
From Bugs to Decision Support

– Leveraging Historical Issue

Reports in Software Evolution

Markus Borg

Doctoral Thesis, 2015

Department of Computer Science

Lund University

ii

This thesis is submitted to the Research Education Board of the Faculty of
Engineering at Lund University, in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in Engineering.

LU-CS-DISS: 2015-2
Dissertation 46, 2015

ISBN 978-91-7623-305-4 (printed version)
ISBN 978-91-7623-306-1 (electronic version)
ISSN 1404-1219

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: markus.borg@cs.lth.se
WWW: http://cs.lth.se/markus_borg

Cover art: “Taming the bugs” by Hannah Oredsson
Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2015

c© 2015 Markus Borg

ABSTRACT

Software developers in large projects work in complex information landscapes and
staying on top of all relevant software artifacts is an acknowledged challenge. As
software systems often evolve over many years, a large number of issue reports
is typically managed during the lifetime of a system, representing the units of
work needed for its improvement, e.g., defects to fix, requested features, or miss-
ing documentation. Efficient management of incoming issue reports requires the
successful navigation of the information landscape of a project.

In this thesis, we address two tasks involved in issue management: Issue As-
signment (IA) and Change Impact Analysis (CIA). IA is the early task of allocat-
ing an issue report to a development team, and CIA is the subsequent activity of
identifying how source code changes affect the existing software artifacts. While
IA is fundamental in all large software projects, CIA is particularly important to
safety-critical development.

Our solution approach, grounded on surveys of industry practice as well as
scientific literature, is to support navigation by combining information retrieval
and machine learning into Recommendation Systems for Software Engineering
(RSSE). While the sheer number of incoming issue reports might challenge the
overview of a human developer, our techniques instead benefit from the availability
of ever-growing training data. We leverage the volume of issue reports to develop
accurate decision support for software evolution.

We evaluate our proposals both by deploying an RSSE in two development
teams, and by simulation scenarios, i.e., we assess the correctness of the RSSEs’
output when replaying the historical inflow of issue reports. In total, more than
60,000 historical issue reports are involved in our studies, originating from the
evolution of five proprietary systems for two companies. Our results show that
RSSEs for both IA and CIA can help developers navigate large software projects,
in terms of locating development teams and software artifacts. Finally, we discuss
how to support the transfer of our results to industry, focusing on addressing the
context dependency of our tool support by systematically tuning parameters to a
specific operational setting.

POPULAR SUMMARY

Ta dig fram i informationslandskapet med
buggar som hävstång

Markus Borg, Inst. för Datavetenskap, Lunds Universitet

U
tvecklare i stora mjukvaru-
projekt m̊aste orientera sig i
enorma informationslandskap.

Brist p̊a överblick innebär ett h̊art
slag mot produktiviteten. Mönster
ifr̊an tidigare buggar kan guida
framtida underh̊allsarbete.

– Åhh, jag VET att den finns här! Tilda m̊aste

hitta den där gränssnittsbeskrivningen för att

komma vidare. Hon är stressad eftersom hon

lovat slutföra förändringarna i källkoden i

eftermiddag. Hon sliter sitt h̊ar medan hon

frenetiskt letar bland dokumenten.

Som vanligt tvingas Tilda bläddra runt

längre än hon vill i dokumenthanterings-

systemets sv̊arbegripliga struktur. Hon har

bara letat i en kvart den här g̊angen, men

det känns som att hon har lagt en timme

p̊a n̊agot som borde g̊a p̊a nolltid. Vad hon

inte heller vet är att en kollega i Tyskland

letade efter precis samma kravspecifikation

för bara tv̊a veckor sedan.

Situationen är vanlig i stora mjukvaru-

utvecklingsprojekt. Systemen växer sig allt

mer komplexa och underh̊alls under allt längre

tid. B̊ade källkod och relaterad dokumenta-

tion är s̊a omfattande att enskilda utvecklare

inte kan överblicka informationslandskapet.

Rätt information i rättan tid
Ett stort mjukvaruprojekt utgör en besvärlig

informationsrymd att navigera. Det finns tio-

tusentals dokument som representerar olika

specifikationer, beskrivningar, källkodsfiler

och testskript. Informationen är utspridd över

olika databaser som sällan har bra sökverktyg.

Dessutom förändras informationen konstant i

takt med att systemet utvecklas.

Mjukvaruutveckling är ett kunskapsinten-

sivt arbete. Att snabbt hitta rätt information

är kritiskt för produktiviteten. Studier visar

att utvecklare lägger 20-30% av sin arbets-

tid p̊a att leta information. Tillst̊and av sk.

“information overload” är vanligt – det finns

mer information tillgänglig än vad man kan

hantera.

Digitala spår och
datorträning
Varje g̊ang en utvecklare rättar en bugg

lämnas digitala sp̊ar i informationslandskapet.

Förändringar i källkod och dokumentation

lagras med tidsangivelser. Ju mer projekt-

historik som finns tillgänglig, desto tydligare

mönster kan man hitta.

Maskininlärning är ett samlingsnamn för

tekniker som l̊ater en dator p̊a egen hand finna

mönster i data. Processen kallas träning. En

tränad dator kan användas för att prediktera

vad som kommer att hända härnäst, eller för

att sortera nya data baserat p̊a vad som tidi-

gare bearbetats.

Forskare har föreslagit att l̊ata en dator

tränas p̊a hur man tidigare har hanterat bug-

gar i ett projekt. D̊a kan datorn hitta mönster

b̊ade i själva inflödet av buggar och i de digi-

tala sp̊ar som utvecklarna lämnar efter sig när

de gör sina rättningar. Kanske brukar Tilda

rätta buggar som handlar om minneshanter-

ing? Eller är det s̊a att när minnesbuggar

rättas ändras ofta en viss specifikation?

