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ABSTRACT
Background:Mutation testing is the state-of-the-art technique for
assessing the fault detection capacity of a test suite. Unfortunately,
it is seldom applied in practice because it is computationally expen-
sive. We witnessed 48 hours of mutation testing time on a test suite
comprising 272 unit tests and 5,258 lines of test code for testing
a project with 48,873 lines of production code. Aims: Therefore,
researchers are currently investigating cloud solutions, hoping to
achieve sufficient speed-up to allow for a complete mutation test
run during the nightly build. Method: In this paper we evaluate
mutation testing in the cloud against two industrial projects. Re-
sults: With our proof-of-concept, we achieved a speed-up between
12x and 12.7x on a cloud infrastructure with 16 nodes. This allowed
to reduce the aforementioned 48 hours of mutation testing time
to 3.7 hours. Conclusions: We make a detailed analysis of the
delays induced by the distributed architecture, point out avenues
for further optimisation and elaborate on the lessons learned for
the mutation testing community. Most importantly, we learned
that for optimal deployment in a cloud infrastructure, tasks should
remain completely independent. Mutant optimisation techniques
that violate this principle will benefit less from deploying in the
cloud.
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•Hardware→Testingwith distributed and parallel systems;
• Software and its engineering → Software testing and de-
bugging; Software performance; Empirical software validation;
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1 INTRODUCTION
Software testing is the dominant method for quality assurance and
quality control in software development organisations [8, 21]. Soft-
ware testing was established as a disciplined approach in the late
70’s when it was defined as "executing a program with the intent of
finding an error" [20]. In the last decade, this intent shifted dramati-
cally with the advent of continuous integration [1]. Many software
tests are now fully automated, and serve as quality gates, safeguard-
ing against programming faults. The scale at which automated
software tests are adopted in modern software organisations is
mind-boggling. Microsoft for instance reported that approximately
11 months of development on Windows comprised more than 30
million test executions. Google on the other hand reported that “In
an average day, TAP integrates and tests [. . . ] more than 13K code
projects, requiring 800K builds and 150 Million test runs.” [19]. As
a result of this continuous integration approach, software organi-
sations are capable of releasing faster. Tesla, for example uploads
new software in its cars once every month [18]. Amazon pushes
new updates to production every 11.6 seconds [13].

The growing reliance on automated software tests raises a fun-
damental question: How trustworthy are these automated tests?
Today, mutation testing is the state-of-the-art technique for assess-
ing the fault-detection capacity of a test suite [14]. The technique
deliberately injects faults into the system under test and counts
how many of them are caught by the test suite. Mutation testing
is acknowledged within academic circles as the most promising
technique for a fully automated assessment of the strength of a test
suite [24]. One of the reasons mutation testing is seldom adopted in
industrial settings is because the technique is computationally ex-
pensive: each mutant must be deployed and tested separately [14].

Mutation testing has shown to be able to run in parallel on a
distributed architecture [3, 22, 30]. Researchers are currently inves-
tigating cloud solutions to share the computational load across a
series of hardware nodes. Most notably among them are Hadoop-
mutator [28] and Eminent [5]. These tool prototypes demonstrate
that cloud infrastructure indeed allows to speed up the mutation
testing. Yet, today it is unclear how to optimally distribute the load
across the available hardware nodes.

In this paper we evaluate an alternative cloud solution (named
DiMuTesTas) against two industrial projects, one small and one
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large. We achieve a speed-up between 12x and 12.7x on a cloud
infrastructure with 16 workers, illustrating that substantial speed-
up is possible yet that the overhead is significant.We collect detailed
measurements on the cloud infrastructure (setup, scheduling, file
transfer), analyse how the overhead occurs, suggest avenues for
further improvements and elaborate on the lessons learned for the
mutation testing community.

The rest of the paper is structured as follows. In Section 2, we
elaborate on the concept of mutation testing and list related work.
In Section 3, we describe the cloud architecture of our proof-of-
concept, identifying where to measure overhead. In Section 4, we
explain our case study setup, which naturally leads to Section 5
where we discuss the results. In Section 6 we derive the lessons
learned. As with any empirical research, we list the threats to va-
lidity in Section 7 to arrive at a conclusion in Section 8.

2 BACKGROUND AND RELATEDWORK
In this section, we elaborate on the concept of mutation testing and
contrast our proof-of-concept against related work.

