
Automotive safety and machine learning: Initial results from a
study on how to adapt the ISO 26262 safety standard

Jens Henriksson
Semcon Sweden AB

Gothenburg, Sweden

jens.henriksson@semcon.com

Markus Borg
RISE SICS AB

Lund, Sweden

markus.borg@ri.se

Cristofer Englund
RISE Viktoria AB

Gothenburg, Sweden, Sweden

cristofer.englund@ri.se

ABSTRACT

Machine learning (ML) applications generate a continuous stream

of success stories from various domains. ML enables many novel

applications, also in safety-critical contexts. However, the func-

tional safety standards such as ISO 26262 did not evolve to cover

ML. We conduct an exploratory study on which parts of ISO 26262

represent the most critical gaps between safety engineering and ML

development. While this paper only reports the first steps toward

a larger research endeavor, we report three adaptations that are

critically needed to allow ISO 26262 compliant engineering, and

related suggestions on how to evolve the standard.

CCS CONCEPTS

•Computingmethodologies→Machine learning; • Software

and its engineering→ Software safety;

KEYWORDS

automotive software, machine learning, safety, interview study

ACM Reference Format:

Jens Henriksson, Markus Borg, and Cristofer Englund. 2018. Automotive

safety and machine learning: Initial results from a study on how to adapt

the ISO 26262 safety standard. In SEFAIAS’18: SEFAIAS’18:IEEE/ACM 1st In-

ternational Workshop on Software Engineering for AI in Autonomous Systems

, May 28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3194085.3194090

1 INTRODUCTION

Machine learning (ML) has seen a drastic increase in popular-

ity thanks to its capability of generalization throughout different

domains. In the automotive field, there is a plethora of possibili-

ties utilizing ML for advanced driver assistance systems and au-

tonomous driving. Many companies are testing different ways to

use deep learning (DL), for example with perception and end-to-

end systems[1]. However, in the automotive field, safety is a high

priority. Developing software adhering to safety standards requires

rigorous engineering practices, enforced by standards like ISO 26262

[5]. Problems arise since the standards was not designed for tasks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEFAIAS’18, May 28, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5739-5/18/05. . . $15.00
https://doi.org/10.1145/3194085.3194090

like ML. For DL, work on verification and validation methods have

been suggested [7], as well as methods to improve stability [4].

The goal of this paper is to find what parts of ML need improved

understanding, and which parts are already covered by the tools

used today. This paper starts a new structured study on ML and au-

tomotive safety. We interview two experts in the field of functional

safety and automotive software engineering.

The rest of the paper is organized as follow: Section 2 introduces

related work, Section 3 gives the required background, Section 4

describes the researchmethod. Section 5 summarizes the interviews,

and finally, Section 6 concludes our work.

2 RELATEDWORK

Salay et al. analyzed ISO 26262 from an ML perspective, and found

34 methods that apply at software unit level, and assessed their

applicability to ML [8]. In addition, they described five areas that

need to be updated to realize ML-based systems: hazard identifica-

tion, fault and failure modes, the use of training sets, level of ML

usage, and required software techniques.

Knauss et al. performed an interview study with 26 experts to

elicit challenges when engineering autonomous cars [6]. Focusing

on challenges in software testing, they report significant issues

related to: 1) virtual testing and simulation, 2) safety, reliability,

and quality, 3) sensors and their models 4) complexity of, and the

amount of, test cases, and 5) hand-off between driver and vehicle.

Heckemann et al. conducted analytical work resulting in the

identification of two primary challenges in developing autonomous

vehicles adhering to ISO 26262 [3]. First, the driver is today con-

sidered to be part of the safety concept, but that will not be the

case in future vehicles – the vehicle will perform driving maneu-

vers without interventions by a human driver. Second, the system

complexity of modern vehicle systems is ever-growing as new func-

tionality is continuously added by the automotive manufacturers

to stay competitive on the market. This obstructs safety assessment

– the more complex a system is, the harder it becomes for safety

engineers to verify that all hazards have been addressed.

3 BACKGROUND

3.1 Automotive safety engineering

When engineering a safe system, safety must permeate all parts of

the engineering process. This includes a systematic safety analysis

and a methodological approach to managing risks. Safety analysis

involves hazard identification and methods to eliminate or mitigate

their consequences as well as verification activities that ensure that

the safety methods are in place in the system.

47

2018 ACM/IEEE 1st International Workshop on Software Engineering for AI in Autonomous Systems

SEFAIAS’18, May 28, 2018, Gothenburg, Sweden Jens Henriksson, Markus Borg, and Cristofer Englund

HARA

Hazard List and Risk Assessment
HZ 1 ASIL D Hazard 1
HZ 2 ASIL A Hazard 2

… … …

Item definition

Safety Goals
SG1 HZ 1, HZ 3 ASIL D Safety Goal 1
SG2 HZ 2 ASIL A Safety Goal 2

… … … …

FS Concept

Functional Safety Requirements
FSR 1 SG 1 ASIL D Func. Saf. Req. 1
FSR 2 SG 1 ASIL D Func. Saf. Req. 2

… … … …

Determination
of safety goals

Figure 1: Flow of identifying hazards to creating functional

safety requirements

The standard ISO 26262 is an adaption of IEC 61508: Functional

safety, to comply with the functional safety of road vehicles. The

standard is present throughout the entire automotive life cycle

and describes six phases: management, development, production,

operation, service, and decommission – with support tailored to

the necessary activities during the life cycle.

