been identified. Thus, we conclude the parameter tuning of ImpRec as follows: ALPHA =
0.99, PENALTY = 0.80, START = 76, LEV EL = 3. Using the new parameter setting of
ImpRec, we obtain Rc@20 = 0.50625 compared to Rc@20 = 0.41875 using the default settings
of ImpRec (ALPHA = 0.83, PENALTY = 0.2, START = 17, LEV EL = 7). Applying TuneR
has thus improved the Rc@20 for ImpRec by 20.9% on this particular dataset.

4.4. Evaluate the Setting

The final activity in TuneR is to perform an evaluation of the new parameter setting. Optimization
based on a single response metric might result in a far too naı̈ve perspective, thus a more
holistic analysis must be employed to determine the value of the new parameter setting. Numbers
typically do not cover all aspects of a studied phenomenon [88], and there is a risk that the
experimenter pushes the setting too much based on quantitative metrics, squeezing percentages
without considering overall values of the process the SE tool is intended to support. The final activity
of TuneR aims at taking a step back, and considering the bigger picture.

Fig. 9 shows a comparison of the ImpRec evaluation using the default setting (dashed line) and
the tuned setting (solid line). The four subplots show the cut-off, N, of the ranked output list on the
x-axis, and the following IR measures:

A: Precision, displaying the decrease that is characteristic to IR evaluations [89].
B: Recall, including the target metric for the tuning experiments: Rc@20.
C: F1-score, the (balanced) harmonic mean of recall and precision.
D: MAP, an IR measure that combines recall with the performance of ranking.

∗R command: > visreg2d(ccd model, ”x3”, ”x4”, plot.type = ”persp”)
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Figure 8. Visualization of the response surface wrt. x3 and x4, i.e., START and LEV EL in coded variables.
ALPHA and PENALTY are fixed to 0.99 and 0.80, respectively. f(x3, x4) shows the response.

The evaluation reveals that while the tuning has resulted in increases with regard to recall (cf.
Fig. 9, subplot B), the improvements have been paid by other metrics. Indeed, TuneR has increased
the target metric Rc@20 by 20.9%. Moreover, the response for higher N is even higher, reaching as
high as 0.544 for Rc@43-50 (an increase by 27.0%). However, at low N the default setting actually
reaches a higher recall, and first at Rc@11 the tuned setting constitutes an improvement. To further
add to the discussion, the three subplots A, C, and D all show that the default setting outperforms the
tuned setting. For MAP@N, the difference between the default setting and the tuned setting actually
increases for large N.

The evaluation of the tuned parameter setting for ImpRec, and the identified trade-off, show the
importance of the final step in TuneR. It is not at all clear from Fig. 9 whether the new parameter
setting would benefit an engineer working with ImpRec. While we have carefully selected the
response metrics, the trade-off appears to be bigger than expected. Not only is the trade-off between
recall and precision evident, but also the trade-off within Rc@N; only after the cut-off N = 11
the recall benefits from the new setting. Our work is an example of a purely quantitative in silico
evaluation, conducted as computer experiments without considering the full operational context of
ImpRec [90]. To fully understand how switching between the two settings affect the utility [91] of
ImpRec, human engineers actually working with the tool must be studied. We report from such an
in situ study in another paper [18], in which we deployed ImpRec in two development teams in
industry, one with the default setting and one with the tuned setting.

5. TUNING IMPREC USING EXHAUSTIVE SEARCH

If the screening experiments of TuneR (Phase 2) fails to identify actionable regularities in the
response surface, i.e., there is considerable lack of fit for both first and second-order models, the
experimenter might decide to design an experiment of a more exhaustive nature. However, as an
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Figure 9. Comparison of ImpRec output with default settings (dashed line) and tuned settings (solid line).
Subplots clockwise from the first quadrant: Recall@N, MAP@N, F1-score@N, and Precision@N.

exhaustive amount of experimental runs is likely to be computationally expensive, a first try should
be to investigate if a low-order polynomial model fit for the promising part of the response surface.
If that is the case, Phase 3 could still be applicable in that specific region of the response surface.
Otherwise, at least if the set of critical parameters has been reduced, a more exhaustive space-filling
design (i.e., a brute force approach [92]) might be the remaining option to find a tuned setting. The
purpose of this section is twofold. First, we present the design of a fine-granular space-filling design
for tuning ImpRec. Second, the result of the exhaustive search acts as a proof-of-concept of TuneR,
as we compare the results to the outcome from Phase 3.