2.1 Mutation Testing
For effective testing, software teams need strong tests which max-
imise the likelihood of exposing faults [20]. Traditionally, the strength
of a test suite is assessed using code coverage, revealing which state-
ments are poorly tested. However, code coverage has been shown
to be a poor indicator of test effectiveness [4, 11]. Worse, even a
100%MC/DC coverage (Modified Condition/Decision Coverage, the
coverage criterion adopted for safety critical systems) still does not
guarantee the absence of faults [9, 15].

Today, mutation testing is the state-of-the-art technique for as-
sessing the fault-detection capacity of a test suite [14, 24]. The
technique deliberately injects faults (called mutants) into the pro-
duction code and counts how many of them are caught by the test
suite. Case studies with safety critical systems demonstrate that
mutation testing could be effective where traditional structural cov-
erage analysis and manual peer review have failed [2, 26]. Google
on the other hand reports that mutation testing provides insight
into poorly tested parts of the system, but –more importantly– also
reveals design problems with components that are difficult to test,
hence must be refactored [12].

Unfortunately, mutation testing is seldom adopted in practice [10].
One of the reasons is that the technique —in its basic form– re-
quires a tremendous amount of computing power. For each injected
mutant, the code base must be compiled and tested separately [14].
Algorithm 1 shows the essential steps without any optimisations,
in order to understand the time-consuming nature of the mutation
testing process. The software system needs to build without errors
and all software tests should succeed before mutation testing can
even begin; this is called the pre-phase. Then, the two main phases
are executed: (A) the mutant generation phase and (B) the mutant
execution phase. In phase A, mutants are generated for all source
files. In phase B, each mutant is executed and its result (whether or
not it was killed) is saved. Finally, all the results are gathered and
the final report is created in the post-phase.

Algorithm 1 Pseudocode Mutation Testing

1: function mutationTesting(srcFolder src)
2: ▷ Pre: verify build and if all tests succeed
3: if initialBuildAndTests() , True then
4: return
5:
6: ▷ A: generate mutants
7: mutants ← []
8: for all srcFile f ∈ src do
9: f Mutants ← generateMutants(srcFile f )
10: mutants ←mutants + f Mutants

11:
12: ▷ B: execute mutants
13: for all mutantm ∈mutants do
14: result ← executeMutant(mutantm)
15: storeResult(result , mutantm)
16:
17: ▷ Post: process results
18: processResults()

2.2 Mutation Testing Optimisations
A lot of research is devoted to optimising the mutation testing
process, summarised under the vision - do fewer, do smarter, and
do faster [23]. The do fewer approaches minimise the execution
time by reducing the total amount of mutants to execute. Such
an optimisation can be implemented by generating fewer mutants
on line 9 in Algorithm 1 or by selecting a subset of all mutants
on line 13. The fewer mutants that are executed, the more infor-
mation will be lost. Balancing time reduction versus information
loss is key. There are different ways to choose which mutants will
be executed, varying in their effectiveness compared to the full
set of mutants [14]. Do smarter approaches attempt to minimise
the execution time by retaining state information between runs,
e.g. split-stream mutation testing [16]. Others prioritise test, giving
priority to the tests with the highest likelihood of failure. These
optimisations would be implemented on line 14 in Algorithm 1.
Lastly, do faster approaches try to minimise the execution time of
each individual mutant. One example is using a compiler integrated
technique, where the project is compiled only once instead of for
each mutant [7]. These optimisations would also be implemented
on line 14 in Algorithm 1.

2.3 Mutation Testing in the Cloud
Mutation testing has shown to be able to run in parallel on a dis-
tributed architecture [3, 22, 30]. Consequently, researchers are cur-
rently investigating cloud solutions to share the computational
load across a series of hardware nodes. Hadoopmutator [28] and
Eminent [5] are the ones we have found in the literature.

2.3.1 Hadoopmutator. Hadoopmutator is a cloud-based Mutation
Testing framework that is implemented using Hadoop’s MapRe-
duce1. During the mapping phase, each mutation operator is as-
signed to a separate node, creating a single mutant and executing
the test suite. The subsequent reduce phase aggregates the results
from all the test executions and calculates the mutation score.
1https://hadoop.apache.org

https://hadoop.apache.org
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Data transfer between the nodes is handled using Hadoop’s
MapReduce and the Hadoop Distributed File System (HDFS™).
Hadoopmutator is applied on two open source projects, and the
authors report a speed-up of 9.57x and 12.83x using 13 nodes. For
small projects like Apache Wicket, the authors state that “the over-
head of running Hadoop on the compute nodes becomes significant
relative to the time needed to generate and executes the tests and
hence the optimal performance gain is not attained”. The influence of
speed-up with large projects that affect the I/O and network traffic
was not investigated.

