
Adaptive Runtime Response Time Control in PLC-based
Real-Time Systems using Reinforcement Learning

Mahshid Helali Moghadam1,3, Mehrdad Saadatmand1, Markus Borg2, Markus Bohlin1, Björn Lisper3
1RISE SICS Västerås, SE-722 13, Västerås

2RISE SICS Lund, SE-223 70, Lund
3Mälardalen University, SE-721 23, Västerås

Sweden
{mahshid.helali.moghadam, mehrdad.saadatmand, markus.borg, markus.bohlin}@ri.se, bjorn.lisper@mdh.se

ABSTRACT
Timing requirements such as constraints on response time are key
characteristics of real-time systems and violations of these
requirements might cause a total failure, particularly in hard real-
time systems. Runtime monitoring of the system properties is of
great importance to check the system status and mitigate such
failures. Thus, a runtime control to preserve the system properties
could improve the robustness of the system with respect to timing
violations. Common control approaches may require a precise
analytical model of the system which is difficult to be provided at
design time. Reinforcement learning is a promising technique to
provide adaptive model-free control when the environment is
stochastic, and the control problem could be formulated as a
Markov Decision Process. In this paper, we propose an adaptive
runtime control using reinforcement learning for real-time
programs based on Programmable Logic Controllers (PLCs), to
meet the response time requirements. We demonstrate through
multiple experiments that our approach could control the response
time efficiently to satisfy the timing requirements.1

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Software and its engineering → Software performance; •
Computing methodologies → Machine learning

KEYWORDS
Adaptive response time control; PLC-based real-time programs;
Runtime monitoring; Reinforcement learning

ACM Reference format:

M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper. 2018.
Adaptive Runtime Response Time Control in PLC-based Real-Time
Systems using Reinforcement Learning. In Proceedings of 13th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SEAMS '18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5715-9/18/05…$15.00
https://doi.org/10.1145/3194133.3194153

International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, Gothenburg, Sweden, May 28-29, 2018 (SEAMS '18),
7 pages.
DOI: 10.1145/3194133.3194153

1 INTRODUCTION
Real-time control programs implemented on Programmable Logic
Controllers (PLCs) are key parts of many time-critical industrial
control systems like those in the railway domain. The timing
properties in these systems include period of tasks, deadline,
worst-case execution time or response time. From the perspective
of timing analysis, schedulability analysis methods, statistical and
formal timing analysis are common analysis techniques to provide
a response time estimation of real-time programs [1-3]. Static
analysis-based approaches, in some cases, might not be practical
for complex real-time systems. Even if they are feasible, the
results might not be valid due to unpredictable factors in runtime
and the difference between analysis environment and the realistic
one [4].
 Generally, there is often a strict set of timing requirements
such as deadlines and limits on response time for real-time
programs in mission-critical contexts. Correctness of functionality
of real-time systems highly depends on satisfying the timing
requirements as important features of these systems. Any serious
deviation in temporal behavior of real-time programs due to
unpredicted runtime events like asynchronous message-passing
and runtime changeable priorities, particularly in complex
systems, might cause a total failure in the function of system.
Thus, providing more robustness against unpredicted varying
conditions during runtime is of great importance. In general,
robustness could be defined as to which degree the system is
tolerable against incorrect inputs or unexpected stressed
conditions [5]. In a real-time program, robustness could be
defined as the ability to adapt to the varying conditions while
satisfying the timing requirements.
 An adaptive runtime control in addition to the scheduling
capabilities could lead to more robustness in real-time control
systems, to cope with changing runtime conditions and
unpredicted states [6]. Runtime monitoring could check if the
system adheres to the predefined requirements like timing
constraints. A control approach based on runtime monitoring
could help preserve these timing properties by applying runtime

217

2018 ACM/IEEE 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

SEAMS’18, May 2018, Gothenburg, Sweden M. H. Moghadam et al.