Vägvisare i landskapet
I v̊art arbete har vi utvecklat rekommend-

ationssystem baserade p̊a maskininlärning.

Inspirerat av hur kundanpassade köprekom-

mendationer presenteras inom e-handel pre-

senterar v̊art system information som bedöms

vara relevant för utvecklarens p̊ag̊aende arbets-

uppgift. V̊art system följer de digitala sp̊ar

som utvecklare lämnar efter sig och presen-

terar de mest upptrampade stigarna i ett tyd-

ligt gränssnitt.

Vi använder även maskininlärning för att

föresl̊a vilken utvecklare som är mest lämpad

att undersöka en ny bugg. P̊a s̊a vis kan en

utvecklingsorganisation minska det manuella

fördelningsarbetet. Förhoppningen är även

att fler buggar hamnar rätt direkt – en minsk-

ning av “heta potatisar” som kastas runt

bland utvecklarna!

Tack vare maskininlärning l̊ater vi mäng-

den historiska buggar verka till v̊ar fördel.

Människor har sv̊art att överblicka stora

mängder buggar. En dator däremot hittar

tydligare mönster ju mer historisk data som

finns tillgänglig. Fler buggar leder till säkrare

rekommendationer – antalet buggar ger v̊ara

verktyg en hävst̊angseffekt.

Vi har utvärderat v̊art verktyg p̊a data

fr̊an industriella utvecklingsprojekt. Totalt

har vi studerat fler än 60.000 historiska bug-

gar fr̊an fem olika projekt inom säkerhetskrit-

iska automationssystem och grundläggande

IT-infrastruktur. Genom att spela upp det

historiska inflödet av buggar visar vi att v̊art

verktyg presenterar rekommendationer som

är lika bra som de mänskliga besluten – men

det g̊ar blixtsnabbt! En människa behöver

en stund för att göra sin analys, men v̊art

verktyg levererar förslag p̊a br̊akdelen av en

sekund.

Slutsats
V̊ar forskning visar att en dator tränad p̊a de

digitala sp̊ar som automatiskt lagras under

ett mjukvaruprojekt kan hjälpa utvecklare att

hitta rätt. De inblandade utvecklarna trampar

kollektivt upp stigar i informationslandskapet.

Dessa stigar utgör en värdefull resurs.

Rekommendationer som baseras p̊a maskin-

inlärning blir skarpare ju mer träningsdata

som finns tillgänglig. Med v̊ara idéer satta

i drift skulle nyrekryterade utvecklare enkelt

kunna ta del av den erfarenhet som vuxit fram

efter år av utvecklingsarbete – man skulle

f̊a till en automatisk kunskapsöverföring.

Och Tilda d̊a? Jo, hon skulle ha blivit re-

kommenderad det där dokumentet hon letade

efter. Tysken hade ju trampat upp sp̊ar bara

ett par veckor tidigare. . .

SUMMARY IN 140
CHARACTERS

“Humans obscured by bug overload, but machine learning benefits from plentiful
training data. Practitioners confirm value of developed tools.”

- Tiny Transactions on Computer Science (@TinyToCS), Volume 3, 2015

ACKNOWLEDGEMENTS

This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering.

Completing a Ph.D. is the result of a long journey, and many people deserve recog-
nition. My first computer experience was gained through a Spectravideo SV-328
equipped with a 3.6 MHz CPU and 128 KB RAM1. Thanks to my older brothers,
I was exposed to source code from the start. My friend Magnus and I spent hours
looking at BASIC program listings, and we did our best to copy bits and pieces for
our own creations. Back then, the main software quality attribute I cared about was
lines of code; nothing was more rewarding than writing long programs to make the
tape counter show a lot of supply reel revolutions.

Twenty years later I had the opportunity to join the Software Engineering Re-
search Group in Lund as a Ph.D. student, and most importantly, I want to extend
my deepest gratitude to my supervisor Professor Per Runeson. You have pro-
foundly changed my perspective on software, so that it now stretches far beyond
the quality characteristics measurable by a tape counter. Thank you for guiding me
into the world of research. Thank you also for your support in the personal sphere,
both our time in Raleigh and the hatted wedding drive will always be remembered.

An array of thanks goes to the rest of my colleagues in the research group,
and the CS department at Lund University. Particularly, Professor Björn Regnell
for being an inspirational co-supervisor, Professor Martin Höst for our countless
lunches together, and Dr. Krzysztof Wnuk for being a good friend. Special thanks
also go to my co-authors within the EASE project; especially Dr. Elizabeth Bjar-
nason, Dr. Emelie Engström, and Michael Unterkalmsteiner.

During the past few years, I have learned vital research tools from several
collaborators. Although I have learned from all my 33 co-authors listed in this
thesis, some of you deserve special mention. Leif Jonsson: thanks for all inter-
esting group calls over Skype; MLAFL Bayes was surprisingly vetoed, but your
curves have had a significant impact in other ways. Finding you at ICSE 2013

1Technical specification: CPU Zilog Z80A @ 3.6 MHz, 64 KB RAM + 64 KB RAM expansion
cartridge, VDC TI TMS9918 with 16 KB VRAM (resolution 256x192, 16 colors), sound chip GI
AY-3-8910, peripheral data cassette recorder.

xii

was a happy turn of events on this journey. Dr. Dietmar Pfahl: thanks for all your
support to me as a research first-timer during our discussions. Many of the funda-
mental skills needed for scientific research and academic writing were first learned
from you and your contribution is much appreciated.