For a MapReduce solution to reach an optimal load balance,
there should be small variance between the execution times of the
respective mapper functions. This minimises the inherent idle time
between the termination of the mapper phase and the start of the
reduce phase. However, for mutation testing this principle does not
hold. First, because the analysis can terminate as soon as one test
fails, thus some test executions will terminate earlier than others.
Second, because some mutants lead to infinite loops, which can
only be detected via time-outs. Therefore there is a large variance
between the time to execute the tests.

2.3.2 Eminent. Eminent (EMbarrassINgly parallEl mutatioN Test-
ing) is a distributed Mutation Testing tool that relies on the Message
Passing Interface standard for portable message-passing in parallel
computing architectures [5]. Eminent uses test-level grain, the test
suite is split up and each test/mutant combination is run separately.
If a single test (of a mutant) fails, the mutant is killed and all other
remaining tests (related to that mutant) are canceled.

Eminent handles data transfer between the master and the nodes
by means of a shared database. The test cases are sent to the worker
processes which will execute them against the mutants and send
the results back to the master, which compares them to the original.
Eminent is applied on three projects, and the authors report a speed-
up between 8x and 22x using 32 nodes. Large projects can have
an impact on the scalability “because of the high volume of network
and I/O traffic generated by this application, which acts as a system
bottleneck in the database node”.

The main advantage of Eminent’s test-level grain is that the
sooner a mutant is killed the faster the mutation testing tool be-
comes. Therefore, the test execution framework should be config-
ured such as to stop the execution of the test suite when the first
one fails. The second advantages of test-level grain is that the load
can in principle be evenly distributed over multiple nodes. Never-
theless, the worst case scenario for test-level grain occurs when
the last test is executed on one node while all the other nodes are
finished. The additional overhead of running the test-level grain
may be more than the execution time of the complete test suite.

At the time of writing there was no implementation available for
HadoopMutater nor for Eminent. Replicating their results on other
projects and measuring where overhead occurred was impossi-
ble. Therefore we resorted to our own proof-of-concept named
DiMuTesTas.

2.3.3 DiMuTesTas. We developed DiMuTesTas to minimise the
idle-time of the nodes and to minimise the network load of the
distributed application itself. The first is tackled by removing depen-
dancies between executions on the workers, allowing to distribute

the generation of the mutants and the execution of the mutants
independently of each other. We keep the network load low by
only sending references to files over the network. We use mutant-
level grain, thus apply a mutant and execute the complete test suite.
Mutant-level grain allows to further reduce the amount of messages
that need to be exchanged.

In our current system, we use a file system to distribute the
project, mutants, and store their executed results. The data that
needs to be transferred for the mutant is limited to a single file.
This can even further be reduced by only sending the delta of the
file. Writing to the file server is only done by each worker which
has generated the mutants (single files) or by each worker which
executed a mutant and needs to store its build output (multiple
files).�

�

�

�

Summary. The current state-of-the-art demonstrates that cloud
infrastructure indeed speeds up the mutation testing. Yet, the op-
timal way of distributing the load across the available hardware
nodes is currently unknown. First of all, there is the potential for
idle-time when nodes are waiting for others to finish their tasks
before they can proceed. Secondly, there is the data-transfer bot-
tleneck, the consequence of copying files and exchanges messages
across the nodes. Today, detailed measurements on the impact of
both the idle-time and the data-transfer are lacking.

3 PROOF OF CONCEPT
In this section we first describe the cloud architecture of our proof-
of-concept (loosely inspired by the 4+1model [17]) and then identify
where delays may have a significant impact, thus where we should
measure overhead.

3.1 DiMuTesTas Architecture
Logical View — Single Task queue. To execute Algorithm 1 in the
cloud, we adopt a single task queue model for the main phases A
and B, as depicted in Figure 1. For phase A, this means creating a
first kind of task, i.e. to generate the mutants from a source (src) file
(represented by A in Figure 1), for each source file and push it onto
the task queue. When a worker processes such a task (e.g. 1), a new,
second kind of task is created for each of the generated mutants,
i.e. to execute the mutant (corresponding to phase B). These newly
created tasks are then pushed back onto the task queue (e.g. 1a, 1b
and 1c).