control operations. Adaptive control strategies are considered as
one of the promising solutions to improve robustness through
providing adaptation to the varying conditions in dynamic
environments. Reinforcement learning (RL) has been frequently
applied to address the adaptive control strategy in dynamic
environments, in case the environment is stochastic, and the
control problem can be formulated as a Markov Decision Process
(MDP).
 In this paper, we propose a self-adaptive response time control
for real-time programs in PLC-based systems using reinforcement
learning. In our previous work [7], we presented the initial idea on
how a learning-based solution can be used to provide assurance of
timing properties; here in this work we extend that initial idea and
provide an industrial evaluation of our proposed approach. We
present the evaluation experiments of the proposed approach on
sample programs inspired from our collaboration with
Bombardier Transportation in Sweden. The proposed approach
formulates the response time control problem as an MDP and uses
Q-learning as a model-free RL to provide adaptive control of
response time while meeting the timing requirement. We show the
efficacy of the proposed approach through multiple experiments
based on simulating real-time programs in a PLC-based control
system. Our approach mostly keeps the programs adhering to the
response time constraints despite the occurred time deviations
during the run time. Based on the evaluation results, the proposed
approach with ε-greedy, ε=0.5, and α=0.1 and γ =0.5 provided
better satisfaction of the response time threshold without any
programs ending with medium or high deviation.
 The rest of this paper is organized as follows; Section 2
discusses briefly the motivation and background concepts of RL.
The technical details of the proposed approach are discussed in
Section 3, while Section 4 presents the evaluation experiments
and results. Section 5 provides a review of the related works and
background techniques. Conclusions and future directions are
provided in Section 6.

2 MOTIVATION AND BACKGROUND

2.1 Motivation
Runtime monitoring is considered as a principal means for real-
time systems. Providing an adaptive control for satisfying the
timing requirements such as constraints on response
time/execution time based on runtime monitoring could improve
the robustness of the system. Model-driven control approaches
may require precise knowledge of the system and environment.
The complexity of real-time systems, for example, intricate
temporal dependencies between real-time tasks and the dynamism
of the environment are major barriers which motivate towards
model-free learning-based control. Learning-based control can
find an adaptive control policy to varying conditions regardless of
having a precise model of the environment. Reinforcement
learning-based control techniques have been used for runtime
control of non-functional properties to satisfy the performance and
timing requirements in many application contexts.

 Reinforcement learning [8] is a learning mechanism working
based on interaction with the environment. In RL, the agent senses
the state of the environment continuously, takes a possible action
and in return, receives a reward signal from the environment
which shows the desirability and effectiveness of the applied
action. During the learning, the agent follows a policy which
maximizes the long-term received reward. The agent learns this
policy through an action selection strategy which is based on
selecting an action randomly (exploration) or selecting an action
with a high utility value (exploitation). Q-learning [8] is a model-
free RL algorithm in which the agent learns the value function of
the long-term expected reward associated to the pairs of states and
actions. It is an off-policy learning as the optimal policy is learnt
independently of the action selection strategy being used by the
agent. Once the learning converges, the agent replays the learned
policy.

2.2 PLC-based Industrial Control Programs
Many of the real-time industrial control systems like those ones in
the transportation domain, are implemented based on IEC 61131-
3 [9] which is one of the main programming language standards
for programmable controllers. According to the proposed software
structure in IEC 61131-3, Programmable Organization Units
(POU) are the building blocks of a PLC program. They are
hardware-independent and programmable in a flexible fashion
facilitating the reusability and modularization in this context.
 There are mainly three unified types of POUs: program,
function block and function. A function block has its own data
record to remember the state of the information, while a function
always produces the same result based on the same input. A
program may consist of zero or multiple function and function
blocks. A real-time task can execute one or multiple programs or a
set of function blocks. Timer function blocks are widely used as
one of the main constituent POUs in PLC-based real-time
programs. Their basic functions involve providing their output
after a preset controllable/programmable time interval. There are
three types of timers as standard PLC timer blocks, i.e., TP (Timer
Pulse), TON (Timer On-Delay) and TOF (Timer Off-Delay).
Timer TP is a pulse generator which supplies a constant pulse on
output upon detecting a rising edge at input. TON supplies the
value of input at output with a delay upon detecting a rising edge
at input. TOF has an inverse functionality to TON. Figure 1 shows
a sample schema of a real-time control program in Function Block
Diagram format, as an integration of multiple functions and
function blocks. The number of POUs in each control program
depends on the complexity of the program.

Figure 1: A sample schema of a PLC-based control program

218

Adaptive Runtime Response Time Control in PLC-based
Real-Time Systems using Reinforcement Learning

SEAMS’18, May 2018, Gothenburg, Sweden

The time delay of timer function blocks in time-critical programs
are the target entities supposed to be tuned in urgent conditions by
our control approach to satisfy the response time requirements.