I have also had the privilege to work with excellent industry partners. Above
all, I want to express my gratitude to my ABB colleagues from three different
continents. Special thanks go to Dr. Magnus Larsson, Will Snipes, Ganesh Rao,
Andreas Ekstrand, Artour Klevin, Håkan Gustavsson, and Łukasz Serafin. Your
support was essential and will never be forgotten. As an empirical researcher,
many people have provided me with valuable data. Thanks to everyone involved,
whether as survey respondents, experimental subjects, or case study participants.
Without you, there would be no thesis.

Finally, I want to express my deepest thanks to my family. In this most impor-
tant area resides a small apology for my tendency to bring out the laptop whenever
the opportunity arises; I am aware that my anti-idling tendencies may sometimes
also be anti-social. The highest price of this thesis has been paid by the people
closest to me, since a significant part of the text has been written outside office
hours. Sorry for sacrificing quality time at home, in Rydebäck and Gräsås, in cars,
buses, trains, parks, on beaches, and the TV couch. Thanks also go to my parents
Lena and Örjan for supporting me through the entire education system, and my
brothers Magnus and Pontus for computer sciencepiration.

Saving the best for last, Marie and Tilda, thank you both for all the love and
support, and for letting me spend time with my rackets when I needed it. Marie:
thanks for all the reviews and even the typesetting of two of the papers. Tilda:
your arrival surely pushed my creativity to the limits, as I needed to simultaneously
come up with two distinctive identifiers: a name for you and a title for the thesis.
You are the best reality check; being with you is such a simple way to find out
what really matters. Thank you. I have passed considerable milestones in recent
months on rather different levels in life. Building on them in the next chapter will
unquestionably be at least as exciting as the journey has been so far.

Press play on tape
Markus Borg

Malmö, April 2015

LIST OF PUBLICATIONS

In the introduction chapter of this thesis, the included and related publications
listed below are referred to by Roman numerals. To distinguish the included pub-
lications in the running text, a preceding ’Paper’ is added.

Publications included in the thesis
I Challenges and Practices in Aligning Requirements with Verification

and Validation: A Case Study of Six Companies
Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalmsteiner,
Emelie Engström, Björn Regnell, Giedre Sabaliauskaite, Annabella Locon-
sole, Tony Gorschek, and Robert Feldt
Empirical Software Engineering, 19(6), pages 1809-1855, 2014.

II Recovering from a Decade: A Systematic Literature Review of Infor-
mation Retrieval Approaches to Software Traceability
Markus Borg, Per Runeson, and Anders Ardö
Empirical Software Engineering, 19(6), pages 1565-1616, 2014.

III Automated Bug Assignment: Ensemble-based Machine Learning in Large
Scale Industrial Contexts
Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid Eldh,
and Per Runeson
Under revision in Empirical Software Engineering, 2015.

IV Supporting Change Impact Analysis Using a Recommendation System:
An Industrial Case Study in a Safety-Critical Context
Markus Borg, Krzysztof Wnuk, Björn Regnell, and Per Runeson
To be submitted, 2015.

V TuneR: A Framework for Tuning Software Engineering Tools with Hands-
On Instructions in R
Markus Borg
Submitted to a journal, 2015.

xiv

Related publications

VI Do Better IR Tools Improve the Accuracy of Engineers’ Traceability
Recovery?
Markus Borg, and Dietmar Pfahl
In Proc. of the International Workshop on Machine Learning Technologies
in Software Engineering (MALETS’11), pages 27-34, Lawrence, Kansas,
United States, 2011.

VII Towards Scalable Information Modeling of Requirements Architectures
Krzysztof Wnuk, Markus Borg, and Saïd Assar
In Proc. of the 1st International Workshop on Modelling for Data-Intensive
Computing (MoDIC’12), pages 141-150, Florence, Italy, 2012.

VIII Findability through Traceability - A Realistic Application of Candidate
Trace Links?
Markus Borg
In Proc. of the 7th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE’12), pages 173-181, Wrocław,
Poland, 2012.

IX Industrial Comparability of Student Artifacts in Traceability Recovery
Research - An Exploratory Survey
Markus Borg, Krzysztof Wnuk, and Dietmar Pfahl
In Proc. of the 16th European Conference on Software Maintenance and
Reengineering (CSMR’12), pages 181-190, Szeged, Hungary, 2012.

X Evaluation of Traceability Recovery in Context: A Taxonomy for Infor-
mation Retrieval Tools
Markus Borg, Per Runeson, and Lina Brodén
In Proc. of the 16th International Conference on Evaluation & Assessment
in Software Engineering (EASE’12), pages 111-120, Ciudad Real, Spain,
2012.

XI Advancing Trace Recovery Evaluation - Applied Information Retrieval
in a Software Engineering Context
Markus Borg
Licentiate Thesis, Lund University, Sweden, 2012.

XII Confounding Factors When Conducting Industrial Replications in Re-
quirements Engineering
David Callele, Krzysztof Wnuk, and Markus Borg
In Proc. of the 1st International Workshop on Conducting Empirical Stud-
ies in Industry (CESI’13), pages 55-58, San Francisco, California, United
States, 2013.

xv

XIII Enabling Traceability Reuse for Impact Analyses: A Feasibility Study
in a Safety Context
Markus Borg, Orlena Gotel, and Krzysztof Wnuk
In Proc. of the 7th International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE’13), pages 72-78, San Francisco,
California, United States, 2013.

XIV Analyzing Networks of Issue Reports
Markus Borg, Dietmar Pfahl, and Per Runeson
In Proc. of the 17th European Conference on Software Maintenance and
Reengineering (CSMR’13), pages 79-88, Genova, Italy, 2013.

XV IR in Software Traceability: From a Bird’s Eye View
Markus Borg, and Per Runeson
In Proc. of the 7th International Symposium on Empirical Software Engi-
neering and Measurement (ESEM’13), pages 243-246, Baltimore, Mary-
land, United States, 2013.

