
0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Supporting Change Impact Analysis Using a
Recommendation System: An Industrial Case

Study in a Safety-Critical Context
Markus Borg, Member, IEEE, Krzysztof Wnuk, Björn Regnell, and Per Runeson, Member, IEEE

Abstract—Change Impact Analysis (CIA) during software evolution of safety-critical systems is a labor-intensive task. Several authors
have proposed tool support for CIA, but very few tools were evaluated in industry. We present a case study on ImpRec, a
recommendation System for Software Engineering (RSSE), tailored for CIA at a process automation company. ImpRec builds on
assisted tracing, using information retrieval solutions and mining software repositories to recommend development artifacts, potentially
impacted when resolving incoming issue reports. In contrast to the majority of tools for automated CIA, ImpRec explicitly targets
development artifacts that are not source code. We evaluate ImpRec in a two-phase study. First, we measure the correctness of
ImpRec’s recommendations by a simulation based on 12 years’ worth of issue reports in the company. Second, we assess the utility of
working with ImpRec by deploying the RSSE in two development teams on different continents. The results suggest that ImpRec
presents about 40% of the true impact among the top-10 recommendations. Furthermore, user log analysis indicates that ImpRec can
support CIA in industry, and developers acknowledge the value of ImpRec in interviews. In conclusion, our findings show the potential
of reusing traceability associated with developers’ past activities in an RSSE.

Index Terms—CASE, maintenance management, software and system safety, tracing.

F

1 INTRODUCTION

LARGE-SCALE software-intensive systems evolve for
years, if not decades. Several studies report that soft-

ware evolution might last for over a decade, e.g., studies
conducted at Siemens [1], Ericsson [2], and ABB [3]. Long-
term evolution results in complex legacy systems in which
changes are known to be labor-intensive [4] and error-
prone [5]. Furthermore, inadequate change management is
reported as one of the root causes for recent catastrophic
failures caused by software [6]. Consequently, understand-
ing how changes propagate in large systems is fundamental
in software evolution.

In safety-critical software engineering, formal Change
Impact Analysis (CIA) is mandated in process standards
such as the general standard IEC 61508 [7], IEC 61511 in
the process industry sector [8], ISO 26262 in the automotive
domain [9], DO-178C in avionics [10], and EN 50128 for the
railway sector [11]. The standards state that a CIA must be
conducted prior to any software change, but do not contain
details on how the activity shall be practically conducted.
Thus, the CIA implementation varies between development
organizations, but remains an important component of the
safety case [12], i.e., the structured argument evaluated by
external assessors to justify safety certification [13].

Several studies report that CIA is a tedious part of soft-
ware maintenance and evolution, e.g., in process automa-
tion [14], in nuclear power [15], in the automotive industry

• M. Borg is with SICS Swedish ICT AB, Ideon Science Park, Building Beta
2, Scheelevägen 17, SE-223 70 Lund, Sweden. This research was carried
out while the author was with Lund University.
E-mail: markus.borg@sics.se

• K. Wnuk is with Blekinge Institute of Technology, Sweden. B. Regnell and
P. Runeson are with Lund University, Sweden.

[16], and in the aerospace domain [17]. Still, the level of
CIA tool support in industry is low, as shown in a recent
cross-domain survey [18]. The low level of CIA automation
has also been reported in previous work by Lettner et al.
[19]. Moreover, Li et al. report that most CIA tools are
restricted to source code impact, although other artifacts are
also important, e.g., UML models [20], quality requirements
[21], and regression test plans [22]. This paper contributes
to filling this gap by explicitly focusing on CIA of software
artifacts that are not source code, i.e., non-code artifacts.

Semi-automated tracing based on Information Retrieval
(IR) techniques has the potential to support CIA. A handful
of controlled experiments with student subjects show favor-
able results [23], [24], [25], and initial evidence from a small
industrial case study suggests that IR-based tracing tools
have the potential to support CIA [26]. However, still no
tool implementing IR-based tracing has been evaluated in a
large software development context [27].

Although scalability was identified as one of the eight
“grand challenges of traceability” by CoEST1, most previous
evaluations on IR-based tracing studied small datasets con-
taining fewer than 500 artifacts [27]. Instead, scalability is
often discussed as a threat to validity, and highlighted as
an important concern for future work (see, e.g., De Lucia et
al. [28] and Huffman Hayes et al. [29]). The work presented
in this paper focuses on investigating the scalability to
industrial size contexts. Our solution is based on analyzing
large amounts of artifact relations, i.e., we leverage on the
volume of information available, and evaluate the solution

1. The Center of Excellence for Software Traceability, an organization
of academics and practitioners with a mission to advance traceability
research, education, and practice (www.coest.org).

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

in a real world context.
We have previously proposed an IR-based tracing tool

enhanced by a semantic network mined from historical
CIA data recorded in an issue tracker. Our combined ap-
proach is implemented in ImpRec [30], a Recommendation
System for Software Engineering (RSSE) [31]. ImpRec is
tailored for one of our industry partners active in process
automation, but still comprises general solution elements.
The RSSE assists developers to perform CIA as part of issue
management by providing recommendations of potentially
impacted artifacts. ImpRec identifies textually similar issue
reports, and recommends candidate impact by analyzing a
semantic network of development artifacts centered around
these issue reports.

In this paper, we evaluate ImpRec in a large-scale indus-
trial case study using user-oriented evaluation. Robillard
and Walker highlight the absence of user-oriented evalua-
tions in a recently published book on RSSEs. They claim that
that many tools have been fully implemented, but “much less
energy has been devoted to research on the human aspects” [31,
pp. 9]. Our study responds to their call for comprehensive
evaluations, by reporting from a longitudinal in situ study
of ImpRec deployed in two proprietary development teams.
Also, we perform a static validation [32] of ImpRec, re-
sulting in quantitative results reflecting common evaluation
practice in both RSSE and traceability research. We conclude
that ImpRec can support CIA in industry, and that the tool
implementation scales to the industrial context under study.

The main parts of the paper are:

• A comprehensive background section on CIA, IR in
software engineering, and RSSEs for change manage-
ment (Section 2).

• A detailed context description that supports under-
standing and analytical generalization to other cases
(Section 3). We also introduce several challenges ex-
perienced in state-of-practice CIA, establishing rele-
vant directions for future inquiries.

• A presentation of ImpRec, a prototype RSSE for CIA
in a safety-critical context (Section 4).

• An in-depth case study, comprising both a quan-
titative static validation and a qualitative dynamic
validation (Section 5). Thus, our study is designed to
assess both the correctness of the ImpRec output, and
the utility of actually working with ImpRec.

• Study results that show that ImpRec recommends
about 40% of the true impact among the top-10
recommendations (Section 6.1). Also, that developers
confirm that ImpRec’s current level of correctness
can be helpful when conducting CIA (Section 6.2).

• A thorough discussion on threats to validity (Sec-
tion 7), and implications for research and practice
(Section 8).

2 BACKGROUND AND RELATED WORK

This section provides a background on CIA in safety-critical
contexts. Then we present related work on IR in software
engineering, and the most similar work on RSSEs for change
management. We conclude the section by reporting our
previous work on the topic.

2.1 Change Impact Analysis

A fundamental facilitator in the success of software is
that software artifacts can be modified faster than most
of their counterparts in other engineering disciplines. Un-
fortunately, understanding the impact of changes to com-
plex software systems is tedious, typically avoided unless
necessary [4], and instead mended by extensive regression
testing [33]. Thus, CIA is mandated in safety-critical soft-
ware development practice [7], [9], [11] to avoid unpre-
dictable consequences. Bohner defines CIA as “identifying
the potential consequences of a change, or estimating what needs
to be modified to accomplish a change” [34, pp. 3]. He de-
scribes CIA as a process that is iterative and discovery in
nature, i.e., identifying change impact is a cognitive task
that incrementally adds items to a candidate impact set.
Furthermore, Bohner discusses three main obstacles for CIA
support in practice. First, information size volume – artifacts
from many different sources must be related and analyzed.
Second, change semantics – methods for describing change
relationships are lacking. Third, analysis methods – methods
for analyzing software dependencies and traceability have
not been fully explored.

Manual work dominates CIA in industry. Our recent
survey with software engineers from different safety-critical
fields confirmed that the level of automation in CIA is low
and that CIA support is mainly available in the source
code level [18]. Moreover, insufficient tool support was
mentioned as the most important challenge in the state-
of-practice. The survey also highlighted that practitioners
typically work with only basic tool support, e.g., MS Word
and MS Excel, and no dedicated CIA tools are widely used.
Improving CIA tools has also been highlighted by other
researchers, e.g., stated by Bohner: “ever-increasing need to
wade through volumes of software system information [...] auto-
mated assistance is important to cut analysis time and improve the
accuracy of software changes” [4, pp. 268], and Lehnert: “more
attention should be paid on linking requirements, architectures,
and code to enable comprehensive CIA” [35, pp. 26].

Two recent literature reviews confirm that most research
on CIA is limited to impact on source code. Lehnert created a
taxonomy for research on CIA [36], partly based on Arnold
and Bohner’s early work on a framework for CIA compar-
ison [37], and populated this taxonomy with 150 primary
studies from a literature review [35]. The results show that
only 13% of the studies address multiple artifact types, and
65% targets only source code.

The approaches for supporting CIA on the source code
can be divided into static and dynamic. Examples of static
approaches are to use a Global Hierarchical Object Graph
to mine and rank dependencies to be analyzed during
CIA [38] or to consider variable granularity of classes, the
granularity of class members, and the granularity of code
fragments for improving precision of CIA [39]. Examples of
dynamic CIA approaches include dynamically examining
program paths, yet limiting impact to observed call orders
and call-return sequences compressed using the SEQUITUR
data compression algorithm [40] or analyzing the coverage
impact [41]. These approaches show promising results in
supporting CIA and reducing tedious manual work, but
are limited to source code and evaluated or relatively small

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

cases compared to our case.
Several researchers focused on supporting CIA for re-

quirements expressed as models. For example, operational
dependencies between use cases and goals were used to
propagate change between behavioral requirements and in-
tentional requirements [42]. Briand et al. proposed a method
to automatically identify changes between two different ver-
sions of UML models, according to a change taxonomy [20].
Cleland-Huang et al. focused on supporting CIA between
functional and non-functional requirements with the help of
soft goal dependencies [43]. The approaches are evaluated
in case studies with smaller empirical contexts than the one
presented in this paper.

Li et al. also concluded that the source code focus domi-
nates among CIA researchers [44]. They identified that more
research is needed to go beyond mere research prototype
tools evaluated in lab environments, to evaluations of how
deployed tools perform in the industrial software mainte-
nance context. Moreover, Li et al. explicitly suggested stud-
ies on tool support that provides ranked lists of potentially
impacted entities, like the study on ImpRec we present in
this paper. Gethers et al. presented another overview of tool
support for CIA on the source code level [45].

Previous work on CIA has also targeted the process au-
tomation domain. Acharya and Robinson developed Imp, a
tool that uses static program slicing to assist developers with
accurate impact analyses [3]. Imp was evaluated on a large
proprietary software system, and this is the first reported
large-scale evaluation of tool support for CIA. While the
evaluation addresses a software system consisting of more
than a million lines of code, thus matching the scale of the
system we studied in this paper, the proposed solution is
restricted to impact on source code. Ghosh et al. presented
another study on CIA for software-intensive systems in
the process automation domain [46]. The authors studied
33 historical software development projects to explore CIA
triggered by requirement changes. Their focus is however
not on what specific artifacts are impacted, but how much
effort the changes require. Using a linear regression model,
they predict the cost of changing requirements, and practi-
tioners confirm the value of their approach.

Other research focuses on processes, particularly agile
approaches. Stålhane et al. suggest supporting CIA by pro-
cess improvements, and propose agile CIA as part of Safe-
Scrum [47]. Their work originates from the lack of practical
CIA guidelines, and they present an approach to move from
typical heavy upfront analysis to more incremental work,
i.e., agile. The same authors also present a new structure
of CIA reports tailored for software engineering in railway
and the process industry [48]. Jonsson et al. also studied how
to apply agile software development in the railway domain
and conclude that CIA can be problematic in highly iterative
development contexts [49].

Some researchers studied organizational aspects of CIA.
Kilpinen identified that experiential CIA is common in
industry, i.e., scoping changes through inspection and engi-
neering judgement [50]. She introduced “the adapted rework
cycle” to improve the interplay between CIA and the design
process, and demonstrated its feasibility using simulation in
an aerospace company. In a case study at Ericsson in Sweden
[51], Rovegård et al. mapped the CIA work conducted by 18

interviewees to decision making at three different organiza-
tion levels: strategic (large scope, long term), tactical (mid-
term, e.g., resource allocation) and operative (short term,
technical details). Furthermore, they explored current chal-
lenges involved in state-of-practice CIA, and propose five
explicit improvements to address them, including two that
we employ in this paper: 1) introducing a knowledge base
of old CIA results, and 2) introducing better tool support.

2.2 Information Retrieval in Software Engineering

Large software engineering projects constitute complex in-
formation landscapes of thousands of heterogenous arti-
facts. These artifacts constantly change, thus providing de-
velopers quick and concise access to information is pivotal.
Various IR systems support developers, including both gen-
eral purpose search tools and more specialized solutions.
This section presents research on three areas of IR in soft-
ware engineering relevant to our work: IR-based tracing [27],
duplicate detection of issue reports. [52], and IR-based CIA [53].

More than a hundred publications on using IR for trace-
ability management have been published since year 2000. A
recent book on traceability makes an attempt to unify the
definitions [54]. According to this work, traceability creation
is the activity of associating artifacts with trace links. Trace
capture involves creation of trace links concurrently with
the artifacts that they associate, and trace recovery implies
establishing trace links after the artifacts have been created.
Using IR in the traceability context means to link artifacts
with highly similar textual content. We use the term IR-based
tracing tools to refer to such similarity-based tools for either
trace recovery or trace capture.

Antoniol et al. were the first to express identification of
trace links as an IR problem [55]. They used the Binary
Independence Model (BIM) and the Vector Space Model
(VSM) to generate candidate trace links between design and
source code. Marcus and Maletic introduced Latent Seman-
tic Indexing (LSI) to recover trace links between source code
and natural language documentation [56]. Huffman Hayes
et al. enhanced VSM-based trace recovery with relevance
feedback. Their approach is clearly human-oriented and
aims at at supporting V&V activities at NASA using a tool
called RETRO [57]. De Lucia et al.’s research in this topic
focuses on empirically evaluating LSI-based trace recovery
in their document management system ADAMS [28]. They
advanced the front of empirical research on IR-based trac-
ing by conducting a series of controlled experiments and
case studies with student subjects. Cleland-Huang and col-
leagues have published several studies using probabilistic
IR models for trace recovery, implemented in their tool
Poirot [58]. Much of their work has focused on improving the
accuracy of their tool by various enhancements, e.g., project
glossaries and term-based methods.

In a recent systematic mapping study of IR-based trace
recovery [27], the majority of the proposed approaches
reported in the identified 79 papers were evaluated on small
sets of software artifacts, often originating from student
projects [59]. Furthermore, most IR-based trace recovery
evaluations do not involve humans, i.e., constitute in silico
studies, and only one primary study was conducted as a
case study in industry [26]. Finally, there appears to be little

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

practical difference between different IR models [60], which
corroborates previous observations by other researchers
[23], [24], [61].

IR-based techniques were also used for supporting the
CIA process. Arora et al. focused on inter-requirements
CIA and suggested a normalized matching score based on
propagation conditions. They implemented the approach
in a prototype tool called NARCIA (NAtural language
Requirements Change Impact Analyzer) and evaluated it
in two industrial cases with 160 and 72 requirements, re-
spectively [53]. Poshyvanyk et al. used IR methods to mea-
sure conceptual coupling between object-oriented software
classes [62].

IR systems in software engineering were also applied
for issue report duplicate detection. Previous research con-
ducted on large projects shows that the fraction of issue
duplicates can be between 10-30% and might cause consid-
erable extra effort during triage [52], [63], [64]. IR-based du-
plicate identification could substantially reduce this effort.
We have previously summarized work on issue duplicate
detection based on textual similarity, and concluded that
duplicate detection is promising when the inflow of issue
reports is large [30].

The RSSE we present in this paper builds on previous
research on IR in software engineering. Similar to IR-based
tracing tools, the goal is to identify trace links in databases
containing a plethora of artifacts. As a central part of our
tool is to identify similar issue reports from a history of
evolution and maintenance projects, our work is also related
to duplicate issue report detection.

2.3 RSSEs for Change Management and CIA

RSSEs differ from other software engineering tools in three
ways [31]. First, RSSEs primarily provide information (in
contrast to tools such as static code analyzers and test
automation frameworks). Second, RSSEs estimate that a piece
of information is valuable, as opposed to “fact generators”
(e.g., cross-reference tools and call browsers). Third, the close
relation to a specific task and context distinguishes RSSEs from
general search tools.

Several RSSEs support developers in navigating the
complex information landscapes of evolving software sys-
tems. Čubranić et al. developed Hipikat, an RSSE to help
newcomers resolve issue reports in large software projects
[65]. Hipikat relies on Mining Software Repositories (MSR)
[66] techniques to establish a project memory of previous ex-
periences, including issue reports, commits, and emails. The
project memory is stored as a semantic network in which
relations are either explicit (e.g., email replies, commits im-
plementing issue resolutions) or implicit (deduced based on
textual similarities). Hipikat uses the semantic network to
recommend potentially related information items to devel-
opers, e.g., source code, issue reports, and documentation.