3 ADAPTIVE RESPONSE TIME CONTROL
USING Q-LEARNING

In this section, we present the technical details of the proposed
runtime response time control using reinforcement learning for
real-time programs running on PLC-based systems. This control
method is incorporated into the control scan program which is
responsible for executing the building blocks and preserving their
execution orders within real-time programs. Timer function
blocks are one of the standard function blocks which are widely
used and play a key role in many time-critical industrial control
programs.
 The proposed control strategy is supposed to use the capability
of tuning the time delay of timer function blocks to control the
response time of real-time programs. The main objective of the
proposed runtime response time control is to meet the response
time requirements in abnormal conditions when time deviations
happen, by optimally tuning the time delay parameters. The
proposed approach uses Q-Learning as a model-free RL to learn
the optimal tuning of delay parameters to preserve the program
responsive within the target response time threshold.
The learning task in the proposed control approach mainly
involves the following steps:
1) Detecting the State of the system. Based on the interactive
characteristic of the reinforcement learning, the control
agent/controller observes the state of the program at discrete time
steps. After each execution cycle, the controller measures the
execution time until the current time point. The actual execution

time until the end of the nth function block execution, ݊ܶܧ , is
classified under four classes. This is done based on the amount of
compliance with the desired/target execution time until the end of

the nth function block (e.g. from requirements/constraints), ܶ݊ ,
calculated as follows: ܶ݊ = 	∑ ݂ܶ݅݊݅=1 (1)

Where ܶ is the desired response time of the ith function block.
The class values representing the state of the program, s, are
Required, Low, Medium and High, as shown in Figure 2. They
represent the acceptable state, and the states with low, medium
and high deviation, respectively. We defined the acceptable state
based on a target execution time characterized by a tolerance

region [ܶ݊	, ܶ′݊]	where ܶ′݊ = ܶ݊ + . where in ms is defined
based on the characteristics of the system.

Figure 2: States of the program

2) Selecting a Control Action. We defined the control actions as
tuning operations for the time delay of the next running function
block, ܦାଵ.

For providing a safety margin, we also considered a required
minimum delay, Dm ,for function blocks.
Then, the time delay of function blocks could not be set to a value
less than Dm. Regarding the minimum time delay, we specified a
set of control actions for tuning the time delay as follows:
ݏ݊݅ݐܿܣ = ൛(1 − ௗ݂)ܦାଵ + ௗ݂ܦ ∶ 	 ௗ݂ ∈ ܭ ൟ (2)ܭ = ሼ0, ଵହ , ଶହ , ଷହ , ସହ , 1ሽ (3)

Where ௗ݂ is a decreasing factor.
3) Receiving the Reward signal and updating the stored
experience. After applying the selected action, the system will go
to the next state and the controller will receive a reward signal
representing the effectiveness of the applied action. We derived a
utility function based on a Normal probability density function
with μ=Tn and σ= Tn/10 which is as follows:

݊ݎ = ൞ ߨ2√1ܶ݊10 ݊ܶ݊ܶ−݊ܶܧ)12−݁ 10ൗ)2 ,										ܶ݊ < ݊ܶܧ														,1																											݊ܶܧ ≤ ܶ݊			 (4)

The computed reward values will be in the range (0, 1].
 The final objective of the learning is to find a policy π, a
mapping between the states and actions, which maximizes the
expected long-term reward defined as follows [8]:
 ܴ = ାଵݎ + ାଶݎߛ +⋯+ ାାଵ (5)ݎߛ

Where ߛ ∈ [0,1] is a discount factor specifying the importance of
future rewards compared to the immediate reward. The long-term
expected return of selecting action a in state s, based on policy π,
is specified by a utility value ܳ	(ݏ, ܽ) defined as follows [8]:
 ܳ	(ݏ, ܽ) = [ܴ|ܵܧ = ,ݏ ܣ = ܽ],	 (6)

The q-values stored in a look-up table, Q-table, form the
experience of the agent. The controller relies on q-values to make
decision on actions. During the learning, the q-values are updated
incrementally via temporal differencing. The agent updates the
associated ܳ	(ݏ, ܽ) for each experienced (s, a) through the
following rule: ܳ(ݏ, ܽ) = ,ݏ)ܳ	 ܽ) + ାଵݎ]ߙ + maxߛ ,ାଵݏ)ܳ ܽ) − ,ݏ)ܳ ܽ)] (7)

Where ߙ ∈ [0,1] is the learning rate parameter. It specifies to
what extent new information impacts the q-values. The all steps of
the adaptive control procedure are described in List 1. Eventually,
after multiple learning cycles, the controller finds the optimal
policy of selecting the action which maximizes the q-value in a
given state.

