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ABSTRACT 
Timing requirements such as constraints on response time are key 
characteristics of real-time systems and violations of these 
requirements might cause a total failure, particularly in hard real-
time systems. Runtime monitoring of the system properties is of 
great importance to check the system status and mitigate such 
failures. Thus, a runtime control to preserve the system properties 
could improve the robustness of the system with respect to timing 
violations. Common control approaches may require a precise 
analytical model of the system which is difficult to be provided at 
design time. Reinforcement learning is a promising technique to 
provide adaptive model-free control when the environment is 
stochastic, and the control problem could be formulated as a 
Markov Decision Process. In this paper, we propose an adaptive 
runtime control using reinforcement learning for real-time 
programs based on Programmable Logic Controllers (PLCs), to 
meet the response time requirements. We demonstrate through 
multiple experiments that our approach could control the response 
time efficiently to satisfy the timing requirements.1 
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1 INTRODUCTION 
Real-time control programs implemented on Programmable Logic 
Controllers (PLCs) are key parts of many time-critical industrial 
control systems like those in the railway domain. The timing 
properties in these systems include period of tasks, deadline, 
worst-case execution time or response time. From the perspective 
of timing analysis, schedulability analysis methods, statistical and 
formal timing analysis are common analysis techniques to provide 
a response time estimation of real-time programs [1-3]. Static 
analysis-based approaches, in some cases, might not be practical 
for complex real-time systems. Even if they are feasible, the 
results might not be valid due to unpredictable factors in runtime 
and the difference between analysis environment and the realistic 
one [4].   
 Generally, there is often a strict set of timing requirements 
such as deadlines and limits on response time for real-time 
programs in mission-critical contexts. Correctness of functionality 
of real-time systems highly depends on satisfying the timing 
requirements as important features of these systems. Any serious 
deviation in temporal behavior of real-time programs due to 
unpredicted runtime events like asynchronous message-passing 
and runtime changeable priorities, particularly in complex 
systems, might cause a total failure in the function of system. 
Thus, providing more robustness against unpredicted varying 
conditions during runtime is of great importance. In general, 
robustness could be defined as to which degree the system is 
tolerable against incorrect inputs or unexpected stressed 
conditions [5]. In a real-time program, robustness could be 
defined as the ability to adapt to the varying conditions while 
satisfying the timing requirements. 
 An adaptive runtime control in addition to the scheduling 
capabilities could lead to more robustness in real-time control 
systems, to cope with changing runtime conditions and 
unpredicted states [6]. Runtime monitoring could check if the 
system adheres to the predefined requirements like timing 
constraints. A control approach based on runtime monitoring 
could help preserve these timing properties by applying runtime 
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control operations. Adaptive control strategies are considered as 
one of the promising solutions to improve robustness through 
providing adaptation to the varying conditions in dynamic 
environments. Reinforcement learning (RL) has been frequently 
applied to address the adaptive control strategy in dynamic 
environments, in case the environment is stochastic, and the 
control problem can be formulated as a Markov Decision Process 
(MDP). 
 In this paper, we propose a self-adaptive response time control 
for real-time programs in PLC-based systems using reinforcement 
learning. In our previous work [7], we presented the initial idea on 
how a learning-based solution can be used to provide assurance of 
timing properties; here in this work we extend that initial idea and 
provide an industrial evaluation of our proposed approach.  We 
present the evaluation experiments of the proposed approach on 
sample programs inspired from our collaboration with 
Bombardier Transportation in Sweden. The proposed approach 
formulates the response time control problem as an MDP and uses 
Q-learning as a model-free RL to provide adaptive control of 
response time while meeting the timing requirement. We show the 
efficacy of the proposed approach through multiple experiments 
based on simulating real-time programs in a PLC-based control 
system. Our approach mostly keeps the programs adhering to the 
response time constraints despite the occurred time deviations 
during the run time. Based on the evaluation results, the proposed 
approach with ε-greedy, ε=0.5, and α=0.1 and γ =0.5 provided 
better satisfaction of the response time threshold without any 
programs ending with medium or high deviation.    
 The rest of this paper is organized as follows; Section 2 
discusses briefly the motivation and background concepts of RL. 
The technical details of the proposed approach are discussed in 
Section 3, while Section 4 presents the evaluation experiments 
and results. Section 5 provides a review of the related works and 
background techniques. Conclusions and future directions are 
provided in Section 6. 