Čubranić et al. implemented Hipikat in the context of
the Eclipse OSS development, and present both an in sil-
ico evaluation (i.e., a computer experiment) as well as an
in vitro user study (i.e., in a controlled lab environment).
Both evaluations were mainly qualitative, and assessed how
helpful Hipikat was when resolving a new issue report. The
IR evaluation reported an average precision and recall of

0.11 and 0.65, respectively, for a small set of 20 closed issue
reports, comparing the source code files recommended by
Hipikat and the actually modified source code files (the
gold standard). The authors also involved four experienced
Eclipse developers and eight experienced developers new
to the Eclipse project to resolve (the same) two issue re-
ports in a controlled environment. The results showed that
Hipikat can help newcomers perform comparably to more
knowledgeable developers, i.e., to implement high quality
corrective fixes under time pressure.

Another RSSE is eRose developed by Zimmermann et
al. [67]. Using association rule mining in version control
systems, eRose detects source code files that tend to change
together, and delivers recommendations accordingly to sup-
port change management. Using eRose in a project brings
two advantages: 1) improved navigation through the source
code, and 2) prevention of omission errors at commit time.
Zimmermann et al. used simulation [68] to evaluate three
usage scenarios supported by eRose, including one scenario
that resembles our ImpRec approach: recommending source
code files that are likely to change given a source code
file known to be modified. Using sequestered training and
test sets, comprising over 8,000 commits from eight OSS
projects, the top-10 recommendations from eRose contained
33% of the true changes. In 34% of the cases eRose did not
provide any recommendations. On the other hand, when
eRose indeed provided recommendations, a correct source
code file was presented among the top-3 in 70% of the cases.

Ying et al. used association rule mining in version control
systems to predict source code changes involved in software
maintenance [69]. In line with the work by Zimmermann
et al., the authors evaluated their approach in silico using
simulation on two large OSS projects, Eclipse and Mozilla,
and investigated recommendations for additional source
code impact when knowing for certain that one file was
modified. The training and the test sets were sequestered
in time and contained more than 500,000 revisions of more
than 50,000 source code files. For Mozilla, precision was
roughly 0.5 at recall 0.25, and for Eclipse, precision was
0.3 at recall 0.15. Ying et al. argued that while the precision
and recall obtained were not high, the recommendations can
still reveal valuable dependencies. They also introduced an
“interestingness value” to assess how meaningful a recom-
mendation is, but it is only applicable for source code.

Canfora and Cerulo developed Jimpa [70], an RSSE that
uses MSR techniques to utilize past impact when conduct-
ing new CIAs. Using textual similarity calculations between
issue reports and commit messages, Jimpa recommends
files that are likely to be impacted to resolve an issue. The
authors evaluated Jimpa in silico using leave-one-out cross-
validation on three medium-sized OSS projects containing
in total 1,377 closed issue reports. Top-10 recommenda-
tions for the three OSS projects resulted in the following
precision-recall pairs: 0.20-0.40, 0.05-0.20, and 0.15-0.90, and
the authors considered the outcome promising.

Gethers et al. developed ImpactMiner, a tool that com-
bines textual similarity analysis, dynamic execution tracing,
and MSR techniques [45]. ImpactMiner mines evolutionary
co-changes from the version control system, and uses the
search engine library Apache Lucene to index the source code
and to enable feature location. Furthermore, ImpactMiner

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

can compare stack traces and present recommendations
based on the co-changes. Gethers et al. presented an in
silico evaluation on four medium-sized OSS projects using a
selected set of in total 181 closed issue reports. For the four
OSS projects, the top-10 recommendations corresponded
roughly to precision 0.10-0.15 and recall 0.20-0.35.

2.4 Related Work and Evolution of ImpRec
ImpRec packages our previous research efforts in IR as
an RSSE for CIA, by combining work on consolidation of
natural language requirements from multiple sources [71],
duplicate detection of issue reports [52], [72], IR-based trace
recovery [23], [27], and issue network analysis [73]. The
overall idea of ImpRec, i.e., to reuse traceability captured
in an issue tracker, was originally proposed in 2013 [73].
While the technical implementation details of ImpRec were
reported in a recently published book chapter [30], this
paper brings significant empirical evidence from a large-
scale industrial case study. Section 4 presents an overview
of the approach implemented in ImpRec.

The work by Čubranić et al. on Hipikat [65], [74] was cen-
tral in making key decisions about the ImpRec development
and architecture. However, while Hipikat is intended to
support project newcomers navigate OSS projects, ImpRec
is instead tailored to support CIA in a specific industrial
context. ImpRec implements several approaches presented
in Hipikat, including: 1) a semantic network of artifacts and
relations, 2) mining software repositories as the method to
capture important relations from the project history, and 3)
creation of links between issue reports based on textual
similarity. For a thorough comparison of the internals of
Hipikat and ImpRec, we refer to our book chapter [30].

Ali et al. developed Trustrace [75], a tool implementing
an approach similar to ImpRec. Trustrace uses IR to iden-
tify candidate trace links between requirements and source
code. Subsequently, the tool mines the issue repository and
the code repository to identify already existing trace links;
such links are considered to be of ‘high trust’. The two sets
of links are then combined using a web-trust model to create
a final set of trustable trace links, i.e., the ‘low-trust’ IR links
are discarded/reranked.

ImpRec and Trustrace share three aspects: 1) IR is used
to identify potential trace links, 2) existing high-trust trace
links are mined from software repositories, and 3) links
previously created through a collaborative development
effort are combined in a networked structure. The main
conceptual difference is that ImpRec first establishes a
trusted semantic network and then applies IR to identify
low-trust links to starting points in the network, whereas
Trustrace first uses IR to collect low-trust links and then
uses complementary mining of trusted links to increase the
accuracy of the tool output. A difference in the intended use
of the tools is that ImpRec, in line with the RSSE definition
(cf. Section 2.3), estimates whether a piece of information
is valuable to a user in a specific task, i.e., ImpRec recom-
mends potentially impacted software artifacts whenever a
developer conducts a CIA. Trustrace on the other hand, is
used to support a one-shot activity to recover a complete set
of trace links.

Several studies proposed history mining to identify arti-
facts that tend to change together [45], [67], [69], [70]. Espe-

cially the studies by Canfora and Cerulo [70] and Gethers et
al. [45] use techniques similar to ours, as they combine min-
ing source code repositories with IR techniques. However,
while these four studies address CIA, they solely focus on
source code [35].

The main contribution of this study comes from the
empirical evaluation on industrial scale artifacts. Several
RSSEs have been fully implemented, but very few have been
evaluated in situ, i.e., with real developers using the RSSE as
part of their normal work in a project [31]. While simulating
the operation of an RSSE can provide the correctness of
the recommendations, it does not reveal anything about the
users’ reactions. Three previous RSSE evaluations provide
strength of evidence [76], in terms of realism, matching
our study: Čubranić et al.’s study on Hipikat [65], Kersten
and Murphy’s evaluation of MyLyn [77], and Treude et
al.’s recent evaluation of TaskNavigator [78]. However, our
study is unique in its combination of a thorough in silico
evaluation (larger sample of artifacts systematically studied)
and a longitudinal in situ study in industry (>6 months).

3 INDUSTRIAL CONTEXT DESCRIPTION

This section contains a general description of the case com-
pany and presents the CIA work task as it is currently
conducted by the involved practitioners. Furthermore, this
section discusses the challenges related to CIA identified
during our initial interviews in the case company.

3.1 General Context

The studied development organization belongs to a large
multinational company in the power and automation sector.
We further describe the context structured in six context
facets, according to the guidelines provided by Petersen and
Wohlin [79].

Products. The products under development constitute
an automation system that has evolved for decades, whose
oldest running source code is from the 1980s. The system
is safety-critical, governed by IEC 61511 [8], and, once de-
ployed, is expected to run without interruption for months
or even years. Five major system versions exist, each intro-
ducing many new features via minor update releases. The
code base contains over a million lines of code, dominated
by C/C++ and some extensions in C# and VB. The automa-
tion system contains both embedded systems and desktop
applications, e.g., an IDE for developing control programs
according to IEC 61131-3 [80]. The system is SIL2 safety-
certified2, according to IEC 61508 [7].

Processes. Projects follow a stage-gate iterative devel-
opment process that is tailored to support the safety cer-
tification activities performed prior to release. Prioritized
features are added incrementally, followed by extensive
testing. The most critical parts of the system are developed
as redundant components by non-communicating teams at
different development sites. All parts of the system are doc-
umented in detail, and the documents map to the (vertical)
abstraction levels of the V-model e.g., system requirements,

2. Safety integrity level (SIL) is used in several safety standards to
define a relative level of risk reduction provided by a safety function,
from SIL1 to SIL4 [7].

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

product requirements, functional requirements, detailed de-
sign specifications, and the corresponding artifacts on the
testing side of the V-model.

Practices, tools, and techniques. The case company
applies several established software engineering practices
related to software quality. All code is reviewed both at
commit-time and in formal review meetings. Documents
are also reviewed in formal meetings. Several static code
analysis tools run nightly on the source code and several
unit test suites run daily as automated tests, and code
coverage is measured. Testing on the product and system
level is conducted by an independent testing organization,
but communication with developers is encouraged.

People. The company has a history that stretches more
than a century, and the organization has a mix of experi-
ences and cultures. Most engineers are male, but the gen-
ders are more balanced among junior employees. The roles
directly involved in this investigation include developers,
team leaders, managers, a safety engineer, and a configura-
tion manager (cf. Table 2).

Organization. Hundreds of engineers work in this con-
text, in a globally distributed organization. The main devel-
opment sites are located in Europe, Asia and North Amer-
ica. Each development site is organized as a matrix struc-
ture, with development teams organized to satisfy project
needs and a line organization offering various competences.
The organization is strict, i.e., engineers rarely transfer be-
tween teams during projects. Typical teams consist of 8-12
developers.

Market. The product is released to a small market with
only few players. Important customers in various market
segments, e.g., oil & gas, or pulp & paper, sometimes ini-
tiated bespoke development with specific feature requests.
The market strategy is to offer the best possible automa-
tion system for very large industrial plants in the process
automation domain.

3.2 Change Impact Analysis in Context

CIA is a fundamental activity in safety-critical change and
issue management. In the case company, all changes to
source code need to be analyzed prior to implementation.
The set of CIA analyses is a crucial component of the
safety case [12], a documented argument providing a com-
pelling, comprehensive, and valid case that a system is
acceptably safe for a given application in a given operating
environment. Providing an external safety assessor with a
high-quality safety case is among the top priorities of the
organization under study.

The safety engineers at the case company have devel-
oped a semi-structured CIA report template (cf. Table 1) to
support the safety case in relation to the IEC 61508 safety
certification [7]. Developers use this template to document
their CIA before committing source code changes. Six out
of thirteen questions in the CIA template explicitly ask for
trace links, see questions 4, 5, 6, 7, 8, and 12 in Table 1.

In addition to documenting source code changes, IEC
61508 mandates that the developers must also specify and
update related development artifacts to reflect the changes,
e.g., requirement specifications, design documentation, test

TABLE 1
The CIA template used in the case company, originally presented by
Klevin [81]. Questions in bold font require the developer to specify

explicit trace links.

Change Impact Analysis Questions
1 Is the reported problem safety critical?
2 In which versions/revisions does this problem exist?
3 How are general system functions and properties affected

by the change?
4 List modified code files/modules and their SIL classifi-

cations, and/or affected safety safety related hardware
modules.

5 Which library items are affected by the change? (e.g.,
library types, firmware functions, HW types, HW libraries)

6 Which documents need to be modified? (e.g., product
requirements specifications, architecture, functional require-
ments specifications, design descriptions, schematics, func-
tional test descriptions, design test descriptions)

7 Which test cases need to be executed? (e.g., design tests,
functional tests, sequence tests, environmental/EMC tests,
FPGA simulations)

8 Which user documents, including online help, need to be
modified?

9 How long will it take to correct the problem, and verify the
correction?

10 What is the root cause of this problem?
11 How could this problem been avoided?
12 Which requirements and functions need to be retested by

the product test/system test organization?

case descriptions, test scripts and user manuals. Further-
more, the CIA report should specify which high-level sys-
tem requirements are involved in the change, and which
test cases should be executed to verify that the changes are
correctly introduced in the system.

Developers conduct CIAs regularly during development
and maintenance projects, and the CIA activity requires
much effort. During initial interviews, conducted to define
the scope of the study, the developers reported that they
on average conduct CIAs weekly or bi-weekly. The average
time they spend on a CIA report depends on both the com-
ponent of the system and the experience of the developer,
ranging from a few minutes to several hours.

Developers and safety engineers at the case company
confirmed that it is difficult to identify how a change
affects the software system under development. Example
challenges highlighted during initial interviews include: 1)
side effects and ripple effects, 2) identifying impact on the
system requirements, and 3) analyzing impact on quality
attributes such as performance. Developers also reported
organizational challenges such as: 4) building enough con-
fidence in their own CIA report, and 5) recognizing the
value of the comprehensive CIA process. The developers
have contrasting thoughts about CIAs, some are positive as
they see it as a healthy sign in complex engineering, others
are neutral and just see it as part of the job description, and
yet another group has a negative connotation to CIA. While
most developers agree that CIA is a mundane activity that
requires extensive browsing of technical documentation, the
strongest critics also considered the current format of CIA
to be a far too heavy construct with little value, just done
to comply with the organization’s implementation of the
IEC 61508 standard. The engineers’ perspectives on CIA is
further studied in a separate publication [82], including a

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

mapping of connotation versus importance.
Currently there is little tool support available for CIA in

the organization, as is the case for safety-critical software
engineering in general [18]. The CIA process is tightly con-
nected with the issue management process, as all changes
to formal development artifacts require an issue report in
the issue repository. All completed CIA reports are stored
in the issue repository as attachments to issue reports. Note
that not more than roughly a quarter of the issue reports
have attached CIA reports, instead most issues are closed
without changes that require formal CIA. We found several
reasons for this, such as non-repeatable issues, duplicated
issues, and changes deferred by the change control board.
Also, issues not necessitating changes to any production
code do not require CIA, including pure document updates
and changes to test code.

Developers typically manage CIA reports through the
simple web interface of the issue repository. Only rudi-
mentary browsing and searching is supported in the issue
repository, e.g., filtering issues using basic metadata and
searching using keywords. There is no support for full-text
search, and the CIA reports, as they are attachments, are not
indexed by any search engine at all. The only tool related to
CIA is IA Sidekick, an internally developed tool, supports
only controlled input to the CIA template by providing
formatting and basic sanity checks.

In this contect, the most important feature of any new
CIA tool is to ensure high quality CIA reports. While it
is also relevant to help engineers conduct CIA faster, cost
reductions remain a secondary concern. Consequently, rel-
evant to later trade-off discussions, effectiveness is more
important than efficiency, i.e., quality is more important
than time and cost savings.

4 APPROACH AND IMPREC

This section presents an overview of our solution, as well as
a brief description of the implementation of our ideas in the
tool ImpRec. Note that ImpRec is not a novel contribution
of this paper, instead we refer to our previous book chapter
for a comprehensive description [30].

4.1 Traceability Reuse for Impact Analysis

Developers at the case company put extensive effort into
producing high-quality CIA reports, as described in Sec-
tion 3.2. However, the content of the CIA reports is mainly
used to create a strong safety case for certification purposes.
Developers author CIA reports to comply with the safety
process, but does rarely consider them again once accepted
and stored in the issue repository.

One of the challenges related to the CIA identified in
the case under study (see Section 3.2) is that developers do
not acknowledge the value of the rigorous CIA process [82],
i.e., it is regarded as an activity conducted solely to satisfy
external stakeholders. Our approach addresses this negative
perception by enabling developers to reuse knowledge from
previously completed CIA reports [14]. By extracting trace
links from the semi-structured CIA reports to previously
impacted artifacts (a.k.a. link mining [83]), we establish a
knowledge base of historical impact.

ImpRec uses the established knowledge base to recom-
mend potentially impacted artifacts for new incoming issue
reports. As such, ImpRec lets developers reuse the collab-
oratively constructed trace link network, i.e., “to follow
in the footsteps of previous developers in the information
landscape”. Figure 1 shows an overview of our approach.
The two main steps, mining the knowledge base and recom-
mending impact, are described in Section 4.2 and Section 4.3,
respectively.

4.2 Mining Previous Impact
In the first step, we construct a knowledge base of previous
CIAs by conducting link mining in the issue repository (cf.
the horizontal arrow in Fig. 1). First, we extract the “related
issue” links between issue reports, stored in an explicit field
in the issue tracker [73]. Then, we use regular expressions
to extract trace links from the issue reports with attached
CIA reports. As developers in the case company must use
formal artifact IDs to report impact, regular expressions can
capture all correctly formatted trace links.

Trace links in a CIA report are structured by the CIA
template (cf. Table 1) and thus belong to a specific question.
Consequently, we can deduce the meaning of most of the
extracted trace links, e.g., answers to Q7 and Q12 are related
to verification. Another heuristic we rely on is that IDs
of requirements and HW descriptions3 have distinguished
formats. Finally, we store all extracted traces (i.e., triplets
of source artifact, target artifact, and trace link [54]) in a
knowledge base represented by a semantic network [84].

