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ABSTRACT 
Response time analysis is an essential task to verify the behavior of 
real-time systems. Several response time analysis methods have 
been proposed to address this challenge, particularly for real-time 
systems with different levels of complexity. Static analysis is a 
popular approach in this context, but its practical applicability is 
limited due to the high complexity of the industrial real-time 
systems, as well as many unpredictable runtime events in these 
systems. In this work-in-progress paper, we propose a simulation-
based response time analysis approach using reinforcement 
learning to find the execution scenarios leading to the worst-case 
response time. The approach learns how to provide a practical 
estimation of the worst-case response time through simulating the 
program without performing static analysis. Our initial study 
suggests that the proposed approach could be applicable in the 
simulation environments of the industrial real-time control systems 
to provide a practical estimation of the execution scenarios leading 
to the worst-case response time.1 
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1 INTRODUCTION 
Nowadays, embedded systems have become important parts of our 
life and are becoming more complex and powerful. Real-time 
programs running on embedded systems are key parts of many 
industrial control systems like those in telecommunication, railway, 
avionics, automotive, and medical care. Many of the industrial real-
time embedded systems are referred to as complex real-time 
systems due to the internal functional complexity resulting from 
dependencies between tasks, asynchronous message-passing, 
runtime changeable priorities, and task offsets [1]. 
 In general, there are strict timing requirements in terms of 
demand response times and deadlines, particularly for time-critical 
programs in safety-critical systems. Behavior correctness of these 
systems highly depends on both functional correctness and 
satisfaction of non-functional requirements like limits on 
acceptable response time. Worst-Case Response Time (WCRT) 
estimation is an essential task for verifying the behavior of the real-
time systems. 
 Static analysis, measurement-based analysis, hybrid 
measurement-based analysis, parametric analysis, statistical 
analysis, simulation-based analysis and formal timing analysis are 
popular approaches to provide an estimation of the WCRT of a 
system [2-11]. Due to the functional complexity, the applicability 
of the theoretical static approaches which work based on the 
assumption of the task independence in the analysis, will be 
partially limited in the complex real-time systems. 
 In this paper, we propose a simulation-based WCRT analysis 
using Reinforcement Learning (RL). The proposed approach is a 
learning-based method to learn a policy finding the execution 
scenarios leading to the WCRT. We used Q-learning as a model-
free reinforcement learning [12] to find the policy of estimating the 
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worst-case execution scenarios of the program and provide a 
practical estimation of the WCRT. Q-Learning does not need any 
precise models of the system and can be applied to all problems 
which can be modeled as a Markov Decision Process. 
 The rest of this paper is organized as follows; Section 2 
discusses the motivation of using RL to estimate the WCRT. The 
technical details of the proposed approach, and a short description 
of its applicability are presented in Section 3. Section 4 provides a 
review of the related works and background approaches. 
Conclusion and future directions of this work-in-progress research 
are provided in Section 5.     

2 MOTIVATION AND BACKGROUND 
WCRT analysis as an essential part of the timing analysis could 
remain as a challenge, in particular for complex real-time 
embedded systems. Due to the functional complexity, conventional 
static analysis techniques might not be fully applicable to complex 
real-time systems. Measurement-based or simulation-based 
analysis are other alternatives to static WCRT analysis. 
Measurement-based approaches are time-consuming and partially 
infeasible for large systems. While simulation-based approaches 
reduce the analysis time by analyzing a simpler model of the system 
but still considering many detailed information on the behavior of 
the system. However, providing a model-driven estimation 
approach often requires precise knowledge of the system and also 
the execution environment. The behavior complexities of the 
systems are barriers which could motivate towards using model-
free learning approaches.    
 Reinforcement learning [12] is a type of learning based on 
experimenting on the environment. In RL, the learning agent 
observes the state of the environment regularly. It takes an action 
randomly or greedily based on its experience, receives a reward 
signal of the environment and updates its achieved experience. The 
main purpose of the agent during the learning is to find a policy 
maximizing the expected long-term reward. Q-Learning [12] is a 
model-free RL algorithm during which the agent learns a utility 
function associated to pairs of states and actions. In this paper, we 
use Q-learning combined with the simulation-based technique to 
provide a learning-based approach to find the execution scenarios 
leading to the WCRT and provide a practical estimation thereof. 