ISO 26262 recommends the usage of Hazard Analysis and Risk

Assessment (HARA). The method is used to identify hazards in the

systemwhich are then used to determine safety goals and functional

safety requirements, see Fig. 1. The hazards go through a risk-based

assessment defined in the standard to determine an Automotive

Safety Integrity Level (ASIL). The integrity level of a hazard depends

on Severity: How many injuries can it cause; Exposure: expected

frequency of the hazard; and Control: The likelihood of preventing

the hazard. ASIL decides how rigorous testing, documenting, etc.

are required activities for the item to reduce risk. The ASIL ranking

ranges from ASIL D to ASIL A, where ASIL D represents the highest

risk. If an item does not require safety management, it is labeled

Quality Management (QM).

The standard consists of ten parts that follow a V-model for

the different product development phases. Assuming that a safety-

critical ML component will be realized as a software unit, espe-

cially the development phase on the software level (Part 6) enforces

software engineering practices that must be interpreted in a ML

context. As an example, for DL components it is unclear how to

interpret process requirements on inspections/code reviews, unit

test case generation using equivalence partitioning, and structural

code coverage metrics. It is evident that certain ISO 26262 process

requirements cannot be directly applied to DL.

3.2 Machine learning

Machine learning (ML) is the art and science of letting computers

learn without being explicitly programmed. ML results in models

that learn from and make predictions on data. Recent advances

in ML are due to Deep Learning (DL), a subfield within ML, that

allows for complex model architectures trained with large data sets.

In contrast to regular algorithms, DL (and ML in general) creates

trained models optimized for a given objective. This optimization

is dependent on either data samples (supervised and unsupervised

learning) or reward functions (reinforcement learning).

Due to the learning procedure of DL algorithms, there are multi-

ple properties that affect safety aspects of the system. During the

training phase, DL abstracts features from the given input domain

Figure 2: Overview of the research method.

which makes verification and validation hard, and causes violation

of ISO 26262 development process. The abstractions in the neural

net (the architecture of DL) results in DL being considered a black

box, without transparency, due to the features being hard to in-

terpret by humans. This pose a problem with the ISO 26262 since

traceability is a requirement, which we have previously discussed

in the automotive context [2].

The generalization in DL happens during the training phase. For

supervised and unsupervised learning, the model is trained on a

subset of inputs to the network. There is no guarantee that the

subset is representative of the full input domain, thus assumption is

that the model can generalize enough during training. The model is

typically trained based on accuracy, ameasurement of how often the

correct option is chosen, and loss, i.e., a measurement of how far off

the model is. Both measurements are used during the training phase,

but the results are only an estimate, and do not correspond to the

actual performance or reliability of the model while operating on

the full input domain. In addition, there is a risk that the model will

overfit to the subset during training, by learning certain patterns

that merely occur beyond the training subset.

A common problem for DLmodels is instability. Small changes to

the input can cause different predictions, thus a deep neural network

(DNN) can be fooled by small changes to the input [4]. The problem

occurs when training with local optimization methods, while there

might be multiple local optima. Thus, different initializations of

weights can cause different behaviors during training and inference,

that make characteristics of the model hard to analyze or assign

safety requirements.

4 RESEARCH METHOD

Our work constitutes an exploratory study on challenges when

developing automotive software that rely on DL in safety-critical

applications. We conducted a qualitative analysis based on expe-

rience from two experts on functional safety in the automotive

domain. Fig. 2 shows an overview of our research method.

Our work was initially inspired by the 75 software development

techniques in ISO 26262 analyzed by Salay et al. [8] (cf. A). We

discussed the findings during a workshop in the SMILE1 project

(cf. B), and decided to limit the scope of our study to techniques

mandatory for ASIL D development. At the SMILE workshop, we

also identified the two experts from whom we collected opinions.

Prior to contacting the experts, we extracted a list of the selected

ISO 26262 software development techniques, accompanied with the

respective comments of Salay et al.

The core of the data collection is presented in the box in Fig. 2,

showing a two-staged process. First, we sent the prepared list to

1https://www.sics.se/projects/smile-ii

48

Automotive safety and machine learning SEFAIAS’18, May 28, 2018, Gothenburg, Sweden

ISO-Table Method Adaptation

7 Semi-formal notations Semi-formal notations on training phase

9 Inspection Requires inspection of training tools and architecture design

9 Semi-formal verification Semi-formal verification on training phase

9 Static code analysis Covered with current tooling

10 Back-to-back comparison test Additional requirements on test cases and sensitivity

12 Branch coverage Covered with current tooling

12 MC/DC Covered with current tooling

Table 1: Seven methods from ISO 26262-6 that need adaptations to cover ML according to Salay et al. [8]. The final column

reports adaptation recommendations based on our two interviews.

the experts and requested written responses (cf. C). Both experts

provided answers within two weeks. Second, to ensure correct

interpretations, we interviewed the two experts in independent

sessions (cf. D). The interviews followed an hour-glass structure,

i.e., we started with general discussions on the topic, then asked

specific questions related to our needs for clarifications, and then

concluded with open-ended questions and a chance for the experts

to add any further comments.