The knowledge base contains more than 32,000 issue
reports in its entirety, from about a decade of software
evolution. During this time period, developers have pointed
out almost 2,000 unique non-code artifacts as impacted,
categorized as either requirements, test specifications, HW
descriptions, or miscellaneous artifacts (when no type
could be deduced). Moreover, the knowledge base contains
trace links of the following types (and count): specified-by
(5,066), verified-by (4,180), needs-update (1,660), impacts-
HW (1,684), and trace links whose type could not be deter-
mined (1,435). In the CIA reports, trace links to non-code
artifacts are typically specified on a document-level gran-
ularity; requirements being the exception, which instead
are specified on an individual level. Finally, the knowledge
base contains 22,636 related-to links between issue reports.
For further details on the mining step, incl. descriptions of
artifacts and trace links, we refer to the technical description
of ImpRec in the RSSE book edited by Robillard et al. [30]. In
Figure 1, we highlight that semantic information is available
in the knowledge base, by presenting specified-by trace
links in green and verified-by trace links in blue. The same
coloring scheme is used also for the corresponding artifacts,
i.e., requirements are green and test specifications are blue.

4.3 Recommending Potential Impact
When the knowledge base is established, recommendations
are calculated in three steps as described in Borg and Rune-
son [30]: 1) identification of textually similar issue reports

3. HW descriptions include HW types expressed in VHDL, a lan-
guage used in electronics design for integrated circuits and field-
programmable gate arrays (FPGA). HW types are collected in HW libs.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

Fig. 1. Overview of the approach implemented in ImpRec. First, the issue repository is mined to establish a knowledge base. Second, ImpRec
identifies similar issue reports in the knowledge base using Apache Lucene and recommends impact based on the network structure.

(cf. Fig. 1), 2) breadth-first searches to identify candidate
impact, and 3) ranking the candidate impact.

First, we use IR techniques to identify similar reports,
referred to as starting points in the knowledge base. Apache
Lucene, a state-of-the-art OSS search engine library [85], is
used for the similarity calculation. Both terms in the title and
description of issue reports are considered, after stemming
and stop word removal. The initial step in the recommen-
dation process is in line with previous work on duplicate
detection of issue reports [72], IR-based trace capture [86],
and content-based RSSEs [87].

Second, we perform breadth-first searches in the know-
ledge base to identify candidate impact. Artifacts reported
as impacted by the starting point i are added to a set of
potentially impacted artifacts, the impact set (SETi). This
means that the artifacts that were reported as impacted in
the starting points’ previous CIA reports are considered
candidate impact also for the current CIA. Then, related-
to links are followed from the starting points to identify
additional issue reports. For each new issue report found, its
previously reported change impact is added to the impact
set, and the search continues by following any further
related-to links to unvisited issue reports. This second step
is inspired by collaborative RSSEs [87], and helps the user to
follow in the footprints (traces) of previous developers. The
process of expanding the impact set by iteratively following
related-to links is continued until a configurable number of
links have been followed.

Third, we rank the artifacts in the impact sets4. As
multiple starting points are identified, the same artifact
might appear in several impact sets. Thus, the final ranking
value of an individual artifact (ARTx) is calculated by

4. For an illustrated example of the ranking process, we refer to Fig.
18.13 in the book chapter describing the ImpRec implementation [30].

summarizing the contributions, i.e., weights, to the ranking
value for all n impact sets containing ARTx:

ranking value(ARTx) =

n∑
i=1

weight(ARTx ∈ SETi) (1)

and the weight of an artifact in an individual impact set is:

weight(ARTx ∈ SETi) =
α ∗ CENTx + (1− α) ∗ SIMx

1 + LEV EL ∗ PENALTY
(2)

where CENTx is the centrality measure of ARTx in the
knowledge base, SIMx is the similarity of the issue report
that was used as starting point when identifying ARTx, and
LEV EL is the number of related issue links followed from
the starting point to identify ARTx. α and PENALTY
are constants that enable tuning for context-specific im-
provements, used to balance the importance of centrality
vs. textual similarity and to penalize artifacts distant in the
network, respectively. We cover context-specific tuning of
ImpRec’s parameters in detail in a parallel paper [88].

4.4 ImpRec: An RSSE for Change Impact Analysis
We implemented our approach in the prototype tool Imp-
Rec5. To ease deployment and to lower the training effort of
the developers, we developed ImpRec as a .Net extension to
IA Sidekick, an existing suite of CIA support tools. ImpRec
evolved in close collaboration with developers in the case
company, and our development effort was guided by con-
tinuous feedback. The first author spent in total more than
a month on two development sites in Sweden and India.

5. The name ImpRec refers to an imp, a mischievous little creature
in Germanic folklore, always in search of human attention. Imps could
also be helpful however, and Shivaji et al. recently compared software
engineering tool support to imps sitting on the shoulders of software
developers to guide them [89].

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

An anonymized version of ImpRec, with some dummy
data from the Android development project, is available on
GitHub6.

Figure 2 shows the ImpRec GUI. The input area, denoted
by A, is the first area the user interacts with. The user can
paste the title and/or the description of the current issue
report to trigger recommendations, and the user can also
conduct general free-text searches. The lower parts of the
ImpRec GUI are used to present ranked recommendations. B
shows a list view with similar issue reports in the knowledge
base, and E lists potentially impacted artifacts.

ImpRec also implements a feedback mechanism, devel-
oped to support evaluation of the collected data (further
described in Section 5.4). All items in the list views B and
E have check boxes to denote whether the corresponding
recommendation is relevant for the ongoing CIA. Every
time a developer starts ImpRec, a unique session is created.
During each session, the following user actions are recorded:

• Search – The developer clicks the ‘Search’ button,
next to A. All information related to the query is
stored.

• Selection – The developer selects an item in the list
view B or E.

• Relevant/CancelRelevant – The developer toggles
the check box of an item in the list view B or E.

• Confirmation – The developer clicks the ‘Done’ but-
ton (D), to conclude the feedback of the ongoing CIA
task.

The user interface of ImpRec was designed with
Murphy-Hill and Murphy’s RSSE design factors in
mind [90]. Murphy-Hill and Murphy argue that RSSE devel-
opers need to consider the following five factors: 1) distrac-
tion, 2) understandability, 3) assessability, 4) transparency,
and 5) trust.

Distraction does not apply to ImpRec, as the users ini-
tiate all searches on their own. The understandability of the
ImpRec recommendations is supported by the users’ expe-
riences of general search tools. Thus, also the assessability is
supported; developers are used to assess items with a rele-
vance that is predicted to decrease further down on a ranked
list. Still, the separation of search results in two ranked
lists (B and E) might not be obvious, and thus thoroughly
explained in the user manual, available on the companion
website7. Moreover, to further support assessibility, when a
user clicks on an item in list view B, the full description of
the issue report is presented in area C, complemented by
any stored CIA reports.

We argue that the two most critical factors for the de-
livery of ImpRec’s recommendations are transparency and
trust. We assume that user trust can only be built from
a history of correct recommendations, and thus we focus
on transparency. We increase transparency in two ways.
First, the output of the ranking functions is presented to
the user (i.e., the Apache Lucene similarity score in list
view B, and the result of the ImpRec ranking function in
list view E). This decision is in contrast to general search
tools, but it might help expert users to assess the value of

6. https://github.com/mrksbrg/ImpRec
7. http://serg.cs.lth.se/research/experiment-packages/imprec

the recommendations. Second, when the user selects issue
reports in list view B, the items in list view E that were
reported in the corresponding CIA report are highlighted.
Items that frequently were reported as impacted obtain a
high ranking, and the user can observe this phenomenon
while browsing the GUI.

5 RESEARCH METHOD

In this section, we outline the evaluation part of this study
and summarize the undertaken research method, see Fig-
ure 3 for an overview of the study.

Rationale and Purpose. This work was triggered by
articulated needs at the case company associated with CIA
for safety-critical development, and the potential solutions
identified in the surveyed literature [27]. CIA is partic-
ularly challenging in the studied context due to a need
for determining impact on non-code artifacts. Therefore,
this research was conducted with an aim to support the
developers by increasing the level of CIA automation using
ImpRec.

Since CIA involves both artifacts, people, and processes,
as well as their interplay in a complex system development
environment, it can be characterized as a “contemporary
software engineering phenomenon within its real-life con-
text, especially when the boundary between phenomenon
and context cannot be clearly specified” [91], i.e., it is feasi-
ble for case study research.

The case and units of analysis. The investigated case
is the formal CIA work task at the case company. Two units of
analysis were investigated, named Unit Sweden and Unit
India, see Figure 3. In both units of analysis, our aim was
to investigate how using ImpRec can support engineers
conducting formal CIA. All study participants are listed in
Table 2.

Unit Sweden consisted of four developers in Sweden
from the I/O team. Three developers volunteered during
an initial presentation of the research, and they happened
to all be members of the same team working on safety-
critical I/O communication. The three developers all had
different responsibilities and experiences, offering the vari-
ety of perspectives suitable for a case study [91]. To include
yet another perspective in the study, we also asked the
newest member of the I/O team to join. As a sanity check,
we examined the project history and found that the CIA
frequency of the I/O team was close to the average among
the teams at the development site.

The second unit of analysis consisted of seven develop-
ers in India from the Protocols team. The Protocols team was
selected, after consultation with technical managers, since
they share the same issue repository as Unit Sweden. As
a consequence, the two units of analyses follow the same
processes, which enables us to compare views from two
continents. The seven developers were selected to cover as
many perspectives from the Protocols team as possible, and
all of them accepted to join the study.

Overview of the study. The study comprised three main
phases: incremental ImpRec development in collaboration
with the company (A-C in Fig. 3), static validation using sim-
ulation (D), and dynamic validation (E-G) as recommended
by Gorschek et al. [32]. The first step of the development

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

Fig. 2. The ImpRec GUI. A: The search field. B. List of similar issue reports. C. Detailed information view. D. Feedback button. E. List of
recommended impact. Selected parts purposely blurred.

TABLE 2
Study participants in the dynamic validation. Junior/senior reflects years since the degree, whereas newcomer/seasoned depicts years of

experience with the specific system.
12

 The second unit of analysis included seven developers in
India from the Protocols team, working with the same
issue repository as Unit Sweden. The seven developers
were selected to cover as many perspectives as possible,
and all of them accepted to join the study.

Overview of the study. The study comprised three
main phases: incremental ImpRec development in collabo-
ration with the company (A-C in Fig. TODO), static valida-
tion using simulation (D), and dynamic validation (E-G) as
recommended by Gorschek et al. [50]. The first step of the
development involved extracting all history from the
issue repository at the case company (A) and mining the
unstructed CIA reports to create a semantic network of
software artifacts (B), further described in Section 5.2.
Based on the semantic network, we iteratively developed
ImpRec as described in Section 4. The static validation
was conducted using in silico simulation, in which Im-
pRec was applied on the historical inflow of issue reports
(D), as proposed by Walker and Holmes [106]. Promising
results from the static validation lead us to deploy Im-
pRec in Unit Sweden (E) and initiated dynamical evalua-
tion thourgh a longitudinal in situ case study as defined
by Runeson et al. [97]. We used the initial results to tune
the parameter settings of ImpRec (F) before deploying the
RSSE in Unit India (G). The dynamic validation is further
described in Section 5.3.

The steps involved in the study represent several years
of research. The data collection (A) was conducted in the
end of 2011. The mining involved in establishing a seman-
tic network (B) was conducted and improved during
2012, and resulted in two publications [14][15]. ImpRec
was continuously developed and improved from 2013
[18], up to date. The static validation (D) was performed
in the end of 2013, but the simulations were repeatedly
executed as regression tests during ImpRec evolution. We
deployed ImpRec in Unit Sweden in March 2014 (E), did
tuning during Summer (F), and deployed ImpRec in Unit
India (G) in August 2014. We conducted post-study inter-
views and concluded data collection in December 2014.

5.1 Research
questions

The following
research ques-
tions guide
our study:

RQ1 How
accurate is
ImpRec in

recommend-
ing impact for

incoming
issue reports?

RQ2 Do
developers

consider the
level of accu-
racy delivered
by ImpRec

sufficient to help when conducting impact analy-
sis?

RQ3 Do newcomer developers benefit more from
ImpRec than developers that know the system
well?

We addressed RQ1 using static validation in the form
of computer simulations (see Section 5.2). By applying
established IR measures (i.e., precision and recall) we
enable comparisons with previous work, but we also go
beyond set-based measures by presenting Mean Average
Precision (MAP) [78].

We tackled RQ2 and RQ3 by deploying ImpRec in two
development teams. RQ2 deals with mapping the quanti-
tative results from RQ1 to actual user satisfaction. How
accurate must an RSSE be before developers start recog-
nizing its value? Has ImpRec passed the utility break-
point, as discussed by Regnell et al. in the QUPER model
[91]?

RQ3 is an attempt to corroborate an assumption from
previous research that newcomer developers benefit the
most from RSSEs. Cubranic developed Hipikat particular-
ly to support developers new to OSS projects [34], and ten
years later Panichella also developed RSSEs for OSS pro-
ject newcomers [87]. We aim to find supporting or con-
tradicting empirical support that newcomers really bene-
fit more from ImpRec than more seasoned developers.

5.2 Static Validation: in silico evaluation

Our approach to initially justify our RSSE is to conduct a
simulation [106]. To minimize potential confounding
factors, this step was conducted without human subjects
by comparing recommendations from ImpRec with the
results from the historical CIA reports. This static valida-
tion assesses the correctness of ImpRec as defined by
Avazpour et al. [6] , i.e., “how close the recommendations
are to a set of recommendations that are assumed to be
correct”. Since the historical CIA reports have undergone
a thorough review process, due to their key role in the
safety case, it is safe to assume that they are correct.

Simulations are performed by scientists and engineers

Unit ID Team Role Degree
year

System
exp.

Classification

 A Safety team Safety engineer 1999 1999 -> Senior, seasoned
B R&D Development manager 2001 2001 -> Senior, seasoned
C Protocols Technical manager 2004 2005 -> Senior, seasoned

S
w

ed
en

 D I/O Team leader 2002 2004 -> Senior, seasoned
E I/O Developer 2007 2008 -> Senior, seasoned
F I/O Developer 1995 2014 -> Senior, newcomer
G I/O Developer/CM 2012 2012 -> Junior, newcomer

In
d

ia

H Protocols Team leader 2004 2005 -> Senior, seasoned
I Protocols Developer 2004 2010 -> Senior, seasoned
J Protocols Developer 2011 2011 -> Junior, newcomer
K Protocols Developer 2013 2013 -> Junior, newcomer
L Protocols Developer 2007 2007 -> Senior, seasoned
M Protocols Developer 2001 2007 -> Senior, seasoned
N Protocols Product manager 1994 2005 -> Senior, seasoned

involved extracting all history from the issue repository at
the case company (A) and mining the semi-structured CIA
reports to create a semantic network of software artifacts (B),
as described in Section 4.2. Based on the semantic network,
we iteratively developed ImpRec as described in Section 4.4.

The static validation was conducted using in silico sim-
ulation, in which ImpRec was evaluated on the historical
inflow of issue reports (D), as proposed by Walker and
Holmes [68]. Promising results from the static validation
lead us to deploy ImpRec in Unit Sweden (E), i.e., we
initiated dynamical evaluation through a longitudinal in situ
case study as defined by Runeson et al. [91]. We used the
results from Unit Sweden to tune the parameter settings of
ImpRec (F) before deploying the RSSE in Unit India (G). The

dynamic validation is further described in Section 5.3.

The steps involved in the study represent several years
of research. The data collection (A) was conducted in the
end of 2011. The mining involved in establishing a semantic
network (B) was conducted and improved during 2012 [14],
[73]. ImpRec has continuously evolved from 2013 [30], up
to date. The static validation (D) was performed in the
end of 2013, but the simulations were repeatedly executed
as regression tests during ImpRec evolution. We deployed
ImpRec in Unit Sweden in March 2014 (E), did tuning
during the following Summer (F) [88], and deployed the
RSSE in Unit India (G) in August 2014. We conducted post-
study interviews and concluded data collection in December
2014.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

Fig. 3. Overview of study design. A: Data extraction from issue reposi-
tory. B: Knowledge base established in the form of a semantic network.
C: ImpRec iteratively developed with short feedback loops. D: Static
validation based on simulation. E: ImpRec deployed in Team Sweden.
F: Intermediate results analyzed and tuning of ImpRec [88]. G: Tuned
ImpRec deployed in Team India.

5.1 Research Questions

The following research questions guided our study:

RQ1 How accurate is ImpRec in recommending impact
for incoming issue reports?

RQ2 Do developers consider the level of accuracy deliv-
ered by ImpRec sufficient to help when conducting
change impact analysis?

RQ3 Do newcomer developers benefit more from ImpRec
than developers that know the system well?

We addressed RQ1 using static validation in the form
of computer simulations, see Section 5.2. By applying es-
tablished IR measures, i.e., precision and recall, we enable
accuracy discussions in line with previous work, but we also
go beyond set-based measures by reporting Mean Average
Precision (MAP) [92]. Section 5.4 presents further details on
the measures. Note that while we address RQ1 quantita-
tively, direct comparisons of ImpRec and approaches from
previous work on the same datasets are outside of the scope
of this paper; the purpose of RQ1 is not to display how
ImpRec stands in the competition, but rather to provide a
feasibility test in preparation of RQ2 and RQ3.