For tuning of ImpRec, we design a uniform space-filling design. Table VIII shows the levels we
explore in the experimental runs. The screening experiment described in Section 4.2 shows that
ALPHA appears to be more important than PENALTY , thus we study it with a finer granularity.
START and LEV EL are both positive integer parameters, and we choose to explore them starting
from their lowest possible values. As the nature of the issue-issue links is unlikely to result in issue
chains longer than five, setting the highest value to 9 is already a conservative choice. The potential
of large START on the other hand is less clear, but Fig. 6 suggests that values between 16 and
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Table VIII. Uniform space-filling design for exhaustive approach to tuning of ImpRec. The design requires
187,110 experimental runs, compared to 3,430 in the screening experiment (cf. Table II).

Parameter #Levels Values
ALPHA 21 0.01, 0.05, 0.10, 0.15, . . . , 0.95, 0.99
PENALTY 11 0.01, 0.5, 1, 1.5, . . . , 5
START 90 1, 2, 3, . . . , 90
LEV EL 9 1, 2, . . . , 9

Table IX. Top 10 results from the exhaustive experiment. The third column shows how many different
settings that yield the response.

Rc@20 #Settings
1 0.5375 12
2 0.534375 72
3 0.53125 60
4 0.528125 72
5 0.525 108
6 0.521875 238
7 0.51875 96
8 0.515625 120
9 0.5125 238
10 0.509375 83

128 result in the best Rc@20. However, large START require infeasible execution times, thus we
restrict the parameter to 90 for practical reasons.

Table IX shows the best results from running the exhaustive tuning experiments. In total, the
experiments required 1,253 hours (about 52 days) to complete on a desktop computer∗, with an
average of 24 s per experimental run. The best result we obtain in the exhaustive experiments is
Rc@20=0.5375, a response we get from 12 different settings, a value that is 6.2% better than what
we found using the three main phases of TuneR (Rc@20=0.50625). By looking at the 12 settings
yielding Rc@20=0.5375, we note that START = 51 and LEV EL = 3 provide the best results.
However, regarding the two remaining parameters, the pattern is less clear; ALPHA varies from
0.6 to 0.99, and PENALTY is either at low range (0.5 or 1.5) or at high range (4.5 or 5). Fig. 10
summarizes the exhaustive experiment by presenting the distribution of responses per setting, as
well as the execution times.

6. DISCUSSION

Finding feasible parameter settings for SE tools is a challenging, but important, activity. SE tools
are often highly configurable through parameters, but there is typically no silver bullet; there is not
one default parameter setting that is optimal for all contexts. However, often advanced approaches
are implemented in state-of-the-art SE tools. As a result of the tools’ inherent complexity, academic
researchers have published numerous papers on how to improve tool output by trying different
settings and tuning internal algorithms. Consequently, SE tool developers cannot expect end users
to understand all the intricate details of their implementations. Instead we argue that applied
researchers need to provide guidelines to stimulate dissemination of SE tools in industry, i.e., to
support transfer of research prototypes from academia to industry.

An established approach to improve processes is to use experiments. However, traditional DoE
was developed for physical processes, much different from the application of SE tools. In this paper

∗Intel Core i5-2500K quad-core CPU 3.30 GHz with 8 GB RAM.

PREPRINT (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



30 M. BORG

Figure 10. Distribution of results from the exhaustive experiment. The y-axes show the number of settings
that resulted in the output. The left figure displays Rc@20, and the right figure shows the execution time.

we introduced TuneR, a framework for tuning SE tools, using a combination of space-filling designs
and RSM. Several researchers have presented advice and guidelines on how to tune various SE
tools, but they typically address a specific family of tools, e.g., SBSE [6, 14], evolutionary software
testing [40], LDA for feature location [41], and trace retrieval [43]. TuneR is instead a general
framework, that can be applied for most types of SE tools.