Figure 1: DiMuTesTas Architecture – Single Task Queue
©Sten Vercammen
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Process View — RabbitMQ. The single task queue is handled by
RabbitMQ2, a broker which handles the message passing between
multiple computers. To map the logical view onto RabbitMQ we fol-
low a series of steps depicted in Figure 2. First, the master performs
the initial build and verifies if all tests succeed (1, a.k.a. pre-phase); if
not, the process is canceled. Afterwards, all source files are gathered
and (their file names) are sent to the task queue (2). From here on,
the master waits until he received all results. Once tasks are in the
task queue, workers will pull and process them. If a worker pulls
a task containing the name of a source file (3a), it will generate
mutants for the corresponding file, store them on the file server
(3b) and send a reference for each mutant back to the queue. If
the worker pulls a task containing a reference to a mutant (4a), it
will fetch the mutant from the file server (4b) and execute it before
storing its result on the file server (4c) and sending a “done” mes-
sage to the result queue (4d). Finally, when the master received all
results, he creates the final report for the mutation testing (5, a.k.a
post-phase).

Note that the mutants can be generated and executed by different
workers and are needed for the final report as well. Therefore, they
are not stored in the task queue as this would increase its memory
usage and would require sending the mutants over the network one
additional time. Instead, the mutants, results and the final report
are fetched stored on a separate file server (3b, 3c and 4c) .

Figure 2: DiMuTesTas Architecture – Process View
©Sten Vercammen

Physical View – Docker. To deploy the architecture on a physical
system, we rely on Docker3. Figure 3 provides an overview of the
different components and their interactions. As setting up each
node individually is impractical, the master and the worker are
encapsulated into Docker images, i.e. an executable package that
includes everything needed to run an application: the code, the
runtime environment, the libraries, the environment variables, and
the configuration files. As Docker images contain the installed soft-
ware, they will startup very quickly because no further installation
is required. An image for the RabbitMQ server already existed. The
master and worker images do not include the project itself, but will
copy it from a file server once they startup. We used NFS for the
2https://www.rabbitmq.com/
3https://docs.docker.com/

file server, but iSCSI, FC, and others are possible as well. The file
server is also needed as the local storage of each Docker container is
removed together with the container after execution. To distribute
the tool over multiple PC’s and enable the different containers to
talk to each other, we make use of Docker Swarm.

Figure 3: DiMuTesTas Architecture – Physical View
©Sten Vercammen

3.2 DiMuTesTas Potential Delays
Now that we laid out the components and how they interact (see
Figure 3) we can identify where potential delays might occur com-
pared to a mutation test run on a local PC.
• Setup delay.After the initial build on the master,DiMuTesTas
copies the build dependencies from the file server to the own
local storage in each worker. This is done to prevent the
network connection from becoming a bottleneck, as other-
wise each worker has to download the build dependencies
separately.
• Initial build. The pre- and post-phase are similar for a muta-
tion test run on a local PC and one that runs in the cloud,
differing only in the place they store and gather information.
• Mutant generation. The total time all workers needs to gen-
erate the mutants, excluding the time to read from the file
server/disk andwriting the build output to the file server/disk.
For a mutation test run on a local machine, the total time to
generate the mutants, excluding the time to read or write
the results.
• Mutant execution. Similar to the mutant generation phase,
it measures the total time for the mutant execution phase
excluding the time to read or write.
• RabbitMQ (scheduling) delay. The time to gather the source
files and push them to the task queue on the RabbitMQ server.
The time needed by the workers to pull tasks from the task
queue is also part of this delay.
• File server/disk delay. The most likely cause for delays in
a cloud solution is copying data files back and forth be-
tween the different nodes. This delay occurs when a con-
tainer copies the project from the file server to its own local

https://www.rabbitmq.com/
https://docs.docker.com/
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storage. However, it also occurs when transforming Docker
images (static, unchangeable) into Docker containers (dy-
namic, changeable) at startup.

4 CASE STUDY SET UP
This section describes how we evaluate the impact of running
mutation testing in the cloud. Essentially we apply DiMuTesTas
on two industrial projects, comparing a cloud solution against a
version running on a local PC.

4.1 Cases
We collected two cases via our network of industrial partners, one
small (Intris), and one large (HealthConnect) project.
• Case 1: Intris [https://www.intris.be]. The project at Intris
relies heavily upon the visualisation and manipulation of
database data. This manifests itself in the way the tests are
written, as most of them are scenario tests. We choose a
(core) subproject which does not rely on the database, but
has few unit tests. This resulted in a small task execution
time, as building the project and running the test suite only
takes 7 seconds. The Intris project makes an interesting case
for investigating mutation testing in the cloud as the execu-
tion times of the tasks are quite small thus we expect more
overhead from scheduling delays and file server/disk delays.
• Case 2: HealthConnect [https://www.healthconnect.be]. The
project at HealthConnect is 1.8GB large, and contains 48kLOPC
(Lines of Production Code), and 5kLOTC (Lines of Test Code).
As each hardware node needs to copy the entire code base,
the fileserver hosting the source files from the project may
become a bottleneck. The project fromHealthConnect makes
an interesting case to examine the behaviour on large (espe-
cially in data transfer) projects.