We tackled RQ2 and RQ3 by deploying ImpRec in Unit
Sweden and Unit India. RQ2 deals with mapping the quan-
titative results from RQ1 to actual user satisfaction. How
accurate must an RSSE be before developers start recogniz-
ing its value? In order to assess the utility of ImpRec we
carried out interviews with practitioners using the QUPER
model [93] to relate the quality level in terms of recall to the
perceived benefit.

The QUPER model was originally developed to sup-
port roadmapping of quality requirements, but it is here
used as a basis for the interview instrument used in semi-
structured interviews with developers. The QUPER model
relates quality requirements, on e.g. software performance,
to the market’s acceptance in relation to three breakpoints of
utility where the quality starts to be acceptable, differentiation
where the quality starts to be a competitive advantage,

and saturation where there is no economic value in further
optimization. For more information on QUPER evaluation
and usage guidelines, see [94] and [95].

RQ3 is an attempt to corroborate an assumption from
previous research: newcomer developers benefit the most
from RSSEs. Čubranić et al. developed Hipikat particularly
to support developers new to OSS projects [74], and ten
years later Panichella et al. also developed RSSEs for OSS
project newcomers [96].

5.2 Static Validation: In silico Evaluation
We conducted a simulation study to initially justify our
RSSE, as proposed by Walker and Holmes [68]. To mini-
mize potential confounding factors, this step was conducted
without human subjects by comparing recommendations
from ImpRec with the results from the historical CIA re-
ports. This static validation assesses the correctness of Imp-
Rec as defined by Avazpour et al. [97, pp. 248] , i.e., “how
close the recommendations are to a set of recommendations that
are assumed to be correct”. Since the historical CIA reports
have undergone a thorough review process, due to their key
role in the safety case [12], it is safe to assume that they are
correct.

Simulations are performed by scientists and engineers
to better understand the world when it cannot be directly
studied due to complexity, costs, or risks [68, pp. 301]. By
imitating the environment where ImpRec will be deployed,
i.e., the inflow of issue reports at the case company, we
could examine the correctness of the recommendations. For
the static validation, we used 26,120 chronologically ordered
issue reports and their 4,845 attached CIA reports from the
last 12 years of development, a dataset that we also studied
in previous work [14]. To ensure a realistic simulation, we
did not filter the dataset in any way.

We split the chronologically ordered data into a training
set8 (88%) and a test set (12%). We established a knowledge
base from the training set of (all) 4,249 CIA reports submit-
ted prior to July 2010. The test set contained issue reports
submitted between July 2010 and January 2012. Among the
issue reports in the test set, there were 596 CIA reports. In
the simulation, we used the titles of the associated issue
reports as queries to ImpRec, i.e., we study one set of 596
simulated CIA tasks. We considered the 320 trace links from
these CIA reports to various non-code artifacts as our gold
standard. Among these 320 trace links, 20% of their target
artifacts had not been reported as impacted during the 10
years of evolution represented in the knowledge base. Con-
sequently, as ImpRec relies on developers’ previous work,
the catalog coverage [97] in the simulation was 80%, i.e.,
only 80% of the artifacts we wanted to link were available
in the knowledge base.

We compared two configurations of ImpRec against two
baselines representing naı̈ve strategies. ImpRec A (deployed
in Unit Sweden) and ImpRec B (deployed in Unit India)
constitute the two configurations deployed, before and after
systematic parameter tuning (presented in detail in parallel
work [88]). ImpRec Text is a baseline that only relies on

8. We use the term “training set” although there is no supervised
learning; the training set is used to establish the knowledge base, i.e.,
creating a semantic network and the corresponding Lucene index.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 12

textual similarity, simply returning the artifacts previously
reported as impacted in the 20 most similar issue reports in
the issue repository, ranked by the number of occurrences.
ImpRec Cent is a baseline that only uses the network struc-
ture in the knowledge base. This baseline always reports the
artifacts with the highest centrality measures, no matter the
textual content of the incoming issue report, i.e., the same
recommendations are presented regardless of input.

5.3 Dynamic Validation: In situ Evaluation
While the results from an in silico evaluation can indicate
the usefulness of an RSSE, user studies must be conducted
to gain deeper understanding [31]. To study ImpRec in the
full complexity of an industrial context, we performed a
longitudinal in situ evaluation. By letting the developers
in Unit Sweden and Unit India use ImpRec during their
daily work, we complemented the assessment of correctness
(RQ1) with utility, i.e., the value that the developers gain
from the recommendations (RQ2).

The participants first received ImpRec instructions and
a research study description in a face-to-face meeting. The
instructions clarified the purpose of the study, and how
the participants should use ImpRec in their CIA process.
During the meeting we also presented a demo of ImpRec
and distributed the user manual.

To better understand the operational context before de-
ploying ImpRec, we conducted semi-structured interviews
with all participants individually, and three additional se-
nior engineers (A-C in Table 2). The interviews9, roughly
45 min long, covered the state-of-practice CIA work task,
and challenges experienced by the interviewees. Also, we
discussed some specific CIA reports authored by the inter-
viewee, as well as two measures extracted from their recent
CIA history (10-30 CIA reports per interviewee):

i) the time from the assignment of an issue report to a
developer until a CIA report is submitted (TimeCIA:
reflecting the effort required per CIA)

ii) the number of modifications to a CIA report after
submission (ModCIA: indicating the quality of the
first CIA).

We concluded the interviews by installing ImpRec on
the participants’ computers followed by a brief tutorial. We
also clarified that all actions performed in ImpRec would
be stored in a local log file, as described in Section 4.4.
After the interviews and the tutorial, all participants felt
that they were ready to use ImpRec in their daily work.
We offered them the possibility to email their questions
or get additional training if needed. We also instructed all
participants that our study was longitudinal, planned for
several months, and that reminders to use ImpRec would
be sent regularly during the study.

Throughout the study we received partial log files
through email, complemented by qualitative feedback, a
type of communication we strongly encouraged. We col-
lected final versions of the user log files in December 2014.

After concluding the data collection, we conducted post-
study interviews with the participants in Unit Sweden,

9. The interview guide is available on the companion website
http://serg.cs.lth.se/research/experiment-packages/imprec/

about 30 min each. For convenience, feedback and reflec-
tions from Unit India were collected via email, although the
rest of the study was conducted on site. The goal of the post-
study interviews was to discuss utility focused on quality
breakpoints as introduced in the QUPER model [93]. The
QUPER model treats quality as an inherent characteristic
on a non-linear sliding scale. We asked the interviewees to
assess what the correctness of ImpRec represents, as well the
correctness of the current manual CIA approach, compared
to the three breakpoints of QUPER:

1) Utility: the user starts recognizing the value of the
tool. A low quality level, and anything below is
useless.

2) Differentiation: (a.k.a. “wow!”) the tool starts to be-
come impressive, and users definitely would use it
if available.

3) Saturation: (a.k.a. “overkill”) increased quality be-
yond this point is not of practical significance.

Huffman Hayes et al. have proposed similar evaluation
ideas for mapping quantitative output from software engi-
neering IR tools to quality levels [11]. However, while they
presented initial threshold based on their own experiences,
we explore quality levels based on interviews with develop-
ers.

5.4 Measures and Analysis

In the in silico static validation, we quantified the correctness
based on the fraction of the gold standard recommended
by ImpRec. We define a true recommendation as a suggestion
from ImpRec that is also present in the corresponding CIA
report, and a useful recommendation as either true or explicitly
confirmed as relevant by a participant. We report set-based
measures rather than averages per query (a.k.a. matrix-
based IR evaluation [27], or micro-evolution [67]).

Recall is the fraction of the true impact that ImpRec
recommends (max 80% in the simulation, see Section 5.2).
Precision is the fraction of the ImpRec recommendations
that indeed represents true impact. F1-score is the harmonic
mean of precision and recall, without favoring one or the
other. However, as several researchers argued that recall is
more important than precision in tracing experiments [28],
[57], [98], we also report F2-score, F5-score, and F10-score,
corresponding to a user who attaches 2, 5, and 10 times
as much importance to recall as precision [99]. Mean Average
Precision (MAP) is a secondary IR measure [100], taking also
the ranking of retrieved items into account.

As argued by Spärck Jones et al., pioneers of IR evalu-
ation, only reporting precision at standard recall levels is
opaque [101]. The measures obscure the actual number of
recommendations needed to get beyond low recall. Thus, we
report IR measures for different cut-off points, representing
between 1 and 50 recommendations from ImpRec. Showing
only one recommendation per CIA would not be very
useful, and recommending too many also brings no value.

To assess the utility in the in situ dynamic validation,
we performed triangulation of data from semi-structured
interviews and collected log files. The interviews before and
after deploying ImpRec were recorded, transcribed word-
by-word, and sent back to the interviewees for validation

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

within two weeks after the interview. We conducted the-
matic analysis [102] of the initial interviews, and for the
post-study interviews we sought qualitative comments re-
lated to the findings in the user log files. Further qualitative
feedback, informal but highly valuable, was collected in
meetings and e-mails during the study.

The log files collected from the users10 contain rich
information, and thus enable Search Log Analysis (SLA)
[103]. We primarily used the search logs to study the explicit
feedback functionality (see Section 4.4), but we also com-
pared the recommendations against the final CIA reports
stored in the issue tracker (when available).

Finally, we studied how the developers interacted with
the ranked recommendations, and how much time they
spent browsing the results. We report the click distribution,
i.e., the frequency of clicks distributed across different posi-
tions on the ranked list, however only for related issues (list
view B in Fig. 2) as there is no incentive for the participants
to click on individual items among the potential impact (list
view C in Fig. 2).

6 RESULTS AND INTERPRETATION

This section presents the results from the static and dynamic
validation, as well as our corresponding interpretation.

6.1 Static Validation: In silico Evaluation
Figures 4 and 5 portray the correctness of ImpRec’s recom-
mendations from the in silico simulation. The graphs show
precision, recall, MAP, and F-scores from simulating the
inflow of issue reports. The simulation was based on 12
years of unfiltered issue reports from the case company, see
Section 5.2 for details.

The four plots in Figures 4 and 5 follow the same struc-
ture. The y-axes show the different IR measures, all with val-
ues between 0 and 1. The x-axes depict the cut-off point of
the ranked list, N, i.e., how many ImpRec recommendations
are considered. The subplots display four different ImpRec
configurations, detailed in Section 5.2: ImpRec A (solid line),
ImpRec B (dashed line), ImpRec Text (dot-dashed line),
and ImpRec Cent (dotted line). In Figure 4, the horizontal
‘ceiling’ line shows the highest possible recall for this dataset
due to the catalog coverage, as described in Section 5.2.

Figure 4 a) presents how the recall improves as N
increases. ImpRec A is the best configuration before N
exceeds 10 (Rc@5=0.33 and Rc@10=0.39), but there is little
improvement as the number of recommendations increases
further. ImpRec B performs slightly worse than ImpRec A
for N<10, but improves steadily until Rc@20=0.51. Regard-
ing the two baselines, we conclude that ImpRec Text (dot-
dashed line) is imprecise for few recommendations, but
for large N, the recall matches the level of ImpRec A. A
possible interpretation is that the low initial recall (Rc@1-
9<0.20) of the purely textual baseline does not capture all
variations of the natural language. However, it appears that
the naı̈ve textual approach matches recall levels of a more
advanced configuration for N>30, i.e., if the user accepts
sifting through a high number of recommendations. Note
that as both ImpRec A and B rely on textual similarity to

10. The log files were collected after consent from the participants.

Fig. 4. Recall, precision, and MAP from the static validation, i.e., the
in silico simulation. Solid line: ImpRec A, dashed line: ImpRec B, dot-
dashed line: ImpRec Text, and dotted line: ImpRec Cent.

identify starting points, their recall values also converge at
recall levels lower than the ceiling. Finally, ImpRec Cent
(dotted line) displays a notably worse recall curve.

Figure 4 b) shows how precision drops as N increases
(gray lines). ImpRec A, B, and Text show similar declines,
with ImpRec Text being somewhat better at N>10. Our
results show that while a purely textual approach to rec-
ommending impact does not cover everything in the gold
standard at low N (Rc@5<0.1), the textual similarity appears
to indicate helpful historical issue reports with a reasonable
precision (Pr@5>0.06). Again ImpRec Cent results in the
worst recommendations (Pr <0.03 for all N). Figure 4 b)
also shows how MAP changes with increasing N (black
lines). Among the four configurations, ImpRec A shows
the best MAP at N<19, at larger N ImpRec Text performs
equivalently. ImpRec B and ImpRec Cent generally perform
worse wrt. MAP (e.g., Map@20=0.057 and MAP@20=0.032,
respectively).

Figure 5 a) shows F1-scores (black lines) and F2-scores
(gray lines), i.e., a combined measure treating recall equally
important, or twice as important, as precision. When the

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

Fig. 5. F-scores from the static validation, i.e., the in silico simulation.
Solid line: ImpRec A, dashed line: ImpRec B, dot-dashed line: ImpRec
Text, and dotted line: ImpRec Cent.

number of recommendations is low (N<10), ImpRec A
displays the best F1- and F2-scores. The highest F1- and F2-
scores correspond to two or three recommendations from
ImpRec A, respectively.

Figure 5 b) presents F5-scores (gray lines) and F10-scores
(black lines), i.e., evaluation measures greatly emphasizing
recall. The highest F5- and F10-scores correspond to nine
recommendations (N=9) from ImpRec A and twenty recom-
mendations (N=20) from ImpRec B, respectively.

The in silico simulation suggests that reusing traceability
established by previous developers is a feasible approach to
support non-code CIA. As reported in Section 5.2, ImpRec’s
catalog coverage in the evaluation is 80%, i.e., a majority
of the non-code artifacts impacted by issue reports in the
test set had been reported as impacted before. We observe
that the ImpRec ranking function appears to be useful, as
roughly 30% of the true impact in the gold standard is
recommended among the top-5 candidates, and 40% among
the top-10 candidates. ImpRec B is the configuration that
comes the closest to the upper limit, with Rc@50=0.54, i.e.,
54% of the true impact is recommended among the top-50

TABLE 3
ImpRec correctness compared to previous work. @10 refers to a

cut-off point of 10 recommendations, @? means the cut-off point was
not reported.

Study Pr Rc Project(s)

@10

ImpRec 0.05 0.40 Automation
Canfora and Cerulo [70] 0.20 0.40 Gedit

0.05 0.20 ArgoUML
0.15 0.90 Firefox

Gethers et al. [104] 0.15 0.20 ArgoUML
0.10 0.20 JabRef
0.15 0.35 jEdit
0.10 0.25 muCommander

Zimmermann et al. [67] 0.33
(avg.)

Eclipse, gcc, Gimp, JBoss, jEdit,
KOffice, Postgres, Python

@? Čubranić et al. [65] 0.10 0.65 Eclipse
Ying et al. [69] 0.5 0.25 Mozilla

candidates.
Table 3 lists the correctness of ImpRec compared to

the related work presented in Section 2.3. While there are
considerable differences between the studies, the results
indicate that ImpRec performs in line with previous work on
CIA. This result mirrors our aim to reach high recall within a
reasonable (browsable) amount of recommendations. Note
that the low Pr@10 is inevitable due to the nature of our
test set. Our test set (i.e., gold standard) contains 596 issue
reports (i.e., queries) and only 320 true links (i.e., relevant
documents), thus many queries have no matching true doc-
uments. Thus, the highest possible precision for Pr@1 and
Pr@10 are 320/596=0.54 and 320/5,960=0.054, respectively.

To summarize, the static validation results in correctness,
i.e., precision and recall measures, in line with previous
work, even though ImpRec addresses heterogeneous non-
code artifacts rather than source code. Only the approach by
Canfora and Cerulo (when evaluated on the Firefox project)
outperforms ImpRec for Rc@10, obtaining a value as high
as 0.90. At the same time, ImpRec’s precision is in the lower
end among the other work. However, as ImpRec obtains a
recall of 0.4 already for 10 recommendations (Rc@10=0.4),
we do not consider the low precision to be a major problem,
i.e., a developer would not have to sift through pages
of artifacts to find actionable recommendations. Thus, we
consider the correctness of ImpRec to be good enough to
initiate the dynamic validation and turn our attention to
RQ2 and RQ3.

6.2 Dynamic Validation: In situ Evaluation
This section describes the results from the dynamic valida-
tion, organized into: 1) overall results, 2) detailed results per
participant, and 3) mapping correctness to utility.

6.2.1 Overview of the Results
The initial interviews confirmed the importance of support-
ing CIA, and that considerable effort is spent. The partic-
ipants estimated that developers on average work 50-100
hours on CIA yearly [82], but providing precise numbers is
difficult; there is no consensus of what should be included in
CIA as it cannot easily be separated from activities such as
program understanding, software testing, and debugging.
The interviewees reported that the frequency of the CIAs
depends on the phase of the project, but one CIA per
week with 1-2 hours effort appeared to be the average
for most developers. However, the interviews refuted the

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 15

value of the two measures TimeCIA and ModCIA defined in
Section 5.3, as too confounded by other variables11, and only
useful as “a very rough indication of effort and complexity”
(participant A) Thus, we focused the dynamic validation
on Search Log Analysis (SLA) combined with qualitative
feedback from the post-interviews.

We received positive responses during initial installation
and demonstration of ImpRec, with several participants
expressing interest in trying it. One participant immediately
found helpful recommendations during the demonstration,
saying “this [issue report] was exactly what I was looking
for actually” (participant K). On the other hand, one par-
ticipant (H) did not foresee any obvious use cases for the
tool, indicating that its use might not be fully intuitive for
all potential users.