219

SEAMS’18, May 2018, Gothenburg, Sweden M. H. Moghadam et al.

learning performance. Different action selection strategies could
be used during the learning. The agent can use a random action
selection method or select greedily an action with the highest
utility value according to the Q-table. ε-greedy is an action
selection strategy which allows the agent to make a trade-off
between the exploration and exploitation in the action space. In ε-
greedy, with probability ε, a random action is selected and with
probability 1-ε, an action based on the utility value is selected.
However, RL-based approaches might generally suffer slow
convergence due to the need for exploring the state space. To
alleviate this effect, we also introduced an initial control mapping
in Q-table by specifying some invalid pairs of state and action to
guide the agent not to explore specific actions in a specific state.
For example, when it is in acceptable state, no need to change the
time delay parameter.

Algorithm: Adaptive Response Time Control in PLC-based Real-
time programs

Required: S, A, ɛ, α, γ, φ (invalid state-action pairs)
Initialize q-values, ܳ(ݏ, ܽ) = ,ݏ)	݂݅	1− ܽ) ∈ 	else	0	∀ݏ ∈ ܵ , ∀ܽ ∈ ܣ
1. Detect the program current state, sn
2. Select an action using the action selection policy
(e.g. ɛ-greedy: select an= ܽݔܽ݉݃ݎ∈	ܳ(ݏ, ܽ) with probability
(1- ɛ) or a random action with probability ɛ)
3. Apply the selected action, let the system continue running and
execute the next function block
4. Detect the new state of the system
5. Compute the reward (reinforcement) signal.
6. Update the q-value by ܳ(ݏ, ܽ) = ,ݏ)ܳ	 ܽ) + ାଵݎ]ߙ + maxߛ ,ାଵݏ)ܳ ܽ) − ,ݏ)ܳ ܽ)]
7. Repeat for every observed state at the start of each function block
execution

4 RESULTS AND DISCUSSION
This section presents the results of the early stage evaluation
experiments addressing the performance of the proposed approach
in terms of meeting the predefined response time threshold. The
main objective of the experiments is to assess to which degree the
learning-based control can work adaptively on varying conditions
and untimely behavior of function blocks in a realistic
environment.

4.1 Evaluation Setup
In this study, we implemented the proposed approach based on
three action selection strategies. We incorporated it into an
environment which simulates multiple real-time programs
consisting of various timer function blocks. The simulation
environment emulates the temporal behavior of the function
blocks, their responses in realistic environments and the
corresponding control scan program for controlling the execution
order of the function blocks. The learning-based control has been
integrated into the control scan thread to provide a runtime control
of the response time of real-time programs.
 The proposed approach has been evaluated through two
analysis scenarios. In the first scenario, concerning response time
analysis, the performance of the learning-based control based on

using three action selection algorithms has been studied. In this
scenario, the performance of the proposed approach after 100
learning episodes (interaction with various real-time programs)
has been demonstrated. The real-time programs have been
characterized with different numbers of function blocks,
predefined response time requirements and minimum required
delay time (safety margin). The second analysis scenario,
sensitivity analysis, analyzes the sensitivity of the learning-based
approach to the learning parameters. This scenario involves
investigating the effects of the learning parameters by
systematically changing the values of one parameter while
keeping the other one constant.