3 LEARNING-BASED RESPONSE TIME 
ANALYSIS  

Analyzing the WCRT, particularly for time-critical applications 
realizing the safety use cases in industrial embedded systems is of 
great importance. In this section, we present the details of the 
proposed learning-based response time analysis. Real-time 
applications, particularly in distributed real-time embedded 
systems like Train Control Management System (TCMS) in the 
transportation domain consist of multiple components distributed 
on the underlying platform. Component-based representation such 
as Function Block Diagram (FBD) format for PLC-based 
programs, is a common way to demonstrate the function flow of the 
applications. Various runtime conditions could affect the response 

time and cause different deviations from the demand response time. 
A practical estimation of WCRT could provide useful information 
for the execution control procedure. Upon this information the 
control procedure could provide adaptive control operations to 
avoid total failures in the system. 
 The main objective of the proposed learning-based response 
time analysis is to provide a practical estimation of the WCRT of 
the program/application. It uses Q-learning in a simulation 
environment to learn a policy finding the execution scenarios 
leading to the WCRT in a given state. We present the details of the 
main steps of the learning-based approach as follows: 
1) State detection. The estimator agent observes the state of the 
system continuously upon the components execution. Fig. 1 shows 
a sample component-based representation of a Brake-by-Wire 
system [13].  
 At each execution level, multiple components might be 
executed in parallel. Before starting each execution level, the agent 
detects the current state of the application. The state of the 
application, s(t), is defined in terms of ������� 	
�������
����, a 
tuple consisting of the execution level, �����, and the fuzzy status 
of the response time until the current point, (	
�������
����. The 
status of the response time, RT, is classified into three classes, i.e. 
Low, Normal and High according to their compliance with 
target/demand response time, τ. We used fuzzy classification [14] 
as a soft labeling technique to avoid specifying sharp boundaries 
between classes. Fuzzification involves defining membership 
functions over the values of the response time. Each fuzzy set is 
defined as � � ���� 
��
���
�
� � �� � � 	�  where 
��
� � � ������  
Membership function specifies to which degree; each value belongs 
to the fuzzy set �. Fig. 2 shows the membership functions of fuzzy 
sets on RT values. Among the state tuples, the tuple with the 
maximum membership value specifies the state of the system. 
2) Suggested Events as Actions. One of the main steps of Q-learning 
procedure is applying the action which the agent recommends 
based on its observation. In the proposed approach, the actions are 
the possible occurrences/events, based on the given state. The set 
of possible events could be defined based on the architecture and 
the redundancy structure of the system. 
 

 
Figure 1: Component-based representation of a Brake-by-

Wire system 
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Figure 2: Fuzzy sets on response time values  

 
Sample possible events for a distributed real-time control system 
could be defined as follows:  ��� �  
!"#

$ � �%&'    (1) �()&�* �  ���� +!,� % � +!-� +.,� % � +.-'  (2) 
where ���  represents the maximum delay in the output data 
channels. Each data communication channel has a time delay range. +!"  and +."  represent occurring failure in output data channel $ 
and component $ respectively. Failures which do not lead to a total 
failure in the function are considered in the action set. The set of 
the events suggested by the agent are possible events at each state 
of the system. Many mission-critical real-time systems such as 
control systems in the transportation domain, use different types of 
redundancy techniques to provide availability and integrity against 
failures. Thus, in these systems, particularly for safety functions, 
single failure in the data transmission channels or the computation 
components could be tolerated.    
3) Computation of the reward signal. According to the procedure 
of Q-learning algorithm, after applying the selected action, the 
system will go to the next state and after the transition, the agent 
receives a reward signal representing the effects of the applied 
action. In this approach, the recommended action is the suggested 
event that the agent selects to estimate the worst-case response time 
based on the current state of the system. Upon the selected event 
and based on its efficacy in estimating the worst-case response 
time, a reward signal is received by the agent which shows to which 
degree the suggested event in the current state could approach the 
worst-case response time. Regarding this objective, the reward 
signal has been defined as follows: 

/��� � 0�






















	
��� 1 23
���4�5��
675�� 


23 1 	
���    (3) 

where !	  is the demand response time and 23  is the upper 
boundary value of the Normal set around the demand response 
time.  
 In general, the main purpose of the Q-learning algorithm is to 
find a policy π, a mapping between the states of the system and the 
actions which leads to the maximum long-term reward. A utility 
value, 8�
�*� 9�, which specifies the expected value of the achieved 
long-term reward, is associated with each pair of state and action. 
The expected long-term reward in each state and the associated 
utility value are defined as follows [12]:  	4 � /43, : ;/43< : =: ;>/43>3, � 
? ;>@>AB /43>3, (4) 8�
�*� 9� � ���	4#�4 � *� C4 � 9�   (5) 
Where ; � �����  is a discount factor which specifies to which 
degree the future rewards are weighted against the immediate 
reward. 