In total, the participants conducted 43 ImpRec sessions
to explore CIAs related to issue reports, 33 times in Unit
Sweden and 10 times in Unit India. The numbers reflect the
different development phases and the extended period of
data collection in Unit Sweden, see Section 5. Thirty-one of
the search sessions concern issue reports that resulted in a
completed CIA report during the study, i.e., we can directly
compare them to the ImpRec output. In total 5 of the 43 uses
did not result in an explicit ‘confirmation’ click by the user
(cf. D in Fig. 2), but we could still perform partial analyses.

Table 4 shows descriptive statistics about the ImpRec
sessions, derived from the usage logs. First, the five leftmost
columns report general information about ImpRec usage:
unit of analysis, participant ID, number of ImpRec ses-
sions (in parenthesis: the number of related CIA reports
stored at the end of the study), query-style of the user
(T=copy/paste of title, D=copy/paste of title+description,
U=user generated query, i.e., free text) incl. average number
of characters/terms in the queries, and the average time
per ImpRec session. The participants spent roughly five
minutes per session with ImpRec. The SLA revealed that
three different search strategies were used. Six users used
manually crafted queries as input to ImpRec (U in the fourth
column), typically important keywords from the domain.
These users used several different queries per session, but
they were often restricted to a few terms. Participant D
explained that he “started with broad searches, and then
tried to gradually make them more specific”. On the other
hand, participant E exclusively used long queries (avg. 101
terms), consisting of both the title and the description of
issue reports, stating that “I didn’t think of any patterns
really, but I think that’s how you should search”. Three users
mostly used titles as search queries, on average containing
ten terms.

Table 4 also shows the accuracy of the ImpRec recom-
mendations per participant. Second, four columns show
results concerning related issue reports: number of related
issue reports in the gold standard (in parenthesis: number of
related issue reports covered by the knowledge base), num-
ber of true related issue reports recommended by ImpRec,
number of useful but not true recommendations (denoted
#Extra), and the corresponding result in terms of recall (in
parenthesis: the maximum recall based on the knowledge

11. For a longer discussion on the challenges of measuring CIA, also
based on the initial interviews, we refer to a separate publication [82].

Fig. 6. Click distribution of the participants’ interaction with recom-
mended related issue reports.

base coverage). Finally, four columns show results regarding
impacted artifacts, analogous to the related issues.

The participants used the confirmation clicks to report
that ImpRec provided relevant items in 30 of the 43 ImpRec
sessions (70%). Useful related issue reports were provided
for 21 of 43 of the sessions (49%), and true recommendations
in 14 of 31 (45%) of the sessions with a corresponding
CIA report. In total, participants confirmed impacted items
as relevant for 23 of the 43 sessions (54%). We observe
that for two participants that did several search sessions
(E and F), the recall for impacted artifacts corresponds to
the static validation (0.45 and 0.42). For further details on
the individual ImpRec sessions, we refer to the companion
website12.

Among the 50 true recommendations, the participants
missed 19 of them (38%). As expected, the position of
recommendations on the ranked lists was important. The
click distribution of the recommended related issue reports
(see Fig. 6) shows that the participants interacted more
with recommended issue reports presented at the top of the
list, and the decrease in clicks is similar to what has been
reported for web search [105]. Participant G commented that
“the first search hits felt good, but somewhere after 10 or 12
it turned wild”, and participant E stated that “I don’t think
I looked beyond 10. The ranking function was quite good, I
started trusting it”.

ImpRec often provided relevant related issue reports that
were not explicitly stored as ‘related’ in the issue tracker.
In total, the participants reported that ImpRec presented
66 relevant related issue reports, and 56 of these relations
(85%) were not explicitly stored in the issue tracker. This
indicates that there is a large amount of issue reports that
never are connected, despite that developers consider them
related. Moreover, it suggests that the network of issue
reports in the issue tracker, analyzed also in previous work
[73], underestimates the issue interrelations.

Regarding potentially impacted artifacts, the analysis
of confirmation clicks shows that ImpRec presented 77
relevant impact recommendations, and 29 of them (38%)

12. http://serg.cs.lth.se/research/experiment-packages/imprec/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 16

TABLE 4
Detailed results, per participant, from the dynamic validation.

were not reported in the formal CIA reports. This suggests
that ImpRec can be used to complement manual work by
recommending novel artifacts, thus improving the recall of
CIA reports.

6.2.2 Detailed Results per Participant
Participant D, the team leader of Unit Sweden, conducted
eight search sessions with ImpRec. Compared to the other
participants in the study, his sessions were shorter, but
conducted in an iterative fashion with short queries in
rapid succession. ImpRec delivered relatively few true rec-
ommendations (RcRel=0.10, RcImp=0.21), but he confirmed
several additional artifacts as relevant. Despite the rather
poor quantitative results, participant D was positive about
the approach and explained that a tool that reuses previous
knowledge could help tracing changes to ‘difficult’ artifact
types: “What we miss as developers are items we don’t have
a relation to. We know the code to change, which files and
modules. But tracing to requirements, and the system tests
as well, that’s where a tool like this could help”.

Participant E used ImpRec 14 times during the study,
more than any other participant. He was also the only
participant who mainly used full text descriptions as queries
in ImpRec. Most of the issue reports related to his tasks
were not available in the knowledge base, thus the RcRel
of ImpRec was constrained to 0.3. Regarding RcImp (0.45)
however, his results are in line with the static validation.
During the post-study interview, participant E explained
that he “already knew about most recommendations pro-
vided by ImpRec”, and that only a few times ImpRec
identified information that complemented his knowledge.
This observation stresses that it is not enough to look at
recall in isolation, as there is a risk that a high recall value
contains nothing but obvious information. On the other
hand, confirming the users’ ideas is one of the goals of an

RSSE [31] (the other goal is to provide novelty), and it is also
critical in building the users’ trust in the tool [97].

Participant F performed eight ImpRec search sessions,
using titles of issue reports as queries. As for participant
E, most related issue reports were more recent than what
was covered by the knowledge base (RcRel constrained to
0.4). On the other hand, ImpRec identified 13 meaningful
issue reports that were not formally acknowledged in the
issue tracker. Finally, RcImp (0.42) was in line with the
static validation. Participant F expressed that he “absolutely
found some of the recommendations useful”, but also that
he maybe did not get the most out of ImpRec as he “might
not have used the tool properly” and that “any search hits
that require scrolling to find might be missed, and if the first
hits do not make sense, you stop looking”. Thus, the post-
interview with participant F confirmed that both proper
tool instructions as well as an accurate ranking function are
important.

Participant G used ImpRec three times during the study,
even though he commented: “Did I do only three? It felt like
at least seven”. During the course of the study, participant
G gradually shifted to a full-time Configuration Manage-
ment (CM) role. This change decreased the number of issue
reports assigned to him, and introduced CM related meta-
issues, e.g., branching, for which ImpRec did not provide
accurate recommendations. However, he explained that also
when ImpRec did not provide directly related artifacts,
the tool supported general system comprehension: “It was
worthwhile to further investigate some recommendations,
even though I didn’t report them as relevant in the end.
Doing so helped me understand how things go together”.
Still, ImpRec’s poor results on meta-issues indicate that the
approach is best suited for actual defect reports.

Participant H, the team leader of Unit India, conducted
three ImpRec search sessions. However, only one of the

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 17

sessions related to an issue report with a completed CIA
report at the end of the study. She performed manually
crafted queries and iteratively modified them. Only in one
session she confirmed the results using the explicit feed-
back function, reporting two useful recommendations (one
related issue report and one impacted artifact). Participant H
assessed the search results very fast, on average in 1 minute.
This behavior is partly explained by the iterative search
strategy. We suspect that ImpRec might have delivered more
useful recommendation if more effort was spent, but as
explained by herself “as a team leader, I do not work directly
with CIA reports as much as before”, possibly decreasing
her motivation to work with ImpRec.

Participant I used ImpRec only once during the study.
The single issue report triggering the CIA had 16 related
issues stored in the tracker, the highest number in the study.
Still, only six of them were present in the knowledge base,
and none of them were recommended (RcRel=0). On the
other hand, ImpRec recommended two other issue reports
that the participant confirmed as relevant. RcImp could not
be calculated, as there was no available CIA report for the
specific issue report.

Participant J conducted two search sessions, and one of
them had a corresponding CIA report. ImpRec did not pro-
vide her any true recommendations (RcRel=RcImp=0), but
instead four useful related issues and one useful impacted
artifact. The qualitative feedback confirmed the value of the
recommendations. Participant J said that “Your tool helped
me to get a list of all related issues. The issue that I was
working on was raised in many earlier system versions,
and different people apparently worked on that with no
success”. This statement again shows the importance of
going beyond the simple recall measure when evaluating
an RSSE.

Participant K, the most junior developer in the study,
used ImpRec only once. He used a short user generated
query, and ImpRec recommended seven useful previous is-
sue reports. However, neither the two relevant issue reports
in the gold standard, nor the eight impacted artifacts, were
covered by the knowledge base. Still, participant K was
satisfied with his single ImpRec experience, explaining: “I
used the tool for a crash issue I’m working on. I found it
very useful as I was able to find some old issue reports with
similar problems and how they were fixed”. He confirmed
results in ImpRec 80 min after the click on the search button,
thus obviously doing other things in the meantime. We
consider the time as an outlier, i.e., it is not used in the
calculation of average time per ImpRec session.

Participant L was the only participant who did not use
the tool during the study. We consider this indicative of
the individual variation in CIA frequency, in line with the
assessments made by the participants during the initial
interviews.

Participant M used ImpRec for one search session using
a short two-word query. The query resulted in four useful
(but no true) recommended related issues, and the only truly
impacted artifact. He did unfortunately not store his full
user log file, thus we could not perform a proper SLA.

Participant N represents the product management per-
spective, a type of user that browses rather than writes CIA
reports. He confirmed that ImpRec delivered several useful

Fig. 7. Mapping correctness and utility using the QUPER model. Black
arrows depict the current manual work, white arrows represent working
with ImpRec.

recommendations (five related issue reports and six im-
pacted artifacts) but none of them were in the gold standard.
Participant N expressed worry, in line with participants F
and M that he might not have used ImpRec properly: “I’m
not sure how well I used it, I basically just looked at the
CIA reports of the related issues”. However, as this reflects
a typical ImpRec use case, we do not share the participant’s
concern.

6.2.3 Mapping Correctness and Utility
The qualitative feedback from the developers enables us to
map the quantitative results from the static validation, i.e.,
correctness measured in recall, to the experienced utility of
ImpRec. We discussed utility during post-study interviews
with the participants in Unit Sweden, based on the QUPER
model [93]. Figure 7 shows an overview of the discussions.
Three out of four developers found it useful to discuss qual-
ity versus benefit based on the QUPER model. Respondent F
instead preferred less structured discussion of utility, as he
considered both the quality dimension and the subjective
benefit as too abstract.

Participant E has conducted many CIA reports during
his time at the company, and he explained that they are
rarely modified once they have been submitted. “I do my
best to answer the questions important to me, the document
updates and the tests to run, but of course I try to answer the
rest properly as well. Subjectively I would put my manual
quality close to the saturation point”. This statement reflects
that higher recall in the CIA reports would have little prac-
tical significance. Participant D put the current correctness
of ImpRec in the lower end of the ‘useful’ region, and
motivates his choice “I think I rarely got a really good search
hit that I hadn’t already thought of. Maybe just once or so.
I don’t think using the tool made me rethink the content
of my CIA reports”. This statement clearly shows that (E)
did not receive much novelty from ImpRec, but rather con-
firmation. Participant E also quantified the QUPER quality
breakpoints for ImpRec: utility - 25%, differentiation - 50%,
saturation - between 75% and 100%.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 18

Participant D focused on the benefit dimension. His
main consideration was that his experienced benefit of the
CIA report was low with the current way of working, no
matter how correct they would be: “During the project the
value is very limited. We don’t use the content of the CIA
report properly, they just live on parallel to the project. Even
if they would be 100% accurate, their benefit to me would
still not be better than ‘useful”’. Despite his critical remark,
he acknowledged that other roles than developers might
find them more useful, especially toward the end of projects.
He also made a suggestion: “CIA reports are not a parameter
in the project planning. But they should be.” Regarding the
utility of ImpRec, participant D said “Already this prototype
is clearly useful”. Moreover, he explained that the overall
RSSE approach is promising: “What we developers are bad
at is tracing to requirements. And reporting the test case
selection back to the test organization. This is where I think
there is potential in a tool like this, to take advantage of
what others have done before”.

Participant G had a contrasting view on the quality
levels. He preferred to view the quality as binary: “There are
no different levels like this. CIA reports are either worthless
or ok.” Still, he emphasized the variation of how skillful
developers are at writing CIA reports, and that some tend
to report too much. Finally, participant G stated that auto-
mated tool support for CIA could be useful, and quantified
the QUPER breakpoints as follows: utility - 10% (“below
that it would be too much waste of time”), differentiation
- 25%, and saturation - 50% (“too much help is not good, I
still want the developers to think for themselves”).

Participant F preferred to discuss utility without framing
it into the QUPER breakpoints. Instead, his impression was
that the current manual CIA reports cover 75% of what
should actually be reported. He acknowledged that ImpRec
sometimes provided useful recommendations, but particu-
larly commended the fast search results in the tool. He also
encouraged future evolution as he believed in the approach
of finding related CIA reports from the past. However,
participant F also stressed other aspects of utility: “You
become more inclined to use the tool if it is integrated in
some way. Otherwise there is always this threshold.”

The integration aspects were also mentioned by par-
ticipant D during the post-study interview. He requested
ImpRec to be properly integrated in the issue tracker, to help
it reach its full potential. He also mentioned two additional
improvement proposals: 1) filtering of the search results
and 2) personalization of the searches, e.g., by tagging
‘favorites’. Towards the end of the interview, participant D
also warned about the dangers of tools like ImpRec, since
also developers’ erroneous decisions could be propagated
to future CIAs.

Participants K and M from Unit India also provided
positive qualitative feedback on the utility of ImpRec, how-
ever not structured according to the QUPER model. Some
participants in Unit India were also eager to further try
ImpRec, as represented by participant J asking “Could you
tell me how to upgrade the database of the tool, so that
it gets the latest set of issues?” The question puts the
importance of keeping the knowledge base up-to-date in
focus, an important direction for future work, see Section 9.

Summarizing the utility evaluation, we note that the

developers’ reception of ImpRec varies. Still, it appears that
the level of correctness provided by ImpRec can support
developers in the case under study. For example, all par-
ticipants in Unit Sweden shared some positive experiences
from working with ImpRec. Participants D and E explicitly
put ImpRec beyond the utility breakpoint in the QUPER
model, and participant G associated the utility breakpoint
with a quality level well below what ImpRec delivers
(10%). Participant F preferred to discuss the utility in a
more abstract fashion, but reported that ImpRec ‘absolutely’
presented some useful recommendations. The evaluation in
Unit India, involving more participants (but only 23% of the
total number of ImpRec search sessions), also indicated that
ImpRec was helpful. The junior developers (participants J
and K) confirmed usefulness of the tool, and two senior
developers (participants M and N) reported several correct
recommendations using the confirmation functionality. On
the other hand, two other senior developers (participants H
and I) did not provide any qualitative feedback, and also
confirmed fewer recommendations as true.

7 THREATS TO VALIDITY

We discuss threats to validity in terms of construct validity,
internal validity, external validity, and reliability as proposed
by Runeson et al. [91]. We minimize conclusion validity
discussion as the conclusions of this paper do not arrive
from inferential statistics and its assumptions [106].

7.1 Static Validation (RQ1)

The main threats to our conclusions regarding correctness
regard construct validity (i.e., the relation between the theo-
ries behind the research and our observations) and external
validity (i.e., whether the results can be generalized). As
ImpRec is tailored for the specific context under study, we
discuss generalizing the static validation to other sets of
issue reports in the same organization, not to other com-
panies.

All measurements of the ImpRec recommendations are
relative to the gold standard. The gold standard is extracted
from manually created CIA reports, and it is likely that some
of the reports point out to either too many impacted artifacts
or too few. However, the CIA reports are among the most
frequently reviewed artifacts in the organization, as they are
fundamental to the safety certification. The change control
board, project managers, and the safety team continuously
validate CIA reports during the development life-cycle.

To increase construct validity, we evaluated ImpRec
without filtering any issue reports, i.e., we simply tried
the RSSE by simulating the true historical inflow of issue
reports. In operation, it is likely that ImpRec would only be
used for defect reports that require corrective maintenance
work. However, the decision to include all types of issue
reports in the static validation, as long as they had an at-
tached CIA report, is unlikely to have improved our results.
Instead, we suspect that the correctness of ImpRec might
have been better if only defect reports were studied.

External validity threats are also substantial in relation
to RQ1. The static validation procedure was designed to
obtain preliminary results, and allow fast transition to the

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 19

dynamic validation, the integral evaluation of this study.
This research design lead to some simplifications of the
static validation. Even though we simulated 1.5 years of true
issue inflow, we study only one test set. Thus, it is possible
that the results would have been different if we studied
other test sets. An alternative design would have been to
use k-tail evaluation [107], a type of k-fold cross validation
preserving the internal order of elements. However, the
extent of our static validation is in line with previous work
reported in Section 2.3. Moreover, we argue that a more
thorough in silico evaluation is beyond the scope of this case
study. Finally, we primarily consider correctness (RQ1) to be
a prerequisite to study utility (RQ2), a quality characteristic
we consider more interesting. Previous studies on the other
hand, often used correctness as a proxy for utility, and leave
studies with real users as important future work.