The descriptive statistics of the project are listed in Table 1,
while the details regarding basic mutation testing are shown in
Table 2. Note that the given start date and number of commits
from HealthConnect is counted from the switch to the new version
control system, the actual start date is earlier. Note as well that the
time to execute the test suite assumes that all dependencies are
loaded and stored locally.

4.2 Research Questions
The case study is driven by the following two research questions.

RQ1: Speed-up. How much speed-up can be achieved by running a
mutation testing on cloud infrastructure?
Motivation. Assuming that we distribute the mutation test run
over a system with N hardware nodes, the ideal speed-up is a factor
Nx . Here we investigate whether DiMuTesTas approaches this
ideal.
Approach. We deploy DiMuTesTas on a cloud system with a max-
imum of eight hardware nodes, where each hardware node is con-
figured with 2 workers. We measure the total execution time with
a set-up of 1, 2, 4, 8, and 16 workers and average the execution time
across 3 runs.

RQ2: Delays. Where does a cloud solution like DiMuTesTas suffer
from delays? Do these delays correspond to what may be expected?

Motivation. Deploying mutation testing in the cloud induces de-
lays, in particular with respect to data-transfer between the nodes.
This research question compares a mutation test run executed on
a local PC against a mutation test run deployed in the cloud. By
making a thorough analysis of where delays occur we can suggest
avenues for further improvement.
Approach. Based on the set-up described in RQ1 (1, 2, 4, 8, and 16
workers) we measure the points in the architecture where delays
might occur as described in Section 3.2: Setup delay, Initial build,
Mutant generation, Mutant execution, RabbitMQ (scheduling) delay
and the File server/disk delay.We compare the actual measurements
against what we expect.

4.3 Hardware Set-up
The infrastructure used for the analysis of both projects is the same.
We used 8 Intel(R) Core(TM)2 Quad Q9650 CPU’s, each with two
4GB (Samsung M378B5273DH0-CH9) DDR3 RAM modules and a
250GB Western Digital (WDC WD2500AAKX-7) hard drive. All
PC’s were connected to the same subnet using a 3Com Baseline
Switch 2016 (100Mbps, full duplex). The in- and outgoing internet
connections/inter-PC communications were limited by the 100Mb
links. We used a dedicated switch to remove any external influences
on the network load. All PC’s where running Ubuntu 16.04.2 LTS
with kernel 4.10.0-27.
The workers from the DiMuTesTas approach where divided equally
over the nodes: when using N nodes and 2N workers, each node
will run two workers. When executing LittleDarwin, only one of
the PC’s was used.

4.4 LittleDarwin
In principle, DiMuTesTas can be set-up with any mutation tool, as
long as it can be configured to apply a single mutator on a given
file. For this particular case study we relied on LittleDarwin, a tool
distributed within our lab thus conveniently accessible [25].

5 RESULTS
5.1 RQ1 - Speed-up
How much speed-up can be achieved by running a mutation testing
on cloud infrastructure?

Table 3 compares the execution times of LittleDarwin against
DiMuTesTas using 1, 2, 4, 8, and 16 workers. Each result is an aver-
age of 3 runs; the variance between each run is less than 2%. For
easy interpretation of the scaling, we took the execution time of
DiMuTesTas running on a single worker (therefore running sequen-
tially) as our baseline, indicating it as 100% of the execution time.
As the number of workers double, we see that the execution time al-
most halves thus the speed-up increases linearly. Nevertheless, the
relative execution time of LittleDarwin is below 100%, because —as
expected— executing mutation testing in the cloud adds overhead.�

�

�

�

For the Intris Case (8 kLOC production code, 300 LOC test code)
we could reduce the full mutation testing cycle from 2.7 hours to
13.5 minutes. For the HealthConnect case (48 kLOC production
code, 5k LOC test code) we could reduce from 48 hours to 3.7 hours.
As such, our proof-of-concept achieved a speed-up between 12x
and 12.7x on a cloud infrastructure with 16 nodes.

https://www.intris.be
https://www.healthconnect.be
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Table 1: Industrial Cases: Descriptive Statistics