We recorded the two interview sessions, lasting 48 min and 30

min, respectively. We transcribed the recordings, and sent them

back to the experts to enable a validation of the content. After

receiving the validated transcripts, we conducted a side-by-side

analysis of the written responses complemented with the interview

transcripts (cf. E). Finally, we report our analysis in this paper (cf. F).

5 RESULTS AND DISCUSSION

Salay et al. identified 34 methods related to unit development in

ISO 26262 part 6 where 27 of them are highly recommended (++) for

ASIL D [8]. Most of these methods (e.g., “initialization of variables”)

exist to increase interpretability of the unit, which also applies to

units that include ML. Similarly, methods like “fault injection test”

and “resource usage test” are highly recommended and already

applicable for ML. Out of the highly recommended methods for

ASIL D, Salay et al. argues that seven require adaptation – these

are listed in Table 1. Our interviewees had suggestions for how to

proceed with these adaptations. We continue by presenting rec-

ommendations that they had in common, i.e., we boil down the

recommendations for adaptation to three concrete suggestions.

Training phase: Requirements need to be moved from the ac-

tual ML application, to the training and architecture design phase.

For example, a neural network is an artifact produced by a training

phase that creates a functional mapping from an input to an output.

Thus, the process itself that allows for the mapping, needs better

understanding. Thus, rather than trying to understand the connec-

tions in a neural network, we suggest requirements on architectural

design and training.

Model sensitivity:ML models are commonly sensitive to out-

side data. Whether or not a neural network has full branch coverage

is irrelevant, but rather how sensitive it is to disturbances. For ex-

ample, if one alters the input vector slightly the output should not

suffer from a large step response. Fault injection is very important

for ML, to allow for broad tests of the input domain.

Test case design: Similar to the training phase, the testing phase

needs to be designed more thoroughly for ML. Test cases need to

be designed to conduct correct evaluation, to ensure that functional

expectations are met. The testing phase requires methods to detect

when models are uncertain, and outside of the training domain. In

addition, test and training phases need to be designed to handle

additional data or data augmentation methods to improve train-

ing procedures, which increase test coverage and decrease model

sensitivity.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we discuss what parts of ISO 26262 that need to be

adapted to allow safety-critical ML development in the automotive

context. Based on interviews with two experts, we highlight re-

quired changes to cover ML training, model sensitivity, and test case

design. We plan to expand this initial study with more academic

and industrial experts that are active in safety critical systems.

ACKNOWLEDGMENTS

This work was carried out within the SMILE II project financed by

Vinnova/FFI. This work was partially supported by the Wallenberg

Artificial Intelligence, Autonomous Systems and Software Program

(WASP).

REFERENCES
[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for
Self-Driving Cars. CoRR abs/1604.07316 (2016). arXiv:1604.07316 http://arxiv.org/
abs/1604.07316

[2] Markus Borg, Cristofer Englund, and Boris Duran. 2017. Traceability and Deep
Learning - Safety-critical Systems with Traces Ending in Deep Neural Networks.
In In Proc. of the Grand Challenges of Traceability: The Next Ten Years. 48–49.

[3] Karl Heckemann, Manuel Gesell, Thomas Pfister, Karsten Berns, Klaus Schneider,
and Mario Trapp. 2011. Safe Automotive Software. In Knowledge-Based and
Intelligent Information and Engineering Systems. Springer, Berlin, Heidelberg, 167–
176.

[4] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2016. Safety Verifi-
cation of Deep Neural Networks. CoRR abs/1610.06940 (2016). arXiv:1610.06940
http://arxiv.org/abs/1610.06940

[5] Peter Kafka. 2012. The Automotive Standard ISO 26262, the Innovative Driver for
Enhanced Safety Assessment & Technology for Motor Cars. Procedia Engineering
45 (2012), 2 – 10. https://doi.org/10.1016/j.proeng.2012.08.112 2012 International
Symposium on Safety Science and Technology.

[6] Alessia Knauss, Jan Schroeder, Christian Berger, and Henrik Eriksson. 2017.
Software-related Challenges of Testing Automated Vehicles. In Proceedings of
the 39th International Conference on Software Engineering Companion (ICSE-C ’17).
IEEE Press, Piscataway, NJ, USA, 328–330. https://doi.org/10.1109/ICSE-C.2017.67

[7] Gerald E. Peterson. 1993. Foundation for neural network verification and validation.
(1993), 1966 - 1966 - 12 pages. https://doi.org/10.1117/12.152651

[8] Rick Salay, Rodrigo Queiroz, and Krzysztof Czarnecki. 2018. An Analysis of ISO
26262: Using Machine Learning Safely in Automotive Software. InWCX World
Congress Experience. SAE International.

49