XVI Changes, Evolution, and Bugs - Recommendation Systems for Issue
Management
Markus Borg, and Per Runeson
In Recommendations Systems in Software Engineering, Martin Robil-
lard, Walid Maalej, Robert Walker, and Thomas Zimmermann (Eds.), pages
477-509, Springer, 2014.

XVII Supporting Regression Test Scoping with Visual Analytics
Emelie Engström, Mika Mäntylä, Per Runeson, and Markus Borg
In Proc. of the 7th International Conference on Software Testing, Verifi-
cation and Validation (ICST’14), pages 283-292, Cleveland, Ohio, United
Stats, 2014.

XVIII Development of Safety-Critical Software Systems - A Systematic Map
Sardar Muhammad Sulaman, Alma Orucevic-Alagic, Markus Borg, Krzysztof
Wnuk, Martin Höst, and Jose-Luis de la Vara
In Proc. of the Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA’14), pages 17-24, Verona, Italy, 2014.

XIX Revisiting the Challenges in Aligning RE and V&V: Experiences from
the Public Sector
Jacob Larsson, and Markus Borg
In Proc. of the 1st International Workshop on Requirements Engineering
and Testing (RET’14), pages 4-11, Karlskrona, Sweden, 2014.

xvi

XX Workshop Summary of the 1st International Workshop on Require-
ments and Testing (RET’14)
Michael Felderer, Elizabeth Bjarnason, Michael Unterkalmsteiner, Mirko
Morandini, and Matthew Staats
Technical Report, arXiv:1410.3401, 2014.

XXI A Replicated Study on Duplicate Detection: Using Apache Lucene to
Search among Android Defects
Markus Borg, Per Runeson, Jens Johansson, and Mika Mäntylä
In Proc. of the 8th International Symposium on Empirical Software Engi-
neering and Measurement (ESEM’14), Torino, Italy, 2014.

XXII Survey on Safety Evidence Change Impact Analysis in Practice: De-
tailed Description and Analysis
Jose-Luis de la Vara, Markus Borg, Krzysztof Wnuk, and Leon Moonen
Technical Report, Simula, 2014.

XXIII Navigating Information Overload Caused by Automated Testing: A
Clustering Approach in Multi-Branch Development
Nicklas Erman, Vanja Tufvesson, Markus Borg, Anders Ardö, and Per Rune-
son
In Proc. of the 8th International Conference on Software Testing, Verifica-
tion and Validation (ICST’15), Graz, Austria, 2015.

XXIV An Industrial Case Study on the Use of Test Cases as Requirements
Elizabeth Bjarnasson, Michael Unterkalmsteiner, Emelie Engström, and Markus
Borg
To appear in Proc. of the 16th International Conference on Agile Software
Development (XP’15), Helsinki, Finland, 2015.

XXV The More the Merrier: Leveraging on the Bug Inflow to Guide Soft-
ware Maintenance
Markus Borg, and Leif Jonsson
Tiny Transactions on Computer Science, Volume 3, 2015.

XXVI Using Text Clustering to Predict Defect Resolution Time: A Concep-
tual Replication and an Attempted Proof-of-Concept
Saïd Assar, Markus Borg, and Dietmar Pfahl
Under revision in Empirical Software Engineering, 2015.

xvii

Contribution statement

Collaboration is central in research. All papers included in this thesis, except Paper
V, have been co-authored with other researchers. The authors’ individual contri-
butions to Papers I-IV are as follows:

Paper I
The first paper included in the thesis comprises a large research effort with many
people involved. The most senior researchers defined the overall goals of the study:
Prof. Björn Regnell, Prof. Tony Gorschek, Prof. Per Runeson, and Prof. Robert
Feldt. Dr. Annabella Loconsole, Dr. Giedre Sabaliauskaite, and Dr. Emelie Eng-
ström designed and planned the study. All ten authors were involved in the data
collection, i.e., conducting interviews with practitioners. Dr. Elizabeth Bjarna-
son, Markus Borg, Dr. Emelie Engström, and Michael Unterkalmsteiner did most
of the data analysis, comprising large quantities of qualitative data. Finally, Dr.
Elizabeth Bjarnason and Prof. Per Runeson performed most of the writing. All
authors then reviewed the paper prior to publication.

Paper II
The literature review reported in Paper II was conducted in parallel to the study
in Paper I. Markus Borg was the first author with the main responsibility for the
research effort. The study was co-designed with Prof. Per Runeson. Markus Borg
did most of the data analysis, which was then validated by Prof. Per Runson and
Dr. Anders Ardö. Markus Borg wrote a majority of the text, and the co-authors
contributed with constructive reviews.

Paper III
Six authors contributed to Paper III, describing a controlled experiment with indus-
try partners. Leif Jonsson proposed using stacked generalization for issue assign-
ment, and developed the tool that is evaluated in the experiment. The study was
designed by Leif Jonsson, Markus Borg, Dr. David Broman, and Prof. Kristian
Sandahl. Leif Jonsson and Markus Borg collected data from two separate comp-
anies, and together analyzed the results. The results were than reviewed by the
other four authors. Markus Borg organized the writing process, and wrote most of
the text.