Company Project Start Date Nr Commits Nr Developers Java Files LOPC LOTC Test Cases Branch Coverage
Intris 26 May 2014 27,034 14 85/4,070 8,389 343 45 1.27%
HealthConnect 18 Jun 2014 22,956 10 601/273,722 48,873 5,258 272 28.34%

LPOC = Lines of Production Code; LOTC = Lines of Test Code

Case Project
Size

Test Suite
Run Time

buildOutput-
FileSize

avg-
FileSize

interNode-
LinkSpeed

readWriteSpeed-
LocalDisk

Intris 116MB 7 s 37kB 15kB 100Mbps 95MBps
HealthConnect 1.8GB 47 s 840kB 8.52kB 100Mbps 95MBps

Table 2: Industrial Cases: Mutation Testing Data

Company Project Size Executed Mutants Invalid Mutants Actual Mutants Killed Mutants Mutation Coverage
Intris 116MB 1,364 312 1,052 33 3.14%
HealthConnect 1.8GB 4,104 50 4,054 360 8.88%

Table 3: Results (Distributed) Mutation Testing Experiment

Case
Mutation Testing Tool LittleDarwin DiMuTesTas

1 worker 2 workers 4 workers 8 workers 16 workers
(1 node) (2 nodes) (4 nodes) (8 nodes) (8 nodes)

Intris 9,718.15 s 10,360.64 s 5,237.88 s 2,676.80 s 1,404.76 s 810.49 s
93.80% 100.00% 50.56% 25.84% 13.56% 7.82%

HealthConnect 173,061.51 s 190,313.06 s 96,218.86 s 48,805.47 s 25,301.98 s 13,618.04 s
90.94% 100.00% 50.56% 25.64% 13.29% 7.16%

5.2 RQ2 - Delay
Where does a cloud solution like DiMuTesTas suffer from delays? Do
these delays correspond to what may be expected?

The delays of the different phases are listed in Table 4. Table 5
summarises these results, comparing the delay we expected against
the delays observed.

5.2.1 Setup delay. In Table 4, we see that the setup delay grows
linearly with the number of workers. This is as expected, as the
source files from the project are copied to each worker individually.
While we would expect the initial setup delay of the 16 workers to
be twice as long as the one of the 8 workers, we see that they are
alike. When running the 16 workers, each node has two workers.
Because we used NFS as our file server, the kernel caches the data
from the requests, allowing the second worker on each node to use
the cached data instead of copying it from the file server.

The linear growth of the setup delay mainly impacts the execu-
tion time of the project from HealthConnect. The larger the project,
the more time the copying of the files will take. In our case, the
limited network connection of 100Mbps is making the delay extra
apparent. The delay can be decreased by using a gigabit network
and by minimising the amount of data that needs to be sent over
the network. The latter can be achieved by keeping the project
in a Docker volume between consecutive runs of the distributed
mutation testing.

Another optimisation is to replace unicast with multicast [6].
With unicast, the project is transmitted to each node individually,
thus we send the same project 8 times over the network when using

8 nodes. Multicast, on the other hand, sends the (same) project only
once over the network, making the amount of data sent over the
network independent of the amount of nodes.

5.2.2 Initial build. Next in Table 4 is the initial build on the master.
We see that the execution times of the initial build from the different
workers are similar. As this step is the same, independent of the
amount of workers, we expected a constant initial build delay, hence
this result is as expected.

5.2.3 Mutant generation. The third row in Table 4 shows the
total time to mutant generation, excluding the time to read (write)
the files from (to) the server/disk. The time to generate the mutants
using LittleDarwin or DiMuTesTas for all worker configurations
should be the same, as the same amount of work should be done.
While this is the case for the project from HealthConnect, we see a
decrease in execution time for the project from Intris. The shorter
execution time using fewer workers is due to a memory limitation
when needing to process multiple large files. With more workers,
each worker needs to process fewer of these files, allowing for more
memory to be used for each file.