The q-values, which are considered as the experience of the agent, 
keep the track of utility values for each pair of state and action. 
They are stored in a look-up table, Q-Table and used for deciding 
on action recommendations by the agent. Given the fuzzy nature of 
our state space, the q-values are updated according to the 
membership degree of the state using the following rule: 8�*4� 94� � �4D��� E F�
8�*4� 94� : F�/43, : ;GHIJ 8�*43,� 9�� (6) 
Where F� � 1 
F 1 �  is the learning rate which controls the 
impacts of the new utility values on the q-values. The steps of the 
proposed approach using Q-learning are demonstrated in List 1. 
Through this approach, the agent learns which occurrences in each 
state could lead to the WCRT (maximum deviation from the 
demand response time). It finds a policy which selects the action 
maximizing the utility value for a given state, s, based on the 
following rule: 9�*� � 
 HKLGHIJM 8�*� 9N�    (7) 

Learning Performance. During the learning procedure, the agent 
could select actions randomly or based on the highest utility value. 
Different types of action selection strategies like ε-greedy and 
Softmax action selection could be employed to provide a trade-off 
between the exploration and exploitation of the action space. 
Tuning the learning parameters including learning rate α, and 
discount factor γ, could also affect the learning performance. 
Applicability. Time-critical programs in many real-time control 
systems are often responsible for performing safety functions. 
Temporal behavior analysis, e.g., Worst-Case Response Time 
analysis is of great importance for these systems. For example, a 
violation from the demand response time in a Brake system, or an 
industrial robot in a production line or a time-critical function in an 
industrial control system could cause a fatal failure or huge loss in 
these systems. The proposed approach provides a simulation-based 
WCRT analysis using reinforcement learning. For each state, it 
suggests the event/occurrence which leads to the WCRT of the 
function. During the simulation, it finds a sequence of events 
resulting in the WCRT of the function. The proposed approach 
could be used in the simulation environment of the industrial 
control systems. It provides a practical estimation of the WCRT 
through simulation without performing static analysis. Thus, due to 
limitations of static analysis, it could perform better for complex 
real-time systems. However, the converged Q-table could be also 
used as input to further static analysis. 

4 RELATED WORK 
Satisfying the response time requirement as one of the main non-
functional properties of real-time systems play a key role in the 
correctness of these systems. Response time analysis is essential for 
time-critical functions in real-time systems and also a major 
concern in many industries which employ real-time control 
systems. Several different techniques have been proposed for the 
WCRT analysis of real-time systems. 
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Algorithm: Learning-based Response Time Analysis 

Required: S, A, �, α, γ  
Initialize q-values, 8�*� 9� � �� P* � �
� P9
 � C 
1. Observe the fuzzy state of the program, s(t)  
2. Select an action/event using the action selection policy (e.g., �-
greedy) 
3. Apply the selected action, let the system continue running and 
execute the next level of the components  
4. Detect the new state of the system after executing the components 
regarding the selected event 
5. Receive the reward signal, /43, 
6. Update the q-value by 8�*4� 94� � �4D��� E F�
8�*4� 94� : F�/43, : ;GHIJ 8�*43,� 9��

 
7. Repeat for each newly observed state until the end of the 
program. 

 
In general, the proposed approaches could be classified into 
multiple categories as follows: 
 Static analysis, measurement-based analysis, hybrid 
measurement-based analysis, parametric analysis, statistical 
analysis, simulation-based analysis and formal timing analysis are 
common approaches to provide an estimation of the WCRT of the 
system. In this context, the static analysis methods work based on 
analyzing the source code [2-3], while measurement-based and 
hybrid measurement-based methods perform analysis mostly based 
on running the program on the target hardware [4-5]. Parametric 
analysis works in a similar way to static analysis but uses 
parametric formula to express the WCRT [6]. Measurement-based 
analysis might be infeasible for large systems where running 
sufficient number of samples of the systems are time-consuming. 
While simulation-based analysis uses a model of the system with 
less complexity, but still containing the enough detailed 
information on the behavior of the system [8-10, 16]. Monte Carlo 
simulation [15] is a popular simulation-based method for WCRT 
analysis. Moreover, meta heuristics algorithms can be also used in 
combination with Monte Carlo simulation [8, 16]. Statistical 
analysis uses statistics theories to provide an estimation of WCRT 
based on a reference data set [7, 17]. Formal analysis like model 
checking has been used for WCRT analysis in case there is not a 
large system with high complexity [11]. 
 This work-in-progress paper proposes a simulation-based 
method based on Q-learning to provide a practical estimation of the 
WCRT without having prior detailed knowledge of the system.   

5 CONCLUSION 
Estimating execution scenarios resulting in the WCRT and 
providing a practical estimation of the WCRT is a challenge for 
many industrial complex real-time systems. In this paper, we 
present a simulation-based analysis method to find the execution 
scenarios resulting in the WCRT using reinforcement learning. We 
applied Q-learning as a model-free learning algorithm to the 
simulation-based approach. It provides the optimal policy to find 
the sequences of the execution conditions resulting in the WCRT 
without having detailed information on the model of the system. 

Our next steps will be as follows: First, efficacy evaluation of the 
proposed approach on the simulation tools of the industrial real-
time embedded systems. Second considering more complexity 
factors of the programs to provide more accurate models for the 
states, actions and the reward signal.  
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