As a proof-of-concept, and as a demonstration of TuneR’s ease of use, we presented a detailed
step-by-step tuning of the recommendation system ImpRec. Using TuneR we obtain a considerable
increase in the response variable of ImpRec, even though we considered the default setting already
good enough for tool deployment in industry (see our industrial case study for further details [18]).
We selected the default setting∗ based on ad hoc tuning during development of ImpRec, but
using TuneR resulted in a 20.9% higher response, i.e., an improvement from Rc@20=0.41875 to
Rc@20=0.50625. Thus, in contrast to the Arcuri and Fraser’s inconclusive results from tuning an
SBSE tool [14], we demonstrate that RSM can be a component in successful tuning of SE tools.

Applying TuneR to tune an SE tool provides insights beyond finding a feasible parameter setting.
Thanks to the screening phase, TuneR identifies the most important parameters, both in terms of
main effects and interaction effects. Especially interaction effects is missed when tuning tools using
less structured experimental designs, e.g., COST analysis and ad hoc tuning [19, pp. 212][20, pp.
4]. During tuning of ImpRec, we found that two interactions were significant: 1) positive interaction
between ALPHA and START , and 2) negative interaction between START and LEV EL. Thus,
if a high number of issue reports are used as starting points, then the ranking function should give
more weight to the centrality measure than the textual similarity. Furthermore, if the number of
starting points is high, then the number of links to follow in the knowledge base should be decreased.

Although resulting in a considerable improvement in the response, we found that the tuned
setting† obtained from TuneR still was not globally optimal. Using exhaustive experiments, we
identified settings that yield even higher responses, reaching as high as Rc@20=0.5375. However,
running exhaustive experiments comes at a high computational cost, and it is not certain that there
is enough return on investment. In our example, we used more than 50 days of computation time for
the exhaustive experiments, in total conducting 187,110 experimental runs, to find a 6.2% higher
response (Rc@0=0.5375) compared to the TuneR setting. Furthermore, we explored only four
parameters in the exhaustive experiments. For other SE tools the number of parameters might be
higher, and the combinatorial explosion would quickly lead to infeasible exhaustive experimental
designs. To mitigate this problem, the screening phase of TuneR could be used to identify the
dominating parameters, in line with common practice in traditional DoE [19, 20].

∗Default setting: ALPHA = 0.83, PENALTY = 0.2, START = 17, LEV EL = 7
†Tuned setting: ALPHA = 0.99, PENALTY = 0.80, START = 76, LEV EL = 3
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The exhaustive experiments revealed 12 different settings yielding the top response. A clear
pattern in the 12 settings was found: to obtain the best results, START and LEV EL were set
to 51 and 3, respectively. At the same time however, ALPHA and PENALTY could be set to
several different combinations of values. Based on the screening phase of TuneR, we concluded
that ALPHA should be set to high values, as “centrality values are more important than textual
similarity, i.e., previously impacted artifacts are likely to be impacted again” (see Section 4.2.2). In
hindsight, with the knowledge obtained from the exhaustive experiment, it appears that early fixing
ALPHA to 0.99 was not necessarily the right decision, as high responses apparently can be obtained
for a range of ALPHA values. Experimentation is an iterative process, and the experimenter’s
knowledge gradually increases. Based on the updated understanding of ALPHA, a next step could
be to do another TuneR screening focusing on 0.6 ≤ ALPHA ≤ 0.99.

We acknowledge three main threats to the validity of the tuned ImpRec setting we obtain
through TuneR. First, there is always a threat that focusing on a single response metric might
be an oversimplification, as discussed in Section 4.1.2. In Section 4.4, we show that while the
tuned setting leads to an improved response in Rc@20, with regard to most other metrics we
study in the evaluation of the new setting, the output was better for the default setting. Whether
Rc@20 is the best target metric is not certain, even though we posit that it reflects an important
quality aspect of ImpRec, resulting in maximization of true impact among a manageable amount
of recommendations. An alternative response metric could be MAP@20, also reported in the
evaluation in Section 4.4, a metric that also considers the ranking of the true output among the
top-20 recommendations. We stress that it is important to validate the response metric from the
start, otherwise TuneR will move the setting in a direction that does not bring value.