The project from Intris has fewer mutants but a higher LOC/test
file than the project from HealthConnect (Table 1). However, the
mutant generation time of Intris is 3.6 times as long (see Table 4).
We assume this behaviour is caused by the complexity of gener-
ating mutants. With LittleDarwin this complexity is exponential
compared to the amount of lines in a file. In general, if two projects
have the same LOC count, but differ in the number of files, then the
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Table 4: Results: Delays incurred in DiMuTesTas
(in seconds, bold program section represent cumulative timings, i.e. the sum of time all workers spend in that phase)

Case Program section LittleDarwin 1 worker 2 workers 4 workers 8 workers 16 workers

Intris

Setup delay N.A. 18.39 27.83 46.63 84.34 81.59
Initial build 7.98 7.72 7.92 7.82 8.18 8.35
Mutant generation 928.46 1,018.49 558.14 332.04 256.38 255.23
Mutant execution 8,770.34 9,296.29 9,791.96 10,090.61 10,142.68 11,057.54
RabbitMQ delay N.A. 9.09 10.69 23.71 37.43 95.08
File server/disk delay 2.58 5.24 12.94 18.20 19.13 21.56

HealthConnect

Setup delay N.A. 156.37 305.91 613.83 1,265.15 1,319.37
Initial build 114.78 159.03 163.5 177.63 165.25 180.31
Mutant generation 253.27 296.11 257.19 270.29 311.63 269.92
Mutant execution 172,681.67 189,488.88 190,937.38 191,310.10 189,881.46 191,940.89
RabbitMQ delay N.A. 22.69 30.73 106.06 203.18 386.73
File server/disk delay 6.68 144.86 160.63 187.34 190.85 253.95

Table 5: Overview of Expected and Actual Delays

Program section Expected delay Actual delay
Setup delay Linear to nr. of workers Linear to nr. of nodes
Initial build Constant Constant
Mutant generation Constant Decreasing
Mutant execution Constant Constant
RabbitMQ delay max n − 1 workers * test execution time max n − 1 workers * test execution time
File server/disk delay Linear to nr. of workers Linear to nr. of workers

one with the most files (less LOC/file) will result in a faster mutant
analysis.

5.2.4 Mutant execution. The fourth row in Table 4 shows the
time needed to mutant execution, here as well excluding the time to
read (write) the files from (to) the server/disk. We observe execution
times which are more less similar, which should be the case as the
code responsible for this in DiMuTesTas is the exact same code
as of LittleDarwin. Not surprisingly, the mutant execution time
comprises the largest chunk of the whole mutation testing time,
hence that is where optimisations should focus on.

5.2.5 RabbitMQ delay. The fifth row in Table 4 shows the Rab-
bitMQ (scheduling) delay, i.e. the time needed to gather the names
of the source files send them to the task queue plus the time needed
for the workers to pull tasks from the task queue. This delay is
calculated by removing all timed functions (delays, mutant gener-
ation and execution) from the local execution time of the worker.
The delay incorporates the execution time of some small, untimed
functions. We can see that the delay increases, but it is important
to note that this is cumulative. If e.g. seven out of the eight workers
are done processing, then for every second that passes before the
last worker is done, seven seconds are added to this delay. If we
divide the delay by the number of workers, then we see that this
delay is smaller than the time it takes to process a single task. We
conclude that this delay is caused by idle-time when some nodes
stop processing earlier than others.

5.2.6 File server/disk delay. The sixth row in Table 4 shows the
file server/disk delay, i.e. the time needed to copy data files back and

forth between the different nodes. Although this delay is relatively
small, it grows linearly with the amount of workers, hence is a
point for concern. This delay could be minimised by sending deltas
of the files over the network instead of sending the complete file.�

�

�

�

Based on detailed measurements concerning delays in the analysis
we point out directions for further optimisation. In particular, the
use of multicast should ensure that the set-up delay —the current
bottleneck– would take constant time, regardless of the number
of nodes in the system. In the same vein, we can minimise the file
server/disk delay by only sending the deltas of the files.

6 LESSONS LEARNED
In this section we will derive the lessons learned geared towards
the mutation testing community.

Nightly Builds. The mutation testing algorithm in Algorithm 1
is inherently parallel, thus a cloud solution allows to share the com-
putational load across a series of hardware nodes. Given sufficient
hardware it is possible to off-load a full-scale mutation testing on
dedicated hardware.�
�

�
�

□✓ Cloud infrastructure allows to speed up mutation testing de-
pending on the number of hardware nodes available. This speed-up
allows to perform mutation testing during the nightly build.

Cloud Technology. We observed that it is beneficial to run many
workers on the same node to reduce the setup delay. However, the
set-up delay is still significant and grows with the number of nodes,
mainly because we copy the whole project source code to each of
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the available nodes. In the future, we intend to use Multicast the
setup delay should become a constant, independent of the number
of nodes in the system. In a similar vein, we will reduce the file
server/disk delay by sending deltas of the files over the network.�
�

�
�

□✓ There is a lot of research and development on cloud infrastruc-
ture and the field is making rapid progress. In the near future, we
may expect new features that can be exploited to make a cloud
based mutation testing even faster.