4.2 Experiments and Results
Timing Analysis. In the timing analysis scenario, the efficacy of
the learning-based approach was evaluated in terms of adaptation
to changeable behavior while meeting the timing requirement.
The simulated real-time programs have different numbers of
function blocks in the range [5, 25]. The predefined response time
requirements of function blocks and associated safety margins in
ms have been initialized with values in the range [1000, 6000] and
[1000, 2000], respectively. A maximum deviation at most equal to
25 percent of the upper bound of the response time requirement
was allowed during the simulation. The default acceptable
tolerance value was considered as 500 ms. Time deviations were
injected into the programs randomly. Figure 3 shows a sample
pattern for injecting time deviations to function blocks within
three sample programs. ε-greedy was used in the proposed
approach as an action selection strategy with ε= 0.1, ε=0.5 and
ε=0.9. The ε-value determines to what extent exploration and
exploitation are weighted during the action selection procedure.
Figure 4 shows the observed response time plots of real-time
programs after applying the learning-based control approach
based on different values of ε parameter in the action selection
strategy. Clearly, the learning-based control approach tries to
adapt well to the varying temporal behaviors of the function
blocks while meeting the response time thresholds of the
programs. Results in Figure 4 describe the efficacy of the
learning-based control approach based on the number of programs
ended with medium or high deviations from the timing
requirements and also the achieved average deviations. According
to the results, the performance of the proposed approach with
different action selection strategies is described as follows:

Figure 3: A sample pattern of time deviation

function blocks

220

Adaptive Runtime Response Time Control in PLC-based
Real-Time Systems using Reinforcement Learning

SEAMS’18, May 2018, Gothenburg, Sweden

1) ε-greedy with ε= 0.1 makes the controller trust most on its
stored experience, rather than exploring new actions. The
learning-based approach based on this action selection strategy,
showed less efficiency in terms of optimizing the response time
and also the number of programs which ended with medium or
high deviations. In this case, the experience of the controller has
not been extended well and needs more exploration to be
improved.
2) ε-greedy with ε= 0.9 provides more opportunities towards the
exploration of the action space. It provided partially better
performance in terms of optimizing the response time and
preventing the programs from exceeding the predefined thresholds
with medium or high deviations compared to ε-greedy with ε=
0.1.
3) ε-greedy with ε= 0.5 provides a trade-off between the
exploration and exploitation of the action space. It showed a better

adaptation to the varying conditions and tried to preserve the
response time close to the requirement threshold. In some cases
where a sharp satisfaction of the timing requirement is needed,
e.g. airbag control systems of automotive products, this is the
desired performance which is required.
4) ε-greedy with decaying ε, is an action selection strategy during
which the ε parameter gradually decreases. It causes more
exploration during the first steps of the learning and more
exploitation at the last steps. Using this strategy, the performance
controller first explores the action space, then tends towards using
the achieved experience. The learning-based approach based on ε-
greedy with decaying ε, showed the most promising results, i.e., it
outperformed the other ε-strategies both in terms of optimizing
response time and preventing medium or high deviations from the
predefined timing thresholds.

Average injected time deviation per
program: 5504 ms

LR-based using
ε-greedy, ε= 0.1

Uncontrolled

 #RT programs with highly
exceeded predefined threshold

6 13

Achieved average deviation 2585 5504

Average injected time deviation
per program: 5731 ms

LR-based using
ε-greedy, ε= 0.5

Uncontrolled

 #RT programs with highly
exceeded predefined threshold

0 10

Average deviation -1228 5731

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Learning-based performance control using ε-greedy	with	ε=0.1

Timing Tar get Achieved Response time Real-time programs

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Learning-based performance control using ε-greedy	with	ε=0.9

Timing Target Achieved Response Time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Learning-based performance control using ε-greedy	with	ε=0.5

Timing Target Achieved Response Time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Learning-based performance control using ε-greedy	with	decaying	ε

Timing Target Achieved Response Time

Average injected time deviation per
program: 5911 ms

LR-based using
ε-greedy, ε= 0.9

Uncontrolled

 #RT programs with highly
exceeded predefined threshold

1 7

Average deviation -3804 5911

Average injected time deviation
per program: 5395 ms

LR-based using
decayingε-greedy

Uncontrolled

 #RT programs with highly
exceeded predefined threshold

0 8

Average deviation -4531 5395

(ms) (ms)

Figure 4: response time plots of real-time programs and the performance of the adaptive learning-based control

Real-time programsReal-time programs

Real-time programs

(ms)

Real-time programs

(ms)

221

SEAMS’18, May 2018, Gothenburg, Sweden M. H. Moghadam et al.