7.2 Dynamic Validation (RQ2 and RQ3)

When conducting interviews, there is a risk that academic
researchers and practitioners use different terminology and
have different frames of reference. There is also a risk that
the interview guides did not capture all utility aspects of
ImpRec. To reduce these threats, the interview instruments
were reviewed by all authors, and the interviewees were
all given opportunity to openly discuss their experiences.
Furthermore, we improved construct validity by performing
method triangulation, i.e., SLA and interviews.

The user log files did not always contain all informa-
tion needed for proper SLA. Our design relied on that
the participants used the confirmation functionality (check
boxes in ImpRec), and sometimes they did not. However,
most ImpRec sessions were concluded with a click on the
confirmation button (cf. D in Fig. 2), indicating that the
participants followed our instructions. Finally, there is a risk
that some participants refrained from using ImpRec because
of the detailed user log files. To mitigate this threat, referred
to as evaluation apprehension by Wohlin et al. [106], we
presented the location of the log file, and explained that
all data were stored without encryption in a readable XML
format.

Our initial plan was to complement the interviews and
the SLA by quantitative measurements in the issue tracker
representing: 1) the quality of the CIAs, and 2) the effort
required to conduct CIAs. Thus, we developed TimeCIA
and ModCIA (presented in Section 5.3), and calculated the
measures per participant prior to the initial interviews. The
interviewees explained that there were too many confound-
ing factors to interpret the two measures; we thus did
not attempt to triangulate the utility of ImpRec with these
quantitative measures. Consequently, despite conducting
a study in an industrial context, we do not report any
measures of cost or time savings. Nonetheless, we argue that
conducting interviews supported by the QUPER framework
complemented by quantitative SLA suffice to answer RQ2
with reasonable validity.

Threats to internal validity deal with casual relations and
confounding factors. Regarding RQ2, it is possible that the
development phase in the organization affected the dynamic
validation results. To best study the utility of a CIA tool, its
deployment should coincide with a CIA intensive phase. We

deployed ImpRec in Unit Sweden after a formal verification
phase, typically resulting in a subsequent peak of corrective
maintenance, i.e., issue triaging and CIA. On the other hand,
the point in time for deployment in Unit India was selected
for convenience. The higher number of ImpRec uses in Unit
Sweden reflects the different development phases during
the data collection.

Another threat to the internal validity of the utility
evaluation is the three different search strategies identified
by the SLA. It is possible that ImpRec is more likely to
be considered useful if users follow a particular search
strategy. We notice that the three participants D, J, and
K, who arguably provided the most positive qualitative
feedback, all used ImpRec with manually crafted queries as
input. While this observation suggests that free exploratory
ImpRec sessions are the most fruitful, participants H and
M reported less positive feedback using the same search
strategy. Future work should further investigate different
search strategies; in the meantime we recommend ImpRec
users to try a combination of search strategies, preferably in
an iterative fashion.

RQ3 addresses differences between project newcomers
and seasoned developers. Since all seasoned developers
are also senior, there is a risk that seniors have a more
conservative view on tools, i.e., seniors might be biased to
more sceptical assessments of the utility of ImpRec. Another
systematic bias in our study might come from cultural
differences [108]. It is possible that the participants in the
two units of analysis were culturally inclined to provide
certain feedback. However, we consider the impact of this
threat to be tolerable, as both Unit Sweden and Unit India
reported positive and negative feedback.

In contrast to the static validation, we discuss the exter-
nal validity of the dynamic validation both in terms of gen-
eralization to other developers in the organization, and to
other companies active in safety-critical software develop-
ment. We studied developers from two development teams
in an organization comprising roughly 10 teams. Looking at
the project history, the two selected teams had conducted
CIAs with an average frequency, and the participants stud-
ied within the two teams represent different perspectives.
Furthermore, we study developers working on two different
continents. We find it likely that developers also from other
teams in the organization, if they are working on evolving
parts of the system covered by the knowledge base, could
benefit from ImpRec as well.

Regarding generalization to other companies, analytical
generalization is required to relate our findings to other
cases [91]. Our case study is an in-depth study of a specific
organization, combining quantitative and qualitative anal-
ysis. Several aspects are unique to the case under study,
e.g., the CIA template, and the practice of storing CIA
reports as free text attachments in the issue tracker. Other
organizations developing safety-critical systems may have
other adaptations of their development processes to fulfill
safety standards such as IEC 61511 [8], ISO 26262 [9], and
EN 50128 [11]. Still, explicit CIAs are required in all orga-
nizations modifying a safety certified software system [4].
Moreover, our cross-domain survey of CIA also suggests
that while details differ, many of the CIA challenges are
universal in safety-critical development [18]. As such, pro-

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 20

viding in-depth industrial case studies can enable important
knowledge transfer between domains, a phenomenon also
reported by participant B as remarkably limited at the
moment.

The analysis of qualitative research lies in interpretation
by the involved researchers, thus exact replications are im-
probable, which constitutes a threat to reliability. However,
to increase the reliability of our study, we combined the
interviews with SLA. Another threat to in situ studies,
particularly with longitudinal data collection, is that strong
relationships are created between researchers and study par-
ticipants. Other researchers might have developed different
relations, influencing the interviews in other ways.

Finally, there are multiple quality attributes available for
RSSE evaluations. Avazpour et al. listed 16 attributes [97],
but this study focused only on correctness and utility. Other
researchers could have selected other attributes. From our
perspective, the most important complementing attributes
to study in future work are coverage and risk, as discussed
in Section 9.

8 SUMMARY AND DISCUSSION

In this section, we first discuss the research questions pre-
sented in Section 5. Second, we discuss our work in the
light of previous research on CIA. Third, we discuss the
implications for industry practice. Finally, we relate our
experiences to previously reported experiences of case study
research in software engineering.

8.1 Revisiting the Research Questions
RQ1 addresses the correctness of ImpRec recommendations
[97], a question that we tackled using in silico simulation
and quantitative IR measures, in what we refer to as static
validation [32]. We studied two configurations of ImpRec,
and conclude that ImpRec recommends about 30% of the true
impact among the top-5 items and 40% among the top-10 items.
Furthermore, while ImpRec A recommends few truly im-
pacted artifacts after rank 10, ImpRec B exceeds 50% among
the top-20 items.

The ranking function of ImpRec performed better than
two naı̈ve approaches to automated CIA: 1) recommending
artifacts impacted by textually similar issue reports, and 2)
recommending the most frequently impacted artifacts. Fur-
thermore, the in situ evaluation showed that the participants
considered the ranking function to be helpful, as indicated
by the click distribution and as reported in the post-study
interviews.

ImpRec is different from the majority of tools providing
automated CIA by its explicit focus on non-code software
artifacts. While this difference means that comparisons to
previous work should only be made to observe general
trends, we conclude that the correctness of ImpRec is in line
with what can be found in the scientific literature. ImpRec
obtains better recall than precision, but we agree with pre-
vious researchers [28], [57], [98] and consider recall more
important (as long as the total number of recommendations
is still reasonable). Thus, we postulate that the correctness of
ImpRec is good enough to commence dynamic validation.

RQ2 deals with the utility of ImpRec [97], and especially
whether developers recognized the value of the RSSE. We

assessed this using dynamic validation [32], by deploying
ImpRec in two development teams, and then collecting data
in a longitudinal in situ study. While we also collected
quantitative measures, we primarily discuss utility based
on the post-study interviews using the QUPER model [93].

The post-study interviews with Unit Sweden suggest
that the correctness of the RSSE has passed the utility break-
point, i.e., ImpRec is useful in supporting CIA. Participants
D and G estimated the utility breakpoint to be at 25%
and 10% recall, respectively, strictly lower than ImpRec’s
recall at 40% already at N=10. Interestingly, participant G
put the differentiation breakpoint at 25% and the saturation
breakpoint at 50%, as he did not want a tool to deliver “too
much”. Several other participants, including Unit India, also
reported positive feedback from working with ImpRec.

The participants reported two considerations related to
utility that will impact future work. First, participant D
expressed concerns that ImpRec rarely reported anything
that he did not already know. This implies that there is a risk
that ImpRec might primarily deliver obvious recommendations,
i.e., reinforcing what the developers already know, but pro-
viding limited novelty [31]. On the other hand, delivering
confirmation is critical for an RSSE to establish user trust
[97]. Still, future work needs to further assess the value of
the true recommendations provided by ImpRec. In the same
vein, participant E warned that ImpRec risks propagating
errors from previous CIA reports. This is indeed true, and
further research is required on how to adapt development
processes to take such error propagation into account (see
also Section 8.3).

Participants E and F emphasized another aspect of util-
ity: they claimed that an RSSE like ImpRec must be integrated
in the existing tool chain, and not executed as a separate tool.
We were well aware of this during design of the tool [109],
but as the organization was (and still is) in a transition
to replace the current issue tracker, we decided to instead
integrate ImpRec in IA Sidekick, an existing support tool.
However, as most developers were unaware of IA Sidekick,
it did not support the dissemination of ImpRec as much as
expected.

RQ3 explores whether project newcomers value navi-
gational tool support more than developers that are more
knowledgeable, as suggested by previous work on tool
support for software engineering [65], [96]. In our in situ
study, we consider Participants F, G, J, and K as newcomers
with less knowledge of both the domain in general and the
particular software system.

Participant F obtained an RcImp matching the static
validation (cf. Table 4), but the other newcomers obtained
modest results in terms of recall. On the other hand, the
newcomers confirmed a slightly higher number of useful related
issue reports than the seasoned developers (on average 1.7
per search session, compared to 1.3) but the difference is not
statistically significant. The average number of confirmed
impacted artifacts however was practically the same for
newcomers and seasoned developers.

Newcomers expressed some of the most positive com-
ments. Participants J and K in Unit India were both very
positive to ImpRec and interested in the future evolution
of the tool. Moreover, participant G in Unit Sweden put
the utility breakpoint in the QUPER model well below the

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 21

TABLE 5
ImpRec compared to Lehnert’s taxonomy of CIA tools [35]. Comments
in italic font represent types that do not exist in the original taxonomy.

Criterion Comment
Scope of Analysis Misc. artifacts
Utilized Technique(s) History mining, Traceability,

Information retrieval
Granularity of
- Entities Document
- Changes Issue report
- Results Document
Style of Analysis Search based
Tool Support ImpRec
Supported Languages N/A
Scalability Full scale
Experimental Results
- Size ≈ 50,000 entities
- Precision Pr@10=0.05
- Recall Rc@10=0.40
- Time < 1 s per search

+ in situ evaluation

current correctness of ImpRec. The newcomers appeared to
particularly value the quick access to previous issue report
provided by the RSSE, i.e., the qualitative feedback suggest
that introducing state-of-the-art search functionality in the issue
tracker might help newcomers.

The seasoned developers expressed particular risks in-
volved in increasing the level of automation in CIA. While
the junior developers G, J, and K did not discuss any risks
involved in tool support, some senior developers were more
defensive. Participant D warned that mistakes might be
propagated using tools. Participant H did not see obvious
use cases for ImpRec, and participant E questioned the lack
of novelty in the ImpRec recommendations. To conclude, the
qualitative feedback suggests that newcomers are more positive
to navigational support provided by an RSSE compared to sea-
soned developers. However, while our results slightly indicate
that newcomers particularly appreciate recommendations of
related issue reports, whether newcomers in general benefit more
from ImpRec than seasoned developers remains inconclusive.

8.2 ImpRec and State-of-the-Art RSSE Research
Our study brings several novel contributions to CIA and
RSSE research, in particular from an empirical perspective.
In this section, we discuss four aspects where our work
goes further than previous studies. We compare our work
to previous CIA research based on the taxonomy of CIA
support proposed by Lehnert [36] and his accompanying
literature review [35], see Table 5.

First, although CIA is fundamental in safety standards
(e.g., [9], [10], [11]), most of the previous evaluations of tool
support for CIA exclusively consider Open Source Software
(OSS) [35]. We have previously identified the same lack of
studies in proprietary contexts regarding tool support for
traceability management [27], another cornerstone in safety-
critical development [110], [111].

Exclusively focusing on OSS is unfortunate, since there
is a need for empirical studies on safety-critical software
development in industry [13]. Also, there are still no large
safety-critical OSS systems available as surrogates [112],
thus researchers must target proprietary systems. The over-
representation of studies in the OSS domain applies to

software engineering research in general, partly explained
by the appealing availability of large amounts of data and
the possibility of replications [113]. Thus, this study is a rare
example of an in-depth empirical study on tool support for
CIA in a proprietary context.

Second, we conducted a longitudinal in situ study. Most
previous evaluations on CIA tools were only evaluated in
silico, i.e., they were assessed based on tool output from
experimental runs on a computer. No study included in
Lehnert’s literature review involved a longitudinal analysis
of a deployed tool [35]. In the RSSE community, Robillard
and Walker recently highlighted the lack of studies that
include humans in the loop [31]. Our study is unique in
its in situ design. Future research should continue with this
more holistic approach, by deploying tools and studying
human output as well as tool output.

Third, ImpRec addresses CIA of non-code artifacts. A
clear majority of previous studies on CIA target the source
code level. Our work is one of the few exceptions that
deal with miscellaneous artifacts. In safety-critical software
development, the impact on different types of artifacts must
be analyzed, which is confirmed by our previous survey [18]
and the initial interviews in the current study. The initial
interviews in this case study confirm the importance of
extending CIA support to misc. types of artifact. In fact,
some of the developers even stated that tool support for CIA
among requirements, test cases and related documentation
is more important than tool support for source code CIA,
as they find it more difficult (and less interesting) to stay
on top of information that does not reside in the source
code repository, see Section 3.2. We suspect that one reason
for the strong code-orientation in previous CIA research
originates from the OSS domain in which fewer types of
software artifacts are typically maintained. Consequently,
we argue that more CIA researchers should target industrial
software systems certified by some of the established safety
standards, to enable additional studies beyond the source
code level.

Fourth, ImpRec combines techniques proposed in pre-
vious work in a novel way. Lehnert’s taxonomy contains 10
different techniques to support CIA [36]. As presented in Ta-
ble 5, ImpRec combines a collaboratively created knowledge
base with a state-of-the-art search solution. The knowledge
base is established using History Mining (HM) of previous
trace links, i.e., Traceability (TR). Apache Lucene provides
the Information Retrieval (IR) part, the driver of the ImpRec
approach. According to Lehnert’s literature review, HM+TR
have been combined in previous work [114], as well as
HM+IR [70], [115], [116] and TR+IR [117], but no other
CIA tool combines HM+TR+IR. Instead, the most similar
tools from previous work, both combining HM+TR+IR, are
Hipikat [65] and Trustrace [75]. While neither Hipikat nor
Trustrace were developed explicitly for CIA (supporting
issue resolution and trace recovery, respectively; thus not
included by Lehnert), both tools could also support CIA.

Regarding the remaining criteria in Lehnert’s taxonomy
[36], more aspects of ImpRec are worth mentioning. The
granularity considered in our work is ‘documents’, with
‘issue reports’ as change triggers. Our RSSE is used for
a search based style of CIA, i.e., on demand per issue
report, the least frequent style in Lehnert’s literature review

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 22

[35]. The criterion ‘supported languages’ does not apply
to ImpRec, as it does not deal with source code impact.
Finally, the scalability of our approach is implicit, as we
already used it in situ in a complex industrial setting. The
searches are still quick, and we leverage on size, i.e., we
expect a larger knowledge base to bring higher correctness
and utility.

Finally, we report some lessons learned that might sup-
port future studies on CIA. CIA is a complex cognitive
task. The initial interviews in this study clearly showed that
assessing the value of tool support cannot be made using
simple measures such as TimeCIA and ModCIA (discussed
in Section 5.3), due to the many confounding factors [82].
Furthermore, our post-study interviews revealed that also
correctness (in terms of IR measures) is too simplistic. The
value of recommendations is not binary; a high amount of
correct results might still be barely useful, while a single
correct item (if delivered with a high ranking) can bring the
experienced utility to high levels. In conclusion, our work
stresses the importance of qualitative analysis of output
from CIA tools.

8.3 ImpRec and Implications for Industry Practice

In this section, we discuss the findings most important
to industry practice. While there are several aspects that
could be of interest to industry practitioners in safety-critical
development contexts, we focus on three topics: 1) wasted
effort when working with an inadequate issue tracker, 2)
the potential of CIA history mining, and 3) challenges in
introducing CIA tool support.

First, we found strong evidence that using an underde-
veloped issue tracker impedes both CIA and issue management
overall. The majority of participants in the study were critical
about the currently used issue tracker, explaining that it
was slow, and poor at both searching and browsing issue
reports. Based on the feedback functionality of ImpRec, we
also identified that many relations among issue reports were not
properly stored in the issue tracker. It might be worthwhile to
oversee how and when relations are specified, as research
has shown that helping other developers quickly find all
related issues speeds up maintenance work [118]. In our
study, especially the junior developers appreciated quick access
to previous issue reports. Our recommendation to industry
is to at least introduce proper search functionality in the issue
tracker. Furthermore, future search solutions might turn
more accurate if the inter-issue relations are properly stored,
as network measures are central in state-of-the-art ranking
functions.