Side-effects. Duringmutant generationwe noticed that with more
workers, each worker needs to process fewer of these files, allowing
for more memory to be used for each file.�
�

�
�□✓ Deploying mutation testing in the cloud sometimes lead to

side-effects having a positive impact on the execution time.

Completely independent tasks. DiMuTesTas is designed to min-
imise idle times between tasks. The single task queue does not add
any delay because it only needs to pass the name of the mutated
file, and only the mutated file will be copied from the file server
to the worker. This can only work when there are no other de-
pendencies between tasks, in particular between the generation
of the mutants (Phase A in Algorithm 1) and the execution (Phase
B in Algorithm 1). Likewise, executing a single mutant (line 14 in
Algorithm 1) should not affect any other executions.�
�

�
�

□✓ For optimal deployment in a cloud infrastructure, tasks should
remain completely independent. Mutant optimisation techniques
that violate this principle will benefit less from deploying in the
cloud.

Complementary Optimisation. Deploying mutation testing in
the cloud reduces the total mutation testing time according to the
number of hardware nodes available. Nevertheless, the mutant
generation and mutant execution phases take the largest proportion
of the whole analysis.�
�

�
�

□✓ There is ample room for complementary optimisation tech-
niques that reduce the time needed to generate and execute mu-
tants.

7 THREATS TO VALIDITY
As with all empirical research, we identify those factors that may
jeopardise the validity of our results and the actions we took to
reduce or alleviate the risk. Consistent with the guidelines for
case studies research (see [27, 29]), we organise them into four
categories.
Construct validity: dowemeasurewhatwas intended? In essence,
we wanted to know which parts of the distributed mutation testing
process were causing extra delays. Therefore, we compared execu-
tion times on phases where we suspected delays could occur. One
may conceive other choices for measuring these delays. However,
the suggestions for further improvement (i.e. multicast and sending
of deltas of files) are likely to remain valid.
Internal validity: are there unknown factors which might affect
the outcome of the analyses? As the performance of a (distributed)
system can be influenced by external factors, a replication exper-
iment could end up with different timings. For example, if the

computer cannot sufficiently dissipate the generated heat by the
CPU, the CPU could slow down over time. Similarly, the condition
of the hard drive in the file server and the load of the network
could affect the measurements. However, the results would need
to differ significantly before they would invalidate the suggestions
for further improvement.
External validity: to what extent is it possible to generalise the
findings? We evaluated our proof-of-concept distributed mutation
testing tool to industrial cases, both a small and a large one. We
assume that similar measurements would apply on other projects,
however the proposed solutions will need to be tailored to the
projects. Projects that are small in size but have long running test
suites are different from projects large in size but with very short
running test suites.
Reliability: is the result dependent on the tools? We deliberately
choose a mutation testing tool which clearly separates the different
steps of the mutation testing process. This allowed us to measure
the delay of running the mutation tests in the cloud. If the mutation
testing tool contains optimisations which can be distributedwithout
a negative impact on the performance (i.e. test prioritisation), then
the results should be similar. However, as mentioned in Section 6
For optimal deployment in a cloud infrastructure, tasks should
remain completely independent.

8 CONCLUSION
In this paper, we demonstrated that cloud infrastructure allows to
speed up mutation so much that it can be performed during the
nightly build. For a small scale system (8 kLOC production code,
300 LOC test code) we could reduce the full mutation test run from
2.7 hours to 13.5 minutes. For a large project (48 kLOC production
code, 5k LOC test code) we could reduce from 48 hours to 3.7 hours.
As such, our proof-of-concept achieved a speed-up between 12x
and 12.7x on a cloud infrastructure with 16 nodes.

Despite these improvements, there are still opportunities for
further optimisation. Based on detailed measurements concerning
delays in the analysis, we point out directions for further optimi-
sation. In particular, the use of multicast should ensure that the
set-up delay —the current bottleneck– would take constant time,
regardless of the number of nodes in the system. In the same vein,
we can minimise the file server/disk delay by only sending the deltas
of the files.

Moreover, we also derive a few lessons learned for the muta-
tion testing community. Most important is the principle that for
optimal deployment in a cloud infrastructure, tasks should remain
completely independent. Mutant optimisation techniques that vi-
olate this principle will benefit less from deploying in the cloud.
Nevertheless, there is ample room for complementary optimisation
techniques that reduce the time needed to generate and execute
mutants.
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