Second, while we carefully selected four parameters for the tuning experiments, there might be
additional important parameters at play. As discussed in Section 4.1.3, the text processing and IR
applied in ImpRec involve several potential variation points, yet we do not explore them in this
study. Consequently, it is possible that an IR expert could override the internals of Apache Lucene
with highly specialized implementations to obtain further improvements regarding finding similar
issue reports. Also, there might be interaction effects between a customized IR solution and the
tuned parameter setting we present. For example, an improved IR component could potentially
mean that ALPHA should be lowered to increase the influence of the textual similarities on the
final recommendations. However, while we cannot rule out that there exist other parameters that
would considerably impact ImpRec’s output, we did observe an increased response by tuning our
selection of parameters; Thus, we argue that our selection of parameters was valid.

Third, there is a risk that the default parameter setting was too poor to offer a fair comparison.
With a substandard baseline, obtaining a considerable improvement is simple. Regarding ImpRec
however, we are certain that the default parameter setting indeed provided good output. The
default setting evolved during development of ImpRec, i.e., development and parameter tuning
were intertwined activities, and from the start we tailored the setting for real data from the case
under study. When we reached feasible results, we labeled the corresponding setting ’default‘,
and deployed ImpRec in an industrial case study; Such studies with practitioners require a big
investment, and we would not have deployed our tool unless we were convinced that the default
setting was appropriate. We did not start developing TuneR until after the first deployment of
ImpRec, but instead deployed ImpRec with tuned settings later in another case, see Borg et al. [18]
for further details.

Furthermore, there are also some threats to the validity of the overall TuneR framework. While
our goal when developing TuneR was to present a framework generally applicable to tuning of
SE tools, the external validity [29] of the approach is still uncertain. We have only presented one
single proof-of-concept, i.e., the tuning of the recommendation system ImpRec, thus we need to
conduct additional tuning experiments, with other SE tools, to verify the generalizability. We plan
to continue evolving TuneR, and two involved activities we particularly want to focus on improving
are: 1) guidelines regarding parameter subset selection when fitting low-order polynomial models
during screening (Section 4.2.2), and 2) the step size selection in the RSM phase (Section 4.3.1).
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Finally, we argue that TuneR is easy to use, especially since we present hands-on examples in R,
but the only way to validate the usability is by letting others try the framework.

7. CONCLUSION

In this paper we presented TuneR, an experiment framework for tuning Software Engineering
(SE) tools. TuneR build on methods from Design of Experiments (DoE) and Design of Computer
Experiments (DoCE), two established fields with numerous successful applications in various
engineering disciplines [22]. However, both DoE and DoCE have been developed to address
experiments on phenomena with a representation in the physical world, either directly (DoE) or
indirectly through computer models (DoCE). We discussed how tuning of SE tools is different from
traditional experimentation, and how TuneR combines space-filling designs and factorial designs to
identify a feasible parameter setting.

As a proof-of-concept, we applied TuneR to tune ImpRec, a recommendation system for change
impact analysis, to a specific proprietary context. For all TuneR steps, we provided detailed
instructions on how to analyze the experimental output using various R packages. Using TuneR,
we increased the accuracy of the ImpRec recommendations by 20.9% with regard to recall among
the top-20 candidates. To validate the tuned setting, we also applied a more exhaustive space-filling
design, trying in total 187,110 parameter settings. We found parameter settings yielding a 6% higher
response, but running the experiment required more than 50 days of computation time. Thus, we
consider the proof-of-concept successful, as TuneR resulted in a similar response in a fraction of the
time.