2 MOTIVATION AND BACKGROUND 

2.1 Motivation 
Runtime monitoring is considered as a principal means for real-
time systems. Providing an adaptive control for satisfying the 
timing requirements such as constraints on response 
time/execution time based on runtime monitoring could improve 
the robustness of the system. Model-driven control approaches 
may require precise knowledge of the system and environment. 
The complexity of real-time systems, for example, intricate 
temporal dependencies between real-time tasks and the dynamism 
of the environment are major barriers which motivate towards 
model-free learning-based control. Learning-based control can 
find an adaptive control policy to varying conditions regardless of 
having a precise model of the environment. Reinforcement 
learning-based control techniques have been used for runtime 
control of non-functional properties to satisfy the performance and 
timing requirements in many application contexts. 

 Reinforcement learning [8] is a learning mechanism working 
based on interaction with the environment. In RL, the agent senses 
the state of the environment continuously, takes a possible action 
and in return, receives a reward signal from the environment 
which shows the desirability and effectiveness of the applied 
action. During the learning, the agent follows a policy which 
maximizes the long-term received reward. The agent learns this 
policy through an action selection strategy which is based on 
selecting an action randomly (exploration) or selecting an action 
with a high utility value (exploitation). Q-learning [8] is a model-
free RL algorithm in which the agent learns the value function of 
the long-term expected reward associated to the pairs of states and 
actions. It is an off-policy learning as the optimal policy is learnt 
independently of the action selection strategy being used by the 
agent. Once the learning converges, the agent replays the learned 
policy. 

2.2 PLC-based Industrial Control Programs 
Many of the real-time industrial control systems like those ones in 
the transportation domain, are implemented based on IEC 61131-
3 [9] which is one of the main programming language standards 
for programmable controllers. According to the proposed software 
structure in IEC 61131-3, Programmable Organization Units 
(POU) are the building blocks of a PLC program. They are 
hardware-independent and programmable in a flexible fashion 
facilitating the reusability and modularization in this context. 
 There are mainly three unified types of POUs: program, 
function block and function. A function block has its own data 
record to remember the state of the information, while a function 
always produces the same result based on the same input. A 
program may consist of zero or multiple function and function 
blocks. A real-time task can execute one or multiple programs or a 
set of function blocks. Timer function blocks are widely used as 
one of the main constituent POUs in PLC-based real-time 
programs. Their basic functions involve providing their output 
after a preset controllable/programmable time interval. There are 
three types of timers as standard PLC timer blocks, i.e., TP (Timer 
Pulse), TON (Timer On-Delay) and TOF (Timer Off-Delay). 
Timer TP is a pulse generator which supplies a constant pulse on 
output upon detecting a rising edge at input. TON supplies the 
value of input at output with a delay upon detecting a rising edge 
at input. TOF has an inverse functionality to TON. Figure 1 shows 
a sample schema of a real-time control program in Function Block 
Diagram format, as an integration of multiple functions and 
function blocks. The number of POUs in each control program 
depends on the complexity of the program.  
 

 
Figure 1: A sample schema of a PLC-based control program 
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The time delay of timer function blocks in time-critical programs 
are the target entities supposed to be tuned in urgent conditions by 
our control approach to satisfy the response time requirements. 