 Sensitivity Analysis. The behavior of the proposed learning-based
control approach could be impacted by the learning parameters
including learning rate (α) and discount factor (γ). In the
sensitivity analysis, two sets of experiments were done to study
the effects of varying learning parameters. Each set of
experiments involves changing the value of one parameter while
keeping the other one constant. ε-greedy with ε= 0.5 was used as a
baseline action selection strategy during the sensitivity analysis
experiments. Table 1 shows the performance of the learning-based
approach regarding the number of real-time programs which
ended with medium or high deviations from the predefined
response time thresholds and also the achieved average deviation
in response time, during the sensitivity analysis experiments. In
Table 1 the bold column represents the baseline parameter setting
which was used in each sensitivity analysis experiment. We set
the learning rate to 0.1 and the discount factor to 0.5 at the first
and second experiments, respectively. It seems that setting the
learning rate to 0.1, which provides a slower learning, leads to
good performance, particularly in adaptation to varying behaviors
and preventing the real-time programs from exceeding the timing
thresholds. Increasing the learning rate towards 0.5, which aims at
balancing between learning new information and saving previous
experience, causes improvement in optimizing the response time
of the programs. The proposed approach also does not show as
much performance improvement as when we set the discount
factor to values other than 0.5.

5 RELATED WORK
We classify the relevant works on timing properties of real-time
systems under modeling, verifying and some approaches to
preserve and satisfy the timing requirements. Many of the
verification and preservation/control approaches are based on
runtime monitoring of the properties. Real-time Specification for
Java (RTSJ) was introduced to provide a real-time scheduler with
the facility of monitoring deadlines and enforcing the execution
cost [10]. Mezzetti et al [11] used the Ada Ravenscar Profile for
preserving the timing properties of real-time systems. Saadatmand
et al [12, 13] developed an extra scheduler taking the temporal
properties including period, execution time and deadline of the
tasks and scheduled them using the underlying scheduler of the
operating system. A model synthesis approach for timing
properties of real-time systems based on monitoring the running
system was proposed in [14]. A runtime framework for
monitoring the runtime constraints such as timing constraints and

detecting the violations of timing properties was presented in [15].
The related issues on runtime monitoring of properties in real-
time systems were discussed in [16]. Goodloe et al [6] surveyed
different runtime monitoring techniques including off-line and on-
line techniques for distributed real-time systems, in particular hard
real-time systems. Das et al [17] presented a tool environment
which provided runtime monitoring, animating the development
and analysis of the components to support model-driven
development of real-time embedded systems. In [18] a runtime
monitoring approach for checking the system properties in
embedded systems was presented. It used a control method to
coordinate the time predictability and memory utilization in the
monitoring solution.

6 CONCLUSION
Runtime monitoring of system properties remains as a principal
need for real-time systems. A runtime control approach based on
runtime monitoring could improve robustness of the system. In
this paper, we present an adaptive runtime response time control
based on reinforcement learning for PLC-based real-time
programs, to satisfy the timing requirements. In this study, we
formulate the control problem as an MDP and apply Q-learning to
provide a control technique to preserve the response time
according to the timing requirements. We evaluate the efficacy of
the approach through multiple experiments. The learning-based
approaches generally require multiple learning trials to converge
and stabilize the learned policy. Regarding this issue and the
characteristics of soft and hard real-time systems, it is supposed
that the proposed learning-based approach in its incremental
learning fashion could be used in soft real-time systems. While
the controller with the converged policy, after training based on
simulation environment, could be integrated into the hard real-
time systems. Furthermore, the result values (the tuned values) of
the control policy could be used as a feedback to correct the initial
model of the system. Future directions of this study will be
evaluating the efficacy of the approach in the industrial platforms,
improving the training time and adaptation precision of the
approach by modeling the state space as fuzzy state space and
using cooperative agents to speed up the learning.

ACKNOWLEDGMENTS
This research has been funded by the ITEA3 initiative
TESTOMAT Project (www.testomatproject.eu) through Vinnova
and by KKS through the TOCSYC project).