Paper IV
The case study reported in Paper IV was co-authored by four authors. Markus Borg
developed the tool that is evaluated in the study. Markus Borg also designed the
study, collected and analyzed all data, and did most of the writing. Dr. Krzysztof
Wnuk, Prof. Björn Regnell, and Prof. Per Runeson provided feedback during the
study and reviewed the paper.

xviii

CONTENTS

Introduction 1
1 Background . 3
2 Related Work . 9
3 Research Overview . 13
4 Research Methodology . 15
5 Results . 23
6 Synthesis . 30
7 Threats to Validity . 36
8 Conclusion and Future Work . 39

Part I: The Exploratory Phase 43

I Challenges and Practices in Aligning Requirements with Verification
and Validation: A Case Study of Six Companies 45
1 Introduction . 46
2 Related Work . 47
3 Case Study Design . 50
4 Results . 62
5 Discussion . 88
6 Conclusions . 93

II Recovering from a Decade: A Systematic Review of Information Re-
trieval Approaches to Software Traceability 95
1 Introduction . 96
2 Background . 97
3 Related Work . 102
4 Method . 111
5 Results . 119
6 Discussion . 127
7 Summary and Future Work . 133

xx CONTENTS

Part II: The Solution Phase 141

III Automated Bug Assignment: Ensemble-based Machine Learning in
Large Scale Industrial Contexts 143
1 Introduction . 144
2 Machine Learning . 146
3 Related Work on Automated Bug Assignment 148
4 Case Descriptions . 156
5 Method . 159
6 Results and Analysis . 173
7 Threats to Validity . 180
8 Discussion . 184
9 Conclusions and Future Work . 188

IV Supporting Change Impact Analysis Using a Recommendation Sys-
tem: An Industrial Case Study in a Safety-Critical Context 191
1 Introduction . 192
2 Background and Related Work 194
3 Industrial Context Description 201
4 Approach and ImpRec . 204
5 Research Method . 209
6 Results and Interpretation . 216
7 Threats to Validity . 228
8 Discussion . 231
9 Conclusion and Future Work . 237

Part III: The Utilization Phase 241

V TuneR: A Framework for Tuning Software Engineering Tools with
Hands-On Instructions in R 243
1 Introduction . 244
2 Background . 246
3 Related Work on Parameter Tuning in Software Engineering . . . 251
4 ImpRec: An RSSE for Automated Change Impact Analysis 253
5 TuneR: An Experiment Framework and a Hands-on Example . . . 255
6 Tuning ImpRec Using Exhaustive Search 279
7 Discussion . 281
8 Conclusion . 284

Bibliography 287
References . 290

INTRODUCTION

The information landscape of a large software engineering project is complex.
First, the sheer volume of information that developers maintain in large projects
threatens the overview, as tens of thousands of development artifacts are often
involved [177, 391]. Second, developers work collaboratively on heterogeneous
development artifacts stored in various software repositories such as source code
repositories, requirements databases, test management systems, and general docu-
ment management systems. Often the databases have poor interoperability [173],
thus they turn into “information silos”, i.e., simple data storage units with little
transparency for other tools. Third, as source code is easy to modify, at least
when compared to the accompanied hardware, the software system under devel-
opment continuously evolves during a project. Not only does the source code
evolve, but the related development artifacts should also co-evolve to reflect the
changes, e.g., design documents and test case descriptions might require contin-
uous updates [111]. Consequently, staying on top of the information landscape
in large software engineering projects constitutes a significant challenge for both
developers and managers [403].

In knowledge-intensive work such as software engineering projects, quick and
concise access to information is fundamental. If the project environment does not
provide sufficient support for navigation and retrieval, considerable effort is wasted
on locating the relevant information [263]. Unfortunately, large software engineer-
ing projects are threatened by information overload, i.e., “a state where individu-
als do not have the time or capacity to process all available information” [172].
Freund et al. reported that software engineers spend about 20-30% of their time
consulting various software repositories, but still often fail to fulfil their informa-
tion needs [189]. Dagenais et al. showed that poor search functionality in infor-
mation repositories constitutes an obstacle for newcomers entering new software
projects [132]. This thesis reinforces the importance of information access in soft-
ware engineering, by reporting that the sheer volume of information threatens the
alignment between requirements engineering and testing [Paper I].

Issue trackers constitute examples of software repositories containing large
amounts of information. As there is typically a continuous inflow of issue re-
ports, individual developers often struggle to sustain an overview of the current

2 INTRODUCTION

state of the issue tracker [22]. The inflow in large projects makes activities such
as duplicate management, prioritization, and work allocation time-consuming and
inefficient [XVI] [53, 257]. On the other hand, previous works argue that the is-
sue repository is a key collaborative hub in software engineering projects, and that
it can be harnessed to provide decision support to developers. Čubranić et al.
developed Hipikat, a recommendation system to help newcomers in open source
communities navigate existing information, by mining a “project memory” from
the issue repository [127]. Anvik and Murphy presented automated decision sup-
port for several activities involved in issue management, all based on information
stored in issue repositories [24].

In this thesis, we also view the issue repository as a key collaborative hub, but
we increase the granularity further by considering each individual issue report as
an important juncture in the software engineering information landscape. We have
previously shown that issue reports can connect software artifacts that are stored
in separate databases [XIII], i.e., issue reports are a way to break information si-
los. In software engineering contexts where the change management process is
rigid, every corrective change committed as part of an issue resolution must be
documented [XXII]. As such, the trace links from issue reports to artifacts in var-
ious repositories, e.g., requirements and test case descriptions, turn into trails in
the information landscape, created by past engineers as part of their maintenance
work.

We apply techniques from Machine Learning (ML), Information Retrieval (IR),
and Recommendation Systems for Software Engineering (RSSE) to detect patterns
in the historical issue reports, predict relationships, and provide developers with
actionable decision support. As the techniques we rely on generally perform bet-
ter the more data that are available [37, 161], we leverage the daunting inflow of
issue reports to assist navigation in the software engineering landscape. We focus
on two specific tasks involved in issue management: 1) issue assignment, i.e., the
initial task of deciding who should investigate an issue report, and 2) change im-
pact analysis, i.e., a subsequent task of investigating how a proposed change to the
software will affect the rest of the system. In contrast to previous work, we study
issue assignment at team level rather than for individual developers, and we focus
on change impact analysis of non-code artifacts, i.e., development artifacts that
are not source code.