3 ADAPTIVE RESPONSE TIME CONTROL 
USING Q-LEARNING 

In this section, we present the technical details of the proposed 
runtime response time control using reinforcement learning for 
real-time programs running on PLC-based systems. This control 
method is incorporated into the control scan program which is 
responsible for executing the building blocks and preserving their 
execution orders within real-time programs. Timer function 
blocks are one of the standard function blocks which are widely 
used and play a key role in many time-critical industrial control 
programs. 
 The proposed control strategy is supposed to use the capability 
of tuning the time delay of timer function blocks to control the 
response time of real-time programs. The main objective of the 
proposed runtime response time control is to meet the response 
time requirements in abnormal conditions when time deviations 
happen, by optimally tuning the time delay parameters. The 
proposed approach uses Q-Learning as a model-free RL to learn 
the optimal tuning of delay parameters to preserve the program 
responsive within the target response time threshold. 
The learning task in the proposed control approach mainly 
involves the following steps: 
1) Detecting the State of the system. Based on the interactive 
characteristic of the reinforcement learning, the control 
agent/controller observes the state of the program at discrete time 
steps. After each execution cycle, the controller measures the 
execution time until the current time point. The actual execution 

time until the end of the nth function block execution, ݊ܶܧ , is 
classified under four classes. This is done based on the amount of 
compliance with the desired/target execution time until the end of 

the nth function block (e.g. from requirements/constraints), ܶ݊ , 
calculated as follows: ܶ݊ = 	∑ ݂ܶ݅݊݅=1    (1) 

Where ௜ܶ௙ is the desired response time of the ith function block. 
The class values representing the state of the program, s, are 
Required, Low, Medium and High, as shown in Figure 2. They 
represent the acceptable state, and the states with low, medium 
and high deviation, respectively. We defined the acceptable state 
based on a target execution time characterized by a tolerance 

region [ܶ݊	, ܶ′݊ ]	where ܶ′݊ = ܶ݊ + .  where  in ms is defined 
based on the characteristics of the system. 
  

 
Figure 2: States of the program 

2) Selecting a Control Action. We defined the control actions as 
tuning operations for the time delay of the next running function 
block, ܦ௙௡ାଵ. 

For providing a safety margin, we also considered a required 
minimum delay, Dm ,for function blocks.  
Then, the time delay of function blocks could not be set to a value 
less than Dm. Regarding the minimum time delay, we specified a 
set of control actions for tuning the time delay as follows: 
ݏ݊݋݅ݐܿܣ  = ൛(1 − ௗ݂)ܦ௙௡ାଵ + ௗ݂ܦ௠ ∶ 	 ௗ݂ ∈ ܭ ൟ  (2)ܭ = ሼ0, ଵହ , ଶହ , ଷହ , ସହ , 1ሽ    (3) 

 
Where ௗ݂ is a decreasing factor. 
3) Receiving the Reward signal and updating the stored 
experience. After applying the selected action, the system will go 
to the next state and the controller will receive a reward signal 
representing the effectiveness of the applied action. We derived a 
utility function based on a Normal probability density function 
with μ=Tn and σ= Tn/10 which is as follows:  
 

݊ݎ = ൞ ߨ2√1ܶ݊10 ݊ܶ݊ܶ−݊ܶܧ)12−݁ 10ൗ )2 ,										ܶ݊ < ݊ܶܧ														,1																											݊ܶܧ ≤ ܶ݊			   (4) 

The computed reward values will be in the range (0, 1]. 
 The final objective of the learning is to find a policy π, a 
mapping between the states and actions, which maximizes the 
expected long-term reward defined as follows [8]: 
 ܴ௡ = ௡ାଵݎ + ௡ାଶݎߛ +⋯+  ௡ା௞ାଵ   (5)ݎ௞ߛ
 
Where ߛ ∈ [0,1] is a discount factor specifying the importance of 
future rewards compared to the immediate reward. The long-term 
expected return of selecting action a in state s, based on policy π, 
is specified by a utility value ܳ	(ݏ, ܽ) defined as follows [8]: 
 ܳ	(ݏ, ܽ) = [ܴ௡|ܵ௡ܧ = ,ݏ ௡ܣ = ܽ],	   (6) 
 