Table 1: Impacts of varying learning parameters on the performance of control approach

 LR-based performance control using
ε= 0.5, Discount factor γ =0.5

LR-based performance control using
ε= 0.5, Learning rate α= 0.1

 α= 0.1 α= 0.5 α= 0.9 γ = 0.1 γ = 0.5 γ = 0.9
#RT programs with highly exceeded predefined
threshold (Uncontrolled Condition)

0 (10) 0 (6) 0 (3) 3 (8) 0 (10) 0 (7)

Average deviation (Uncontrolled Condition) -1228
(5731)

-6475
(5378)

-4395
(5455)

-1052
(5484)

-1228
(5731)

-1210
(5744)

222

SEAMS’18, May 2018, Gothenburg, Sweden M. H. Moghadam et al.

REFERENCES
[1] G. A. Kaczynski, L. L. Bello, and T. Nolte. 2007. Deriving exact stochastic

response times of periodic tasks in hybrid priority-driven soft real-time
systems. In Proceeding of IEEE Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE, 101-110.

[2] S. Manolache, P. Eles, and Z. Peng. 2004. Schedulability analysis of
applications with stochastic task execution times. ACM Transactions on
Embedded Computing Systems (TECS) 3, no. 4 (2004): 706-735.

[3] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. 2007. Task automata:
Schedulability, decidability and undecidability. Information and
Computation 205, no. 8 (2007): 1149-1172.

[4] M. Saadatmand, Antonio Cicchetti, and Mikael Sjödin. 2012. Design of
adaptive security mechanisms for real-time embedded systems. In Proceeding
of International Symposium on Engineering Secure Software and Systems.
Springer, Berlin, Heidelberg, 121-134.

[5] Standard Glossary of Software Engineering Terminology (ANSI), The Institute
of Electrical and Electronics Engineers Inc. 1991.

[6] A. E. Goodloe, and Lee Pike. 2010. Monitoring distributed real-time systems:
A survey and future directions. NASA/CR-2010-216724, (2010).

[7] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper. 2018.
Learning-Based Self-Adaptive Assurance of Timing Properties in a Real-Time
Embedded System, In Proceeding of 2nd International Workshop on Testing
Extra-Functional Properties and Quality Characteristics of Software Systems
(ITEQS’18), IEEE.

[8] R. S. Sutton, A. G Barto. 1998. Reinforcement learning: An Introduction. Vol.
1. MIT press Cambridge.

[9] International Standard IEC 61131-3, Programmable controllers-part 3
Programming languages, 2013.

[10] A. Wellings, G. Bollella, P. Dibble, and D. Holmes. 2004. Cost enforcement
and deadline monitoring in the real-time specification for Java. In Proceeding
of the Seventh IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing. IEEE, 78-85.

[11] E. Mezzetti, M. Panunzio, and T. Vardanega. 2010. Preservation of timing
properties with the ada ravenscar profile. In Proceeding of International
Conference on Reliable Software Technologies. Springer, Berlin, Heidelberg,
153-166.

[12] M. Saadatmand, M. Sjodin, and N.U. Mustafa. 2012. Monitoring capabilities of
schedulers in model-driven development of real-time systems. In Proceeding of
17th IEEE Conference on Emerging Technologies Factory Automation
(ETFA). IEEE, 1–10.

[13] N. Asadi, M. Saadatmand, and M. Sjödin. 2013. Run-Time Monitoring of
Timing Constraints: A Survey of Methods and Tools. In Proceeding of the
Eighth International Conference on Software Engineering Advances.

[14] J. Huselius and J. Andersson. 2005. Model Synthesis for Real-Time Systems.
In Proceedings of the Ninth European Conference on Software Maintenance
and Reengineering (CSMR ’05). IEEE, 52–60.

[15] F. Jahanian. 1995. Run-time monitoring of real-time systems. Advances in
Real-Time Systems. Prentice Hall (1995).

[16] H. Thane. 2000. Design for Deterministic Monitoring of Distributed Real-Time
Systems. Technical Report ISSN 1404-3041 ISRN MDHMRTC- 23/2000-1-
SE, Målardalen University, May 2000.

[17] N. Das, Suchita Ganesan, Leo Jweda, Mojtaba Bagherzadeh, Nicolas Hili, and
Juergen Dingel. 2016. Supporting the model-driven development of real-time
embedded systems with run-time monitoring and animation via highly
customizable code generation. In Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and
Systems, ACM, 36-43.

[18] R. Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeister.
2015. Runtime monitoring of cyber-physical systems under timing and memory
constraints. ACM Transactions on Embedded Computing Systems (TECS) 14,
no. 4 (2015): 79.

223