We develop tools to support issue management and report evaluations con-
ducted in two companies. While most previous work on tool support for issue
management focuses on open source software development projects, instead we
target proprietary projects. We evaluate our tools using experiments in silico, and
our proposal to support change impact analysis using an RSSE is also studied in
situ, i.e., we deploy our RSSE in industry and observe how it performs with users
in a real setting. Thus, the user-oriented research we present in this thesis answers
calls from both traceability researchers [202], and the RSSE community [402], re-
garding the need for industrial case studies. Finally, as our studies indicate that

1 Background 3

the performance of our tools is highly context-dependent, we present guidelines
on how to tune tools for a specific operational context. To summarize, the main
contributions of this thesis are:

• Two rich surveys of challenges and solutions related to information access
in large projects, covering both state-of-practice and state-of-the-art.

• A comprehensive evaluation of automated issue assignment in two propri-
etary contexts.

• An in-depth case study on automated change impact analysis, involving de-
velopers in the field.

• A discussion on context and data dependencies, with hands-on guidelines
for parameter tuning using state-of-the-art experimental designs.

1 Background

This section contains a brief overview of some software engineering concepts that
are central to this thesis, and introduce the principal techniques and approaches
involved in our solution proposals. All sections are condensed, mainly focusing on
establishing the terminology used throughout the thesis, with pointers to relevant
background sections in the included papers.

1.1 Issue Management

Issue management is a fundamental activity in software maintenance and evolu-
tion, comprising reporting, assignment, tracking, resolution, and archiving of issue
reports [51]. The issue management process in an organization is tightly connected
to the underlying information system, i.e., the issue tracker. The issue tracker is
not only an archival database, but is also an important facilitator for communi-
cation and coordination in a software project. Frequently used issue trackers in
industry include: Bugzilla, JIRA, and Trac [100]. The various activities involved
in issue management are generally known to be a costly part of the lifecycle of a
software-intensive system [22, 125, 338].

An issue report contains information about observed misbehavior regarding a
software system. Issue reports are typically structured according to the input form
of the issue tracker, combining drop down menus and free-text fields. According
to Herzig and Zeller [218], the standard components that describe an issue report
are:

• Environment information, e.g., product, version, and operating system, help-
ing developers to isolate an issue.

4 INTRODUCTION

• A free-text description, written by the submitter, presenting the observed
issue and, hopefully, steps to reproduce the issue.

• Management fields, e.g., issue type, assignee, and priority, used internally
by developers and managers to organize work.

As a development organization processes an issue report, it moves through a
series of states. Figure 1 presents an overview of the principal workflow we con-
sider in this thesis, i.e., issue management in a large development organization in
which a Change Control Board (CCB) decides how to act on individual issue re-
ports. When an issue report is submitted, it starts in the New state. The CCB then
assigns the issue report to the appropriate development team, i.e., it enters the As-
signed state. The developer tries to replicate the issue and reports his experiences,
and the issue report moves to the Triaged state. Based on the triage, the CCB ei-
ther moves the issue report to the Accepted or the Rejected state. If the issue report
is accepted, the developer gets it back and starts designing a resolution. When the
developer has proposed a resolution, the issue report enters the Change Analyzed
state. The CCB then decides if the proposed changes to the system are acceptable,
and moves the issue report to either the Change Accepted state or the Rejected
state. If the change is accepted, the developer implements the change and moves
the issue report to the Resolved state. When the change has been committed, a
developer or tester verifies that the issue has been properly addressed, and the is-
sue report moves to the Verified state. Finally, once everything is complete, CCB
moves the issue report to the Closed state. We further discuss issue management
in Papers III and IV, focusing on issue assignment and change impact analysis,
respectively.

Cavalcanti et al. recently published a systematic mapping study on challenges
and opportunities for issue trackers [100]. They analyzed 142 studies on the topic,
and also compared their findings with the features offered by state-of-practice issue
trackers. Several challenges of issue assignment have been addressed by previous
research. According to Cavalacanti et al., the most commonly targeted challenges
are: 1) issue assignment (28 studies), 2) duplicate detection (20 studies), 3) res-
olution time prediction (18 studies), 4) quality assessment (15 studies), and 5)
change impact analysis (14 studies). Among the top-5 challenges, this thesis con-
tributes to the issue assignment [Paper III] and change impact analysis [Paper IV].
However, we have also studied duplicate detection [XXI] and resolution time pre-
diction [XXVI] in parallel work. Finally, Cavalcanti et al. report that few ideas
from research on assisted issue management have been adopted in state-of-practice
issue trackers, and conclude that more empirical studies are needed on how the
proposed tool support can support software engineering. Another recent literature
review by Zhang et al. confirms that state-of-practice issue trackers provide little
automated support for issue management [493]. Also, Zhang et al. hypothesize
that the main obstacle for dissemination of research results to industry is that “none
of the previous [automated] approaches has achieved satisfactory accuracy”.

1 Background 5

Figure 1: Overview of the issue management workflow in a large software devel-
opment organization with a Change Control Board (CCB). The arrows depict the
primary transitions between the states of an issue report; an issue report can also
be changed back to an earlier state.

1.2 Traceability and Change Impact Analysis

Traceability has been discussed in software engineering since the pioneering NATO
Working Conference on Software Engineering in 1968. Randall argued that a de-
veloped software system should “contain explicit traces of the design process” [386].
Boehm mentioned traceability as an important contemporary software engineering
challenge in a state-of-the-art survey from 1976, and predicted traceability to be-
come a future research trend [66]. Concurrently, industrial practice acknowledged
traceability as a vital part of high-quality software, and by the 1980s several de-
velopment standards had emerged that mandated traceability maintenance [162].