A major threat when tuning an SE tool is that the selected response metric, i.e., the target for
optimization, does not fully capture the overall value of the tool. Optimizing a response might come
at a price; increases in one metric might be paid by decreases in other metrics. The tuning of ImpRec
is an example of this trade-off, and we show how precision, F1-score, and mean average precision
decrease with the new tuned setting. Even recall at lower cut-off points, i.e., when considering ten
or fewer recommendations from ImpRec, yields decreased results with the tuned parameter setting.
From this observation, we stress the importance of carefully selecting the response metric, and to
properly evaluate the consequences of the tuned parameter setting, before deploying the tuned SE
tool.
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29. Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A. Experimentation in Software Engineering: A

Practical Guide. Springer, 2012.
30. Lalit Narayan K, Mallikarjuna Rao K, Sarcar M. Computer Aided Design and Manufacturing. Prentice-Hall, 2008.
31. Vining G. Adapting Response Surface Methodology for Computer and Simulation Experiments. The Grammar of

Technology Development, Tsubaki H, Yamada S, Nishina K (eds.). Springer, 2008; 127–134.
32. Fang K, Li R, Sudjianto A. Design and Modeling for Computer Experiments. CRC Press, 2006.
33. Moon K. The Nature of Computer Programs: Tangible? Goods? Personal Property? Intellectual Property? European

Intellectual Property Review 2009; 31(8):396–407.
34. Berry D. The Philosophy of Software: Code and Mediation in the Digital Age. Palgrave Macmillan, 2011.
35. Fisher A. CASE: Using Software Development Tools. 2nd edn., Wiley, 1991.
36. Levy S, Steinberg D. Computer Experiments: A Review. Advances in Statistical Analysis 2010; 94(4):311–324.
37. Ansari N, Hou E. Computational Intelligence for Optimization. Springer, 2012.
38. Birattari M. Tuning Metaheuristics - A Machine Learning Perspective. Springer, 2009.
39. Wolpert D, Macready W. No Free Lunch Theorems for Optimization. Transactions on Evolutionary Computation

1997; 1(1):67–82.
40. Da Costa L, Schoenauer M. Bringing Evolutionary Computation to Industrial Applications with GUIDE. Proc. of

the 11th Annual Conference on Genetic and Evolutionary Computation, 2009; 1467–1474.
41. Biggers L, Bocovich C, Capshaw R, Eddy B, Etzkorn L, Kraft N. Configuring Latent Dirichlet Allocation Based

Feature Location. Empirical Software Engineering 2014; 19(3):465–500.
42. Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P. Automated Bug Assignment: Ensemble-based

Machine Learning in Large Scale Industrial Contexts. Under revision in Empirical Software Engineering 2015; .
43. Lohar S, Amornborvornwong S, Zisman A, Cleland-Huang J. Improving Trace Accuracy Through Data-driven

Configuration and Composition of Tracing Features. Proc. of the 9th Joint Meeting on Foundations of Software
Engineering, 2013; 378–388.

44. Zaragoza H, Najork M. Web Search Relevance Ranking. Encyclopedia of Database Systems, Liu L, Oszu T (eds.).
Springer, 2009; 3497–3501.

PREPRINT (2015)
Prepared using smrauth.cls DOI: 10.1002/smr

learnche.mcmaster.ca/pid/PID.pdf
http://www.R-project.org


34 M. BORG

45. Macdonald C, Santos R, Ounis I. The Whens and Hows of Learning to Rank for Web Search. Information Retrieval
2013; 16(5):584–628.

46. Vaidhyanathan S. The Googlization of Everything: (And Why We Should Worry). University of California Press,
2012.

47. Binkley D, Lawrie D. Learning to Rank Improves IR in SE. Proc. of the 30th International Conference on Software
Maintenance and Evolution, 2014; 441–445.

48. Borg M, Gotel O, Wnuk K. Enabling Traceability Reuse for Impact Analyses: A Feasibility Study in a Safety
Context. Proc. of the 7th International Workshop on Traceability in Emerging Forms of Software Engineering,
2013.

49. Gotel O, Cleland-Huang J, Huffman Hayes J, Zisman A, Egyed A, Grünbacher P, Dekhtyar A, Antoniol G, Maletic
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