Second, our work highlights the significant potential of
mining explicit knowledge from historical CIA reports. As
presented in Section 3.2, one of the challenges of a rigid CIA
process in safety-critical development is that developers
view it as an activity that simply must be done to achieve
safety certification, but that the CIA reports once completed
bring them no personal value. Several participants in our
study confirmed this view, thus industry should make an
effort to increase the appeal of CIA. We argue that letting
developers reuse knowledge captured in previous CIAs could make
developers more inclined to write high quality CIA reports, and to
make them living documents. Developers tend to take pride in

evolving source code to high standards, but the CIA report
is primarily a one-shot production, and developers rarely
look back.

Albeit our study shows that reusing previous CIA re-
ports has the potential to support developers, we are aware
that our approach has limitations. Knowledge reuse is
only possible if the project contains enough history. Also,
ImpRec can only recommend already encountered artifacts
in the collaboratively created knowledge base. This aspect
is referred to as the RSSE coverage [97]. Table 4 shows
that ImpRec’s coverage varies across different parts of the
system, and for participants working on new parts of the
system ImpRec brings little value. However, based on our
positive assessment of utility (RQ2), we infer that mining
a knowledge base from historical CIA reports reaches useful
coverage by focusing on the most volatile components.

Third, introducing new tool support in a large organiza-
tion is a challenging endeavour. Dubey and Hudepohl share
some experiences in a recent publication [119], in which
they categorize the challenges along three dimensions: 1)
technical, 2) collaboration, and 3) motivational.

Technical challenges originate in the complex environ-
ments encountered in large organizations. ImpRec is tai-
lored for a specific issue tracker, and a rigorous CIA process
using a formal CIA template. Thus, the usage of ImpRec
is limited to certain parts of the organization. Collaboration
challenges on the other hand deal with communication issues
between the tool supplier and the users. As suggested by
Dubey and Hudepohl [119], we created an easy-to-follow
user manual and provided support via email. The moti-
vational dimension is probably the most protruding among
the categories. Working with ImpRec must be better than
manual CIAs, otherwise the RSSE will have no users. Par-
ticipants in our study particularly stressed the importance of
seamless integration in the issue tracker and fast searches.

We identified an additional dimension not mentioned
by Dubey and Hudepohl [119], that applies to introducing
tool support in an environment certified for safety-critical
development: the organizational dimension. To formally in-
troduce a new tool in the organization under study, a ‘tool
selection report’ must be authored, a kind of CIA for the
tool chain. The report should explain to the external safety
assessor how system safety might be affected with the new
tool. Since ImpRec targets CIA, a safety-critical activity, also
development processes must be adapted. While ImpRec has
the ability to identify impacted artifacts that could be missed
otherwise, the tool might also lull the developers to a false
sense of security. Thus, the CIA process guidelines would
have to be updated to counter this phenomenon.

9 CONCLUSION AND FUTURE WORK

This paper reports from an industrial case study on a Rec-
ommendation System for Software Engineering (RSSE) for
Change Impact Analysis (CIA) called ImpRec. We deployed
ImpRec [30] to provide decision support by presenting
potentially impacted non-code artifacts, tailored for a partic-
ular development organization. ImpRec recommendations
originate in the textual content of incoming issue reports,
and subsequently uses network analysis in a collaboratively
created knowledge base to compute candidate impact.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 23

We evaluate ImpRec in a two-step study, as recom-
mended practice for technology transfer by Gorschek et al.
[32]. First, we conducted static validation in silico, to assess
the correctness of ImpRec (RQ1). Our results suggest that
ImpRec presents about 40% of the true impact within the
top-10 recommendations. Second, we conducted dynamic
validation in situ, by deploying ImpRec in two development
teams for several months. We assessed the utility of ImpRec
(RQ2) based on collected user logs and interviews. Our re-
sults indicate that ImpRec’s current level of correctness has
passed the utility breakpoint, i.e., the developers recognize
the value of using the tool. Also, developers acknowledge
the overall approach of reusing knowledge from past CIA
to provide decision support, and they are positive to further
research. On the other hand, we conclude that the quality
of the ImpRec recommendations is not high enough to
replace human engineers, but they can be used for CIA
validation and to support project newcomers (RQ3). A CIA
validation tool could be highly valuable in a safety-critical
development context. Any true impact recommended by
a tool, previously missed by humans, would be of great
importance – typically more so than CIA cost savings.

Our findings have implications for both research and
practice. First, our study contributes to the state-of-the-art of
RSSE evaluation. Our case study is a rare example of an in-
depth evaluation of an RSSE in a proprietary context. Also,
our work focuses on CIA support for non-code software
artifacts, an understudied type of impact stressed as partic-
ularly challenging by our interviewees. Second, regarding
implications for industry, we show that if an issue tracker
does not offer adequate search and navigation, it impedes
both CIA and issue management in general. We argue that
simply storing highly accurate CIA reports in a database,
without motivating developers to benefit from the captured
knowledge, could be a waste of effort. By conducting link
mining, the knowledge in the historical CIA reports can be
reused to provide decision support that might be especially
helpful for junior engineers and new employees.

While the current version of ImpRec appears to be
mature enough to be used in industry, there are several
important avenues for future work. First, the RSSE itself
should be further evolved. The correctness might be in-
creased by attempting to improve preprocessing and to tune
internal parameters. A promising direction would also be
to introduce source code impact to ImpRec. While it is
not considered the highest priority by the practitioners, it
might result in a more complete semantic network, thus
offering more accurate recommendations. Yet another idea
is to combine the semantic network of ImpRec with the
trust model implemented in Trustrace, an amalgamation
that could improve ImpRec’s ranking process.

Second, as ImpRec uses the historical CIA reports to
build its knowledge base, we expect improvements as
more data becomes available. However, the knowledge
base might also turn partly obsolete, thus decreasing the
correctness of ImpRec. Future work should investigate how
to maintain a deployed RSSE in industry, with regard to
retraining when additional data becomes available and
monitoring performance as training data becomes older.
ImpRec should also be improved along those lines, as the
current version requires manual creation of the knowledge

base, instead of online learning [120].
Finally, research must be directed at how to introduce

additional tool support in safety-critical contexts, in line
with work by Dupey and Hudepohl [119]. Deployment
of new tools always introduces risks, and the mitigation
strategies in the target organizations should involve both
adapted processes and practices.

ACKNOWLEDGEMENTS

This work was funded by the Industrial Excellence Cen-
ter EASE - Embedded Applications Software Engineer-
ing13, and also partially supported by a research grant
for the ORION project (reference number 20140218) from
The Knowledge Foundation in Sweden. Thanks go to all
participants in the case study.

REFERENCES

[1] M. Vierhauser, R. Rabiser, and P. Grünbacher, “A Case Study
on Testing, Commissioning, and Operation of Very-Large-Scale
Software Systems,” in Proc. of the 36th International Conference on
Software Engineering, 2014, pp. 125–134.

[2] S. Eldh, J. Brandt, M. Street, H. Hansson, and S. Punnekkat,
“Towards Fully Automated Test Management for Large Complex
Systems,” in Proc. of the 3rd International Conference on Software
Testing, Verification and Validation, 2010, pp. 412–420.

[3] M. Acharya and B. Robinson, “Practical Change Impact Analysis
Based on Static Program Slicing for Industrial Software Systems,”
in Proc. of the 33rd International Conference on Software Engineering,
2011, pp. 746–755.

[4] S. Bohner, “Software Change Impacts - An Evolving Perspective,”
in Proc. of the 18th International Conference on Software Maintenance,
2002, pp. 263–272.

[5] K. Chen and V. Rajlich, “RIPPLES: Tool for Change in Legacy
Software,” in Proc. of the 17th International Conference on Software
Maintenance, 2001, pp. 230–239.

[6] W. Wong, V. Debroy, A. Surampudi, H. Kim, and M. Siok,
“Recent Catastrophic Accidents: Investigating How Software was
Responsible,” in Proc. of the 4th International Conference on Secure
Software Integration and Reliability Improvement, 2010, pp. 14–22.

[7] International Electrotechnical Commission, IEC 61508 ed 1.0,
Electrical/Electronic/Programmable Electronic Safety-Related Systems,
2010.

[8] ——, IEC 61511-1 ed 1.0, Safety Instrumented Systems for the Process
Industry Sector, 2003.

[9] International Organization for Standardization, ISO 26262-1:2011
Road Vehicles - Functional Safety, 2011.

[10] Radio Technical Commission for Aeronautics, “DO-178C Soft-
ware Considerations in Airborne Systems and Equipment Cer-
tification,” Tech. Rep., 2012.

[11] European Committee for Electrotechnical Standardisation, Rail-
way Applications - Safety Related Electronic Systems for Signaling,
1999.

[12] T. Kelly, “Arguing Safety - A Systematic Approach to Managing
Safety Cases,” PhD Thesis, University of York, 1999.

[13] S. Nair, J. de la Vara, M. Sabetzadeh, and L. Briand, “An Extended
Systematic Literature Review on Provision of Evidence for Safety
Certification,” Information and Software Technology, vol. 56, no. 7,
pp. 689–717, 2014.

[14] M. Borg, O. Gotel, and K. Wnuk, “Enabling Traceability Reuse
for Impact Analyses: A Feasibility Study in a Safety Context,” in
Proc. of the 7th International Workshop on Traceability in Emerging
Forms of Software Engineering, 2013.

[15] I. Chou, “Secure Software Configuration Management Processes
for Nuclear Safety Software Development Environment,” Annals
of Nuclear Energy, vol. 38, no. 10, pp. 2174–2179, 2011.

[16] K. Grimm, “Software Technology in an Automotive Company:
Major Challenges,” in Proc. of the 25th International Conference on
Software Engineering, 2003, pp. 498–503.

13. http://ease.cs.lth.se

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 24

[17] M. Kilpinen, C. Eckert, and P. Clarkson, “Assessing Impact
Analysis Practice to Improve Change Management Capability,”
in Proc. of the 17th International Conference on Engineering Design,
2009, pp. 205–216.

[18] J. de la Vara, M. Borg, K. Wnuk, and L. Moonen, “An Industrial
Survey of Safety Evidence Change Impact Analysis Practice,”
IEEE Transactions on Software Engineering (To appear), 2016.

[19] D. Lettner, F. Angerer, H. Prähofer, and P. Grünbacher, “A Case
Study on Software Ecosystem Characteristics in Industrial Au-
tomation Software,” in Proc. of the 3rd International Conference on
Software and System Process, 2014, pp. 40–49.

[20] L. Briand, Y. Labiche, L. O’Sullivan, and M. Sówka, “Automated
Impact Analysis of UML Models,” Journal of Systems and Software,
vol. 79, no. 3, pp. 339–352, 2006.

[21] J. Cleland-Huang, W. Marrero, and B. Berenbach, “Goal-Centric
Traceability: Using Virtual Plumblines to Maintain Critical Sys-
temic Qualities,” Transactions on Software Engineering, vol. 34,
no. 5, pp. 685–699, 2008.

[22] A. Orso, T. Apiwattanapong, and M. Harrold, “Leveraging Field
Data for Impact Analysis and Regression Testing,” in Proc. of the
9th European Software Engineering Conference, 2003, pp. 128–137.

[23] M. Borg and D. Pfahl, “Do Better IR Tools Improve the Accuracy
of Engineers’ Traceability Recovery?” in Proc. of the International
Workshop on Machine Learning Technologies in Software Engineering,
2011, pp. 27–34.

[24] D. Cuddeback, A. Dekhtyar, and J. Huffman Hayes, “Automated
Requirements Traceability: The Study of Human Analysts,” in
Proc. of the 18th International Requirements Engineering Conference,
2010, pp. 231–240.

[25] A. De Lucia, R. Oliveto, and G. Tortora, “Assessing IR-Based
Traceability Recovery Tools Through Controlled Experiments,”
Empirical Software Engineering, vol. 14, no. 1, pp. 57–92, 2009.

[26] Y. Li, J. Li, Y. Yang, and M. Li, “Requirement-Centric Traceability
for Change Impact Analysis: A Case Study,” in Proc. of the 2nd
International Conference on Software Process, 2008, pp. 100–111.

[27] M. Borg, P. Runeson, and A. Ardö, “Recovering from a Decade:
A Systematic Mapping of Information Retrieval Approaches to
Software Traceability,” Empirical Software Engineering, vol. 19,
no. 6, pp. 1565–1616, 2014.

[28] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
Traceability Links in Software Artifact Management Systems
Using Information Retrieval Methods,” Transactions on Software
Engineering and Methodology, vol. 16, no. 4:13, 2007.

[29] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook,
S. Vadlamudi, and A. April, “REquirements TRacing On target
(RETRO): Improving software maintenance through traceability
recovery,” Innovations in Systems and Software Engineering, vol. 3,
no. 3, pp. 193–202, 2007.

[30] M. Borg and P. Runeson, “Changes, Evolution and Bugs - Rec-
ommendation Systems for Issue Management,” in Recommen-
dation Systems in Software Engineering, M. Robillard, W. Maalej,
R. Walker, and T. Zimmermann, Eds. Springer, 2014, pp. 477–
509.

[31] M. Robillard and R. Walker, “An Introduction to Recommenda-
tion Systems in Software Engineering,” in Recommendation Sys-
tems in Software Engineering, M. Robillard, W. Maalej, R. Walker,
and T. Zimmermann, Eds. Springer, 2014, pp. 1–11.

[32] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A Model for
Technology Transfer in Practice,” IEEE Software, vol. 23, no. 6, pp.
88–95, 2006.

[33] E. Engström, P. Runeson, and M. Skoglund, “A Systematic Re-
view on Regression Test Selection Techniques,” Information and
Software Technology, vol. 52, no. 1, pp. 14–30, 2010.

[34] S. Bohner, Software Change Impact Analysis. IEEE
Computer Society Press, 1996. [Online]. Available:
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.6777

[35] S. Lehnert, “A Review of Software Change Impact Analysis,”
Ilmenau University of Technology, Tech. Rep., 2011. [On-
line]. Available: http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-
2011200618

[36] ——, “A Taxonomy for Software Change Impact Analysis,” in
Proc. of the 12th International Workshop on Principles of Software Evo-
lution and the 7th Annual ERCIM Workshop on Software Evolution,
2011, pp. 41–50.

[37] R. Arnold and S. Bohner, “Impact Analysis - Towards a Frame-
work for Comparison,” in Proc. of the 9th Conference on Software
Maintenance, 1993, pp. 292–301.

[38] M. Abi-Antoun, Y. Wang, E. Khalaj, A. Giang, and V. Rajlich,
“Impact Analysis Based on a Global Hierarchical Object Graph,”
in Proc. of the 22nd International Conference on Software Analysis,
Evolution, and Reengineering, 2015, pp. 221–230.

[39] M. Petrenko and V. Rajlich, “Variable Granularity for Improving
Precision of Impact Analysis,” in Proc. of the 17th International
Conference on Program Comprehension, 2009, pp. 10–19.

[40] J. Law and G. Rothermel, “Whole Program Path-Based Dynamic
Impact Analysis,” in Proc. of the 25th International Conference on
Software Engineering, 2003, pp. 308–318.

[41] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J.
Harrold, “An Empirical Comparison of Dynamic Impact Anal-
ysis Algorithms,” in Proc. of the 26th International Conference on
Software Engineering, 2004, pp. 491–500.

[42] D. Amyot, “Introduction to the User Requirements Notation:
Learning by Example,” Computer Networks, vol. 42, no. 3, pp. 285–
301, 2003.

[43] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya,
and S. Christina, “Goal-centric Traceability for Managing Non-
functional Requirements,” in Proc. of the 27th International Confer-
ence on Software Engineering, 2005, pp. 362–371.

[44] B. Li, X. Sun, H. Leung, and S. Zhang, “A Survey of Code-Based
Change Impact Analysis Techniques,” Software Testing, Verification
and Reliability, vol. 23, no. 8, pp. 613–646, 2013.

[45] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated
Impact Analysis for Managing Software Changes,” in Proc. of
the 34th International Conference on Software Engineering, 2012, pp.
430–440.

[46] S. Ghosh, S. Ramaswamy, and R. Jetley, “Towards Requirements
Change Decision Support,” in Proc. of the 20th Asia-Pacific Software
Engineering Conference, 2013, pp. 148–155.

[47] T. Stålhane, G. Hanssen, T. Myklebust, and B. Haugset, “Agile
Change Impact Analysis of Safety Critical Software,” in Proc. of
the International Workshop on Next Generation of System Assurance
Approaches for Safety-Critical Systems, 2014, pp. 444–454.

[48] T. Myklebust, T. Stålhane, G. Hanssen, and B. Haugset, “Change
Impact Analysis as Required by Safety Standards, What To Do?”
in Proc. of the 12th Probabilistic Safety Assessment and Management
Conference, 2014.

[49] H. Jonsson, S. Larsson, and S. Punnekkat, “Agile Practices in
Regulated Railway Software Development,” in Proc. of the 23rd
International Symposium on Software Reliability Engineering Work-
shops, 2012, pp. 355–360.

[50] M. Kilpinen, “The Emergence of Change at the Systems Engi-
neering and Software Design Interface,” PhD Thesis, University
of Cambridge, 2008.

[51] P. Rovegård, L. Angelis, and C. Wohlin, “An Empirical Study
on Views of Importance of Change Impact Analysis Issues,”
Transactions on Software Engineering, vol. 34, no. 4, pp. 516–530,
2008.