The q-values stored in a look-up table, Q-table, form the 
experience of the agent. The controller relies on q-values to make 
decision on actions. During the learning, the q-values are updated 
incrementally via temporal differencing. The agent updates the 
associated ܳ	(ݏ, ܽ)  for each experienced (s, a) through the 
following rule: ܳ(ݏ௡, ܽ௡) = ,௡ݏ)ܳ	 ܽ௡) + ௡ାଵݎ]ߙ + max௔ߛ ,௡ାଵݏ)ܳ ܽ) − ,௡ݏ)ܳ ܽ௡)]  (7) 

Where ߙ ∈ [0,1]  is the learning rate parameter. It specifies to 
what extent new information impacts the q-values. The all steps of 
the adaptive control procedure are described in List 1.  Eventually, 
after multiple learning cycles, the controller finds the optimal 
policy of selecting the action which maximizes the q-value in a 
given state.   
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learning performance. Different action selection strategies could 
be used during the learning. The agent can use a random action 
selection method or select greedily an action with the highest 
utility value according to the Q-table. ε-greedy is an action 
selection strategy which allows the agent to make a trade-off 
between the exploration and exploitation in the action space. In ε-
greedy, with probability ε, a random action is selected and with 
probability 1-ε, an action based on the utility value is selected. 
However, RL-based approaches might generally suffer slow 
convergence due to the need for exploring the state space. To 
alleviate this effect, we also introduced an initial control mapping 
in Q-table by specifying some invalid pairs of state and action to 
guide the agent not to explore specific actions in a specific state. 
For example, when it is in acceptable state, no need to change the 
time delay parameter. 
 

Algorithm: Adaptive Response Time Control in PLC-based Real-
time programs 

Required: S, A, ɛ, α, γ, φ (invalid state-action pairs)  
Initialize q-values, ܳ(ݏ, ܽ) = ,ݏ)	݂݅	1− ܽ) ∈ 	else	0	∀ݏ ∈ ܵ , ∀ܽ ∈  ܣ
1. Detect the program current state, sn  
2. Select an action using the action selection policy 
(e.g. ɛ-greedy: select an= ܽݔܽ݉݃ݎ௔∈஺	ܳ(ݏ௡, ܽ) with probability    
(1- ɛ) or a random action with probability ɛ) 
3. Apply the selected action, let the system continue running and 
execute the next function block 
4. Detect the new state of the system 
5. Compute the reward (reinforcement) signal. 
6. Update the q-value by ܳ(ݏ௡, ܽ௡) = ,௡ݏ)ܳ	 ܽ௡) + ௡ାଵݎ]ߙ + max௔ߛ ,௡ାଵݏ)ܳ ܽ) − ,௡ݏ)ܳ ܽ௡)] 
7. Repeat for every observed state at the start of each function block 
execution   

4 RESULTS AND DISCUSSION 
This section presents the results of the early stage evaluation 
experiments addressing the performance of the proposed approach 
in terms of meeting the predefined response time threshold. The 
main objective of the experiments is to assess to which degree the 
learning-based control can work adaptively on varying conditions 
and untimely behavior of function blocks in a realistic 
environment. 

4.1 Evaluation Setup 
In this study, we implemented the proposed approach based on 
three action selection strategies. We incorporated it into an 
environment which simulates multiple real-time programs 
consisting of various timer function blocks. The simulation 
environment emulates the temporal behavior of the function 
blocks, their responses in realistic environments and the 
corresponding control scan program for controlling the execution 
order of the function blocks. The learning-based control has been 
integrated into the control scan thread to provide a runtime control 
of the response time of real-time programs. 
 The proposed approach has been evaluated through two 
analysis scenarios. In the first scenario, concerning response time 
analysis, the performance of the learning-based control based on 

using three action selection algorithms has been studied. In this 
scenario, the performance of the proposed approach after 100 
learning episodes (interaction with various real-time programs) 
has been demonstrated. The real-time programs have been 
characterized with different numbers of function blocks, 
predefined response time requirements and minimum required 
delay time (safety margin). The second analysis scenario, 
sensitivity analysis, analyzes the sensitivity of the learning-based 
approach to the learning parameters. This scenario involves 
investigating the effects of the learning parameters by 
systematically changing the values of one parameter while 
keeping the other one constant. 