In the 1990s, the amount of traceability research increased with the advent
of requirements engineering as a dedicated research field. Gotel and Finkelstein
identified the lack of a common traceability definition, and proposed a definition
tailored for the requirements engineering community: “requirements traceabil-
ity refers to the ability to describe and follow the life of a requirement, in both
forwards and backwards direction” [204]. According to a systematic literature re-
view by Torkar et al., this definition is the most commonly cited in traceability
research [449].

In the 2000s, the growing interest in agile development methods made many
organizations downplay traceability. Agile developers often consider traceability
management to be a burdensome activity that does not generate return on invest-
ment [110]. Still, traceability remains non-negotiable in development of safety-
critical systems. Safety standards such as ISO 26262 in the automotive indus-
try [242] and IEC 61511 in the process industry sector [238] explicitly requires

6 INTRODUCTION

traceability through the development lifecycle.
In 2012, Cleland-Huang et al. published the first (edited) book on software

and systems traceability [113]. The book summarizes research on traceability, and
contains several fundamental definitions. A large part of the traceability research
community, organized in CoEST2, contributed to the book. Traceability, in gen-
eral, is defined as the “potential for traces to be established and used”, while re-
quirements traceability is again defined according to Gotel and Finkelstein’s paper
from 1994 [204]. Paper II contains more background on traceability in software
engineering, as well as an overview of traceability research. Apart from the ba-
sic definitions of traceability and requirements traceability, we use the following
terminology in this thesis:

• A trace artifact is a traceable unit of data.

• A trace link denotes an association forged between two trace artifacts, e.g.,
dependency, refinement or conflict.

• A trace is a triplet of two trace artifacts connected by a trace link.

• Tracing is the activity of establishing or using traces.

• Trace capture is an approach to establish trace links concurrently with the
creation of the trace artifacts that they associate.

• Trace recovery is an approach to establish trace links after the trace artifacts
that they associate have been generated or manipulated.

• A tracing tool is any tool that supports tracing.

A concept closely related to traceability is Change Impact Analysis (CIA),
defined by Bohner as “identifying the potential consequences of a change, or es-
timating what needs to be modified to accomplish a change” [67]. CIA is a cog-
nitive process of incrementally adding items to a set of candidate impact. Sev-
eral researchers report that CIA for complex software-intensive systems is both a
tedious and an error-prone activity [103, 293, 337]. However, analogous to trace-
ability maintenance, CIA is mandated by safety-standards [174, 238, 242]. Access
to traces might support developers with CIA [128, 304], a statement that is of-
ten brought forward as a rationale for costly traceability efforts within software
projects.

Most CIA work in industry is manual [XXII] [469], and research on CIA tools
have been highlighted as an important direction for future work [68]. Also, two
recent reviews of scientific literature shows that most research on CIA is limited to
impact on source code [293, 301]. However, as stated in Lehnert’s review: “more
attention should be paid on linking requirements, architectures, and code to enable

2The Center of Excellence for Software Traceability, www.coest.org

1 Background 7

comprehensive CIA” [293, pp. 26]. Especially in safety-critical development, it is
critical to also analyze how a change to a software system affects artifact types
that are not source code, e.g., whether any requirements are affected, or which test
cases should be selected for regression testing. In this thesis, we specifically focus
on CIA of development artifacts that are not source code, i.e., non-code artifacts.
Paper IV contains a more thorough introduction to CIA.

1.3 Techniques and Approaches Applied in the Thesis

The solution approaches presented in the thesis are inspired by research in sev-
eral fields, but mainly rely on information retrieval, machine learning, and recom-
mendation systems. This subsection lists fundamental definitions, and provides
pointers to more extensive background sections in the included papers.

Information Retrieval (IR) is “finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers)” [325]. If a retrieved document satisfies
such a need, we consider it relevant. We solely consider text retrieval in the study,
yet we follow convention and refer to it as IR. We define NL and Natural Lan-
guage Processing (NLP) as follows [306]: “NL text is written in a language used
by humans to communicate to one another”, and “NLP is a range of computational
techniques for analyzing and representing NL text”. Paper II contains a thorough
overview of IR in software engineering.

Machine Learning (ML) is an area within computer science concerned with
how computer programs can learn and improve at performing a specific task when
trained on historical data. ML is divided into unsupervised learning and supervised
learning. Unsupervised learning detects patterns in data, e.g., applicable in clus-
tering and anomaly detection. We have explored clustering of issue reports based
on their textual content in related work [XXVI], but the work in this thesis focuses
on supervised learning. In supervised learning each data point is associated with
a label or a numerical value. Learning is defined as the ability to generalize from
historical data to predict the label (i.e., classification) or value (i.e., regression) of
new data points. A supervised ML algorithm is trained on a training set and eval-
uated on a (preferably sequestered) test set [62]. Paper III contains an introduction
to ML in general and classification in particular.

Recommendation systems provide suggestions for items that are of potential
interest for a user [179]. The two main techniques to match users and items are
content-based filtering and collaborative filtering. Content-based filtering finds
patterns in the content of items that have been consumed or rated by a user, to
find new items that are likely to match his or her interests. Collaborative filtering
on the other hand instead identifies users that display similar preference patterns,
then their ratings are used to infer recommendations of new items for similar users.
Many recommendation systems also combine the two techniques in hybrid sys-
tems. Robillard et al. have proposed a dedicated definition of Recommendation

8 INTRODUCTION

Table 1: Ten levels of automation as defined by Parasuraman et al. [367].
Level Description. The system. . .