[52] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
Duplicate Defect Reports Using Natural Language Processing,”
in Proc. of the 29th International Conference on Software Engineering,
2007, pp. 499–510.

[53] C. Arora, M. Sabetzadeh, A. Goknil, L. C. Briand, and F. Zimmer,
“Change Impact Analysis for Natural Language Requirements:
An NLP Approach,” in Proc. of the 23rd International Requirements
Engineering Conference, Aug 2015, pp. 6–15.

[54] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman,
A. Egyed, P. Grünbacher, A. Dekhtyar, G. Antoniol, J. Maletic,
and P. Mäder, “Traceability Fundamentals,” in Software and Sys-
tems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman, Eds.
Springer, 2012, pp. 3–22.

[55] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering Traceability Links between Code and Documenta-
tion,” Transactions on Software Engineering, vol. 28, no. 4, pp. 970–
983, 2002.

[56] A. Marcus, J. Maletic, and A. Sergeyev, “Recovery of Traceability
Links Between Software Documentation and Source Code,” Inter-
national Journal of Software Engineering and Knowledge Engineering,
vol. 15, no. 5, pp. 811–836, 2005.

[57] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram, “Advancing
Candidate Link Generation for Requirements Tracing: The Study
of Methods,” Transactions on Software Engineering, vol. 32, no. 1,
pp. 4–19, 2006.

[58] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving Automated
Requirements Trace Retrieval: A Study of Term-Based Enhance-

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 25

ment Methods,” Empirical Software Engineering, vol. 15, no. 2, pp.
119–146, 2010.

[59] M. Borg, K. Wnuk, and D. Pfahl, “Industrial Comparability of
Student Artifacts in Traceability Recovery Research - An Ex-
ploratory Survey,” in Proc. of the 16th European Conference on
Software Maintenance and Reengineering, 2012, pp. 181–190.

[60] M. Borg and P. Runeson, “IR in Software Traceability: From a
Bird’s Eye View,” in Proc of the 7th International Symposium on
Empirical Software Engineering and Measurement, 2013, pp. 243–
246.

[61] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
Equivalence of Information Retrieval Methods for Automated
Traceability Link Recovery,” in Proc. of the 18th International
Conference on Program Comprehension, 2010, pp. 68–71.

[62] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using
Information Retrieval Based Coupling Measures for Impact Anal-
ysis,” Empirical Software Engineering, vol. 14, no. 1, pp. 5–32, 2009.

[63] J. Anvik, L. Hiew, and G. Murphy, “Coping with an Open Bug
Repository,” in Proc. of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange, 2005, pp. 35–39.

[64] N. Jalbert and W. Weimer, “Automated Duplicate Detection for
Bug Tracking Systems,” in Proc. of the 38th International Conference
on Dependable Systems and Networks, 2008, pp. 52–61.

[65] D. Cubranić, G. Murphy, J. Singer, and K. Booth, “Hipikat:
A Project Memory for Software Development,” Transactions on
Software Engineering, vol. 31, no. 6, pp. 446–465, 2005.

[66] H. Kagdi, M. Collard, and J. Maletic, “A Survey and Taxonomy
of Approaches for Mining Software Repositories in the Context
of Software Evolution,” Journal of Software Maintenance and Evolu-
tion: Research and Practice, vol. 19, no. 2, pp. 77–131, 2007.

[67] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” in Proc. of the 26th
International Conference on Software Engineering, 2004, pp. 563 –
572.

[68] R. Walker and R. Holmes, “Simulation - A Methodology to
Evaluate Recommendation Systems in Software Engineering,”
in Recommendation Systems in Software Engineering, M. Robillard,
W. Maalej, R. Walker, and T. Zimmermann, Eds. Springer, 2014,
pp. 301–327.

[69] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting
Source Code Changes by Mining Change History,” Transactions
on Software Engineering, vol. 30, no. 9, pp. 574–586, 2004.

[70] G. Canfora and L. Cerulo, “Fine Grained Indexing of Software
Repositories to Support Impact Analysis,” in Proc. of the Interna-
tional Workshop on Mining Software Repositories, 2006, pp. 105–111.

[71] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell, “A
Linguistic-Engineering Approach to Large-Scale Requirements
Management,” IEEE Software, vol. 22, no. 1, pp. 32–39, 2005.

[72] M. Borg, P. Runeson, J. Johansson, and M. Mäntylä, “A Replicated
Study on Duplicate Detection: Using Apache Lucene to Search
Among Android Defects,” in Proc. of the 8th International Sympo-
sium on Empirical Software Engineering and Measurement, 2014.

[73] M. Borg, D. Pfahl, and P. Runeson, “Analyzing Networks of
Issue Reports,” in Proc. of the 17th European Conference on Software
Maintenance and Reengineering, 2013, pp. 79–88.

[74] D. Cubranić, “Project History as a Group Memory: Learning
From the Past,” PhD Thesis, University of British Columbia, 2004.

[75] N. Ali, Y. Guéhéneuc, and G. Antoniol, “Trustrace: Mining
software repositories to improve the accuracy of requirement
traceability links,” Transactions on Software Engineering, vol. 39,
no. 5, pp. 725–741, 2013.

[76] T. Dybå and T. Dingsøyr, “Strength of Evidence in Systematic
Reviews in Software Engineering,” in Proc. of the 2nd International
Symposium on Empirical Software Engineering and Measurement,
2008, pp. 178–187.

[77] M. Kersten and G. Murphy, “Using Task Context to Improve
Programmer Productivity,” in Proc. of the 14th International Sym-
posium on Foundations of Software Engineering, 2006, pp. 1–11.

[78] C. Treude, M. Robillard, and B. Dagenais, “Extracting develop-
ment tasks to navigate software documentation,” Transactions on
Software Engineering, vol. 41, no. 6, pp. 565–581, June 2015.

[79] K. Petersen and C. Wohlin, “Context in Industrial Software
Engineering Research,” in Proc. of the 3rd International Symposium
on Empirical Software Engineering and Measurement, 2009, pp. 401–
404.

[80] International Electrotechnical Commission, IEC 61131-3 ed 3.0,
Programmable Controllers - Part 3: Programming Languages, 2013.

[81] A. Klevin, “People, Process and Tools: A Study of Impact Anal-
ysis in a Change Process,” Master Thesis, Lund University,
http://sam.cs.lth.se/ExjobGetFile?id=434, 2012.

[82] M. Borg, J.-L. de la Vara, and K. Wnuk, “Practitioners’ Perspec-
tives on Change Impact Analysis for Safety-Critical Software - A
Preliminary Analysis,” in Proc. of the 5th International Workshop on
Next Generation of System Assurance Approaches for Safety-Critical
Systems (To appear), 2016.

[83] L. Getoor and C. Diehl, “Link Mining: A Survey,” SIGKDD
Explorations Newsletter, vol. 7, no. 2, pp. 3–12, 2005.

[84] J. Sowa, “Semantic Networks,” in Encyclopedia of Cognitive Science.
Wiley, 2006.

[85] E. Hatcher and O. Gospodnetic, Lucene in Action. Manning
Publications, 2004.

[86] H. Asuncion and R. Taylor, “Automated Techniques for Captur-
ing Custom Traceability Links Across Heterogeneous Artifacts,”
in Software and Systems Traceability, J. Cleland-Huang, O. Gotel,
and A. Zisman, Eds. Springer, 2012, pp. 129–146.

[87] A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, S. Reiterer, and
M. Stettinger, “Basic Approaches in Recommendation Systems,”
in Recommendation Systems in Software Engineering, M. Robillard,
W. Maalej, R. Walker, and T. Zimmermann, Eds. Springer, 2014,
pp. 15–37.

[88] M. Borg, “TuneR: A Framework for Tuning Software Engineering
Tools with Hands-On Instructions in R,” Journal of Software:
Evolution and Process, vol. 28, no. 6, pp. 427–459, 2016.

[89] S. Shivaji, E. Whitehead, R. Akella, and S. Kim, “Reducing
Features to Improve Code Change-Based Bug Prediction,” IEEE
Transactions on Software Engineering, vol. 39, no. 4, pp. 552–569,
2013.

[90] E. Murphy-Hill and G. Murphy, “Recommendation Delivery,”
in Recommendation Systems in Software Engineering, M. Robillard,
W. Maalej, R. Walker, and T. Zimmermann, Eds. Springer, 2014,
pp. 223–242.

[91] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering. Guidelines and Examples. Wiley,
2012.

[92] C. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[93] B. Regnell, R. Berntsson Svensson, and T. Olsson, “Supporting
Roadmapping of Quality Requirements,” IEEE Software, vol. 25,
no. 2, pp. 42–47, 2008.

[94] R. Berntsson Svensson, Y. Sprockel, B. Regnell, and S. Brinkkem-
per, “Setting Quality Targets for Coming Releases with QUPER
- An Industrial Case Study,” Requirements Engineering, vol. 17,
no. 4, pp. 283–298, 2012.

[95] R. Berntsson Svensson and B. Regnell, “A Case Study Evaluation
of the Guideline-Supported QUPER model,” ser. Requirements
Engineering: Foundation for Software Quality/Lecture Notes in
Computer Science. Springer, pp. 230–246.

[96] S. Panichella, “Supporting Newcomers in Software Development
Projects,” PhD Thesis, University of Sannio, 2014.

[97] I. Avazpour, T. Pitakrat, L. Grunske, and J. Grundy, “Dimen-
sions and Metrics for Evaluating Recommendation Systems,”
in Recommendation Systems in Software Engineering, M. Robillard,
W. Maalej, R. Walker, and T. Zimmermann, Eds. Springer, 2014,
pp. 245–273.

[98] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou, “Utilizing
Supporting Evidence to Improve Dynamic Requirements Trace-
ability,” in Proc. of the 13th International Conference on Requirements
Engineering, 2005, pp. 135–144.

[99] C. van Rijsbergen, Information Retrieval. Butterworth, 1979.
[100] M. Borg, P. Runeson, and L. Brodén, “Evaluation of Traceability

Recovery in Context: A Taxonomy for Information Retrieval
Tools,” in Proc. of the 16th International Conference on Evaluation
& Assessment in Software Engineering, 2012, pp. 111–120.

[101] K. Spärck Jones, S. Walker, and S. Robertson, “A Probabilistic
Model of Information Retrieval: Development and Comparative
Experiments,” Information Processing and Management, vol. 36,
no. 6, pp. 779–808, 2000.

[102] D. Cruzes and T. Dybå, “Recommended Steps for Thematic
Synthesis in Software Engineering,” in Proc. of the 5th International
Symposium on Empirical Software Engineering and Measurement,
2011, pp. 275–284.

[103] B. Jansen, “Search Log Analysis: What It Is, What’s Been Done,
How To Do It,” Library & Information Science Research, vol. 28,
no. 3, pp. 407–432, 2006.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 26

[104] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “On In-
tegrating Orthogonal Information Retrieval Methods to Improve
Traceability Recovery,” in Proc. of the 27th International Conference
on Software Maintenance, 2011, pp. 133–142.

[105] J. Huang, R. White, and S. Dumais, “No Clicks, No Problem:
Using Cursor Movements to Understand and Improve Search,”
in Proc. of the 29th Conference on Human Factors in Computing
Systems, 2011, pp. 1225–1234.

[106] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: A Practical
Guide. Springer, 2012.

[107] J. Matejka, E. Li, T. Grossman, and G. Fitzmaurice, “Communi-
tyCommands: Command Recommendations for Software Appli-
cations,” in Proc. of the 22nd Annual Symposium on User Interface
Software and Technology, 2009, pp. 193–202.

[108] B. Schaffer and C. Riordan, “A Review of Cross-Cultural Method-
ologies for Organizational Research: A Best-Practices Approach,”
Organizational Research Methods, vol. 6, no. 2, pp. 169–215, 2003.

[109] M. Borg, “In Vivo Evaluation of Large-Scale IR-Based Traceability
Recovery,” in Proc. of the 15th European Conference on Software
Maintenance and Reengineering, 2011, pp. 365–368.

[110] J. Cleland-Huang, M. Heimdahl, J. Huffman Hayes, R. Lutz, and
P. Mäder, “Trace Queries for Safety Requirements in High Assur-
ance Systems,” in Proc. of the 18th International Working Conference
Requirements Engineering: Foundation for Software Quality, 2012, pp.
179–193.

[111] I. Habli, R. Hawkins, and T. Kelly, “Software Safety: Relating
Software Assurance and Software Integrity,” International Journal
of Critical Computer-Based Systems, vol. 1, no. 4, pp. 364–383, 2010.

[112] S. Sulaman Muhammad, A. Oručević-Alagic, M. Borg, K. Wnuk,
M. Höst, and J. de la Vara, “Development of Safety-Critical Soft-
ware Systems Using Open Source Software - A Systematic Map,”
in Proc. of the 40th Euromicro Conference on Software Engineering
and Advanced Applications, 2014, pp. 17–24.

[113] B. Robinson and P. Francis, “Improving Industrial Adoption of
Software Engineering Research: A Comparison of Open and
Closed Source Software,” in Proc. of the International Symposium
on Empirical Software Engineering and Measurement, vol. 21, 2010,
pp. 1–10.

[114] C. Dantas, L. Murta, and C. Werner, “Mining Change Traces from
Versioned UML Repositories,” in Proc. of the Brazilian Symposium
of Software Engineering, 2007, pp. 236–252.

[115] G. Canfora and L. Cerulo, “Impact Analysis by Mining Software
and Change Request Repositories,” in Proc. of the 11th Interna-
tional Symposium on Software Metrics, 2005, pp. 9–29.

[116] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard, “Blend-
ing Conceptual and Evolutionary Couplings to Support Change
Impact Analysis in Source Code,” in Proc. of the 17th Working
Conference on Reverse Engineering, 2010, pp. 119–128.

[117] A. von Knethen and M. Grund, “QuaTrace: A Tool Environment
for (Semi)-Automatic Impact Analysis Based on Traces,” in Proc.
of the 19th International Conference on Software Maintenance, 2003,
pp. 246–255.

[118] N. Bettenburg, R. Premraj, T. Zimmermann, and K. Sunghun,
“Duplicate Bug Reports Considered Harmful... Really?” in Proc.
of the 24th International Conference on Software Maintenance, 2008,
pp. 337–345.

[119] A. Dubey and J. Hudepohl, “Towards Global Deployment of Soft-
ware Engineering Tools,” in Proc. of the 8th International Conference
on Global Software Engineering, 2013, pp. 129–133.

[120] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
Online Analysis,” Journal of Machine Learning Research, vol. 11, pp.
1601–1604, 2010.

Markus Borg Dr. Markus Borg is a senior re-
searcher with the Software and Systems Engi-
neering Laboratory, SICS Swedish ICT AB. He
received a MSc degree in Computer Science
and Engineering (2007) and a PhD degree in
Software Engineering (2015), both from Lund
University. His research interests are related to
alleviating information overload in large-scale
software development, with a focus on increas-
ing the level of automation in the inflow of issue
reports. Prior to his PhD studies, he worked as a

development engineer with ABB in safety-critical software engineering.
He is a member of the IEEE.

Krzysztof Wnuk Dr. Krzysztof Wnuk is an as-
sistant professor at the Software Engineering
Research Group (SERL), Blekinge Institute of
Technology, Sweden. His research interests in-
clude market-driven software development, re-
quirements engineering, software product man-
agement, decision making in requirements en-
gineering, large-scale software, system and re-
quirements engineering and management and
empirical research methods. He is interested in
software business, open innovation, and open

source software. He works as an expert consultant in software engi-
neering for the Swedish software industry.

Björn Regnell Dr. Björn Regnell is Professor
in Software Engineering at the Faculty of Engi-
neering, LTH, Lund University, Sweden. He has
contributed to several software engineering re-
search areas including requirements engineer-
ing, software quality, software product manage-
ment and empirical research methods in soft-
ware engineering. He was ranked among the top
13 scholars in the world in experimental software
engineering in IEEE Transactions on Software
Engineering, 31(9):733-753 (2005). He is/was a

reviewer for several high-impact journals and peer-reviewed conference
program committees and he is currently a member of the Editorial Board
of the Requirements Engineering journal (Springer) and the Steering
Committee Chair of www.refsq.org. Prof. Regnell has published more
than 80 peer-reviewed articles in journals and conferences. He has
edited several special issues in journals and proceedings and he is
co-author of several books including the widely cited ”Introduction to
Experimentation in Software Engineering” (Springer, 2000) and ”Case
Study Research in Software Engineering - Guidelines and Examples”
(Wiley, 2012). Prof. Regnell worked part time as Senior Researcher at
Sony Ericsson, CTO Office, Lund, Sweden 2005-2007, and he works
as expert consultant in software engineering for the Swedish software
industry.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620458, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 27

Per Runeson Dr. Per Runeson is a professor
of software engineering at Lund University, Swe-
den, head of the Department of Computer Sci-
ence, and the leader of its Software Engineer-
ing Research Group (SERG) and the Industrial
Excellence Center on Embedded Applications
Software Engineering (EASE). His research in-
terests include empirical research on software
development and management methods, in par-
ticular for verification and validation. He is the
principal author of “Case study research in soft-

ware engineering”, has coauthored “Experimentation in software engi-
neering”, serves on the editorial board of Empirical Software Engineer-
ing and Software Testing, Verification and Reliability, and is a member
of several program committees.