4.2 Experiments and Results 
Timing Analysis.  In the timing analysis scenario, the efficacy of 
the learning-based approach was evaluated in terms of adaptation 
to changeable behavior while meeting the timing requirement. 
The simulated real-time programs have different numbers of 
function blocks in the range [5, 25]. The predefined response time 
requirements of function blocks and associated safety margins in 
ms have been initialized with values in the range [1000, 6000] and 
[1000, 2000], respectively. A maximum deviation at most equal to 
25 percent of the upper bound of the response time requirement 
was allowed during the simulation. The default acceptable 
tolerance value was considered as 500 ms. Time deviations were 
injected into the programs randomly. Figure 3 shows a sample 
pattern for injecting time deviations to function blocks within 
three sample programs. ε-greedy was used in the proposed 
approach as an action selection strategy with ε= 0.1, ε=0.5 and 
ε=0.9. The ε-value determines to what extent exploration and 
exploitation are weighted during the action selection procedure.  
Figure 4 shows the observed response time plots of real-time 
programs after applying the learning-based control approach 
based on different values of ε parameter in the action selection 
strategy. Clearly, the learning-based control approach tries to 
adapt well to the varying temporal behaviors of the function 
blocks while meeting the response time thresholds of the 
programs. Results in Figure 4 describe the efficacy of the 
learning-based control approach based on the number of programs 
ended with medium or high deviations from the timing 
requirements and also the achieved average deviations. According 
to the results, the performance of the proposed approach with 
different action selection strategies is described as follows: 
 

 
 
Figure 3: A sample pattern of time deviation 

function blocks 
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1) ε-greedy with ε= 0.1 makes the controller trust most on its 
stored experience, rather than exploring new actions. The 
learning-based approach based on this action selection strategy, 
showed less efficiency in terms of optimizing the response time 
and also the number of programs which ended with medium or 
high deviations. In this case, the experience of the controller has 
not been extended well and needs more exploration to be 
improved. 
2) ε-greedy with ε= 0.9 provides more opportunities towards the 
exploration of the action space. It provided partially better 
performance in terms of optimizing the response time and 
preventing the programs from exceeding the predefined thresholds 
with medium or high deviations compared to ε-greedy with ε= 
0.1. 
3) ε-greedy with ε= 0.5 provides a trade-off between the 
exploration and exploitation of the action space. It showed a better 

adaptation to the varying conditions and tried to preserve the 
response time close to the requirement threshold. In some cases 
where a sharp satisfaction of the timing requirement is needed, 
e.g.  airbag control systems of automotive products, this is the 
desired performance which is required.   
4)  ε-greedy with decaying ε, is an action selection strategy during 
which the ε parameter gradually decreases. It causes more 
exploration during the first steps of the learning and more 
exploitation at the last steps. Using this strategy, the performance 
controller first explores the action space, then tends towards using 
the achieved experience. The learning-based approach based on ε-
greedy with decaying ε, showed the most promising results, i.e., it 
outperformed the other ε-strategies both in terms of optimizing 
response time and preventing medium or high deviations from the 
predefined timing thresholds.  
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 Sensitivity Analysis. The behavior of the proposed learning-based 
control approach could be impacted by the learning parameters 
including learning rate (α) and discount factor (γ). In the 
sensitivity analysis, two sets of experiments were done to study 
the effects of varying learning parameters. Each set of 
experiments involves changing the value of one parameter while 
keeping the other one constant. ε-greedy with ε= 0.5 was used as a 
baseline action selection strategy during the sensitivity analysis 
experiments. Table 1 shows the performance of the learning-based 
approach regarding the number of real-time programs which 
ended with medium or high deviations from the predefined 
response time thresholds and also the achieved average deviation 
in response time, during the sensitivity analysis experiments. In 
Table 1 the bold column represents the baseline parameter setting 
which was used in each sensitivity analysis experiment. We set 
the learning rate to 0.1 and the discount factor to 0.5 at the first 
and second experiments, respectively. It seems that setting the 
learning rate to 0.1, which provides a slower learning, leads to 
good performance, particularly in adaptation to varying behaviors 
and preventing the real-time programs from exceeding the timing 
thresholds. Increasing the learning rate towards 0.5, which aims at 
balancing between learning new information and saving previous 
experience, causes improvement in optimizing the response time 
of the programs. The proposed approach also does not show as 
much performance improvement as when we set the discount 
factor to values other than 0.5. 

5 RELATED WORK 
We classify the relevant works on timing properties of real-time 
systems under modeling, verifying and some approaches to 
preserve and satisfy the timing requirements. Many of the 
verification and preservation/control approaches are based on 
runtime monitoring of the properties. Real-time Specification for 
Java (RTSJ) was introduced to provide a real-time scheduler with 
the facility of monitoring deadlines and enforcing the execution 
cost [10]. Mezzetti et al [11] used the Ada Ravenscar Profile for 
preserving the timing properties of real-time systems. Saadatmand 
et al [12, 13] developed an extra scheduler taking the temporal 
properties including period, execution time and deadline of the 
tasks and scheduled them using the underlying scheduler of the 
operating system. A model synthesis approach for timing 
properties of real-time systems based on monitoring the running 
system was proposed in [14]. A runtime framework for 
monitoring the runtime constraints such as timing constraints and 

detecting the violations of timing properties was presented in [15]. 
The related issues on runtime monitoring of properties in real-
time systems were discussed in [16]. Goodloe et al [6] surveyed 
different runtime monitoring techniques including off-line and on-
line techniques for distributed real-time systems, in particular hard 
real-time systems. Das et al [17] presented a tool environment 
which provided runtime monitoring, animating the development 
and analysis of the components to support model-driven 
development of real-time embedded systems. In [18] a runtime 
monitoring approach for checking the system properties in 
embedded systems was presented. It used a control method to 
coordinate the time predictability and memory utilization in the 
monitoring solution. 

6 CONCLUSION 
Runtime monitoring of system properties remains as a principal 
need for real-time systems. A runtime control approach based on 
runtime monitoring could improve robustness of the system. In 
this paper, we present an adaptive runtime response time control 
based on reinforcement learning for PLC-based real-time 
programs, to satisfy the timing requirements. In this study, we 
formulate the control problem as an MDP and apply Q-learning to 
provide a control technique to preserve the response time 
according to the timing requirements. We evaluate the efficacy of 
the approach through multiple experiments. The learning-based 
approaches generally require multiple learning trials to converge 
and stabilize the learned policy. Regarding this issue and the 
characteristics of soft and hard real-time systems, it is supposed 
that the proposed learning-based approach in its incremental 
learning fashion could be used in soft real-time systems. While 
the controller with the converged policy, after training based on 
simulation environment, could be integrated into the hard real-
time systems. Furthermore, the result values (the tuned values) of 
the control policy could be used as a feedback to correct the initial 
model of the system. Future directions of this study will be 
evaluating the efficacy of the approach in the industrial platforms, 
improving the training time and adaptation precision of the 
approach by modeling the state space as fuzzy state space and 
using cooperative agents to speed up the learning. 

ACKNOWLEDGMENTS 
This research has been funded by the ITEA3 initiative 
TESTOMAT Project (www.testomatproject.eu) through Vinnova 
and by KKS through the TOCSYC project).

  
Table 1: Impacts of varying learning parameters on the performance of control approach 

 LR-based performance control using      
ε= 0.5, Discount factor γ =0.5 

LR-based performance control using       
ε= 0.5, Learning rate  α= 0.1 

 α= 0.1 α= 0.5 α= 0.9     γ = 0.1 γ = 0.5 γ = 0.9 
#RT programs with highly exceeded predefined 
threshold (Uncontrolled Condition) 

0 (10) 0 (6) 0 (3)    3 (8) 0 (10) 0 (7) 

Average deviation (Uncontrolled Condition) -1228 
(5731) 

-6475 
(5378) 

-4395 
(5455) 

-1052 
(5484) 

-1228 
(5731) 

-1210 
(5744) 
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