10 . . . decides everything, acts autonomously, ignoring the human.
9 . . . informs the human only if it, the system, decides to.
8 . . . informs the human only if asked.
7 . . . executes automatically, then necessarily informs the human.
6 . . . allows the human a restricted time to veto before automatic execution.
5 . . . executes that suggestion if the human approves.
4 . . . suggests one alternative.
3 . . . narrows the selection down to a few.
2 . . . offers a complete set of decision/action alternatives.
1 . . . offers no assistance: human must take all decisions and actions.

Systems for Software Engineering (RSSE): “a software application that provides
information items estimated to be valuable for a software engineering task in a
given context” [403].

Robillard et al. report that while the definition is broad on purpose, there still
are four specific aspects that all must be fulfilled to qualify as an RSSE instead of
a regular software engineering tool [402]. First, the goal of an RSSE is to provide
information that help developers’ decision making. Second, an RSSE estimates
the relevance of information, i.e., they do not extract facts like compilers or reg-
ular expression searches. Third, RSSEs can provide both novelty and surprise in
discovering new information and familiarity and reinforcement by supporting con-
firmation of existing knowledge. Fourth, an RSSE delivers recommendations for
a specific task in a given context, as opposed to for example general search tools.
We further elaborate on RSSEs, in the context of issue management, in our related
book chapter [XVI], and in Paper IV.

In this thesis we present tool support, using IR, ML, and RSSEs, that increases
the level of automation in issue management. We define automation as proposed
by Parasuraman et al.: “a device or system that accomplishes (partially or fully)
a function that was previously, or conceivably could be, carried out (partially or
fully) by a human operator” [367]. Parasuraman et al. further defines a model of
ten levels of automation, presented in Table 1, starting from a fully manual process
(Level 1) to an automatic process (Level 10). We refer to the activity of automating
a process as increasing the level of automation. Moreover, the result of such an
activity is an automated process. In this thesis, when we discuss automated IA and
automated CIA, or automated tools in general, we refer to tools reaching Levels
3 or 4 in Parasuraman et al’s model. Thus, in contrast to some previous work in
software engineering [23, 100, 293], we do not refer to automation below Level
10 as semi-automatic, even though we consistently require a human in the loop.
We envision our automated tools to offer developers decision support, but the final
action should still be executed by a human. The automation concept is further
discussed in a related paper [VIII].

2 Related Work 9

Figure 2: Key steps of an IR-based tracing tool, described by De Lucia et
al. [145].

2 Related Work

This section presents selected publications related to the work in this thesis. We fo-
cus on three specific combinations of supporting techniques and software engineer-
ing work tasks: 1) IR for traceability management, 2) ML for issue assignment,
and 3) RSSEs for navigation of software engineering information landscapes. As
in Section 1, we keep the presentations short and point the reader to extended
sections in the included papers.

2.1 Information Retrieval for Traceability Management

Several researchers have proposed implementing IR techniques in tracing tools,
with the goal to help developers find or establish traces. The underlying idea is
that if two development artifacts share a high degree of their textual content, they
are more likely to be associated by a trace link. Figure 2 presents the key sequential
steps involved in an IR-based tracing tool, based on a general description by De
Lucia et al. [145]. First, the documents are parsed and pre-processed, i.e., the
text is processed into tokens, and text operations such as stemming and stop-word
removal might be applied. Second, an IR model is applied to index the documents,
i.e., the documents are represented in a homogeneous document space. Third, the
tracing tool compares a set of documents (representing trace artifacts) to generate
candidate trace links. Fourth, the tracing tool presents the candidate trace links in
the user interface.

Already in the early 1990s, researchers started proposing tool support for con-
necting software development artifacts containing NL text, e.g., in the LESD-
project [81,83,99]. However, typically a publication by Fiutem and Antoniol from
1998 is considered the pioneering piece of work on IR-based tracing, in which the
authors call their approach “traceability recovery”, and they express the identifi-
cation of trace links as an IR problem [183]. While their paper from 1998 applied
only simple textual comparisons based on edit distances, their well-cited publica-
tion from 2002 instead used two traditional IR models: the Vector Space Model
(VSM) and the binary independence model [18].

Since the pioneering work was published, several authors have continued work-
ing on IR-based tracing to support traceability management in software engineer-
ing projects. Natt och Dag et al. applied the VSM to support maintenance of
dependencies among requirements in the dynamic environment of market-driven

10 INTRODUCTION

requirements engineering [354]. Marcus and Maletic introduced latent seman-
tic indexing to trace retrieval, and they applied it to recover trace links between
source code and NL documentation [326]. Huffman Hayes et al. emphasized
the user perspective in IR-based tracing, and introduced relevance feedback [233].
Cleland-Huang’s research group have published several papers on probabilistic
trace retrieval [307, 425, 498]. Finally, De Lucia et al. have introduced IR-based
tracing in their document management system ADAMS [144]. More related work
on IR-based tracing is presented in Paper II, reporting a comprehensive literature
study on the topic, and in a complementary study [XV].

Most evaluations of IR-based tracing have been simplistic. First, a majority
of the evaluations have been purely technology-oriented, conducted in what Ing-
wersen and Järvelin refer to as “the cave of IR evaluation” [237], i.e., not taking
the user into account. Second, the size of the datasets studied in previous eval-
uations have been unrealistically small, typically containing fewer than 500 trace
artifacts [Paper II]. Third, several evaluations have been conducted using trace arti-
facts originating from student projects instead of their industrial counterparts [IX].
Trace recovery evaluation was the topic of the licentiate thesis preceding this pub-
lication this, in which we argued that more evaluations in realistic user studies
in industrial settings are needed to advance research on IR-based tracing [XI].
Consequently, our findings intensified CoEST’s call for additional industrial case
studies [203].

2.2 Machine Learning for Issue Assignment

In large development projects, the continuous inflow of issue reports might con-
stitute a considerable challenge. Among the first tasks in issue management, the
CCB must assign the issue to an appropriate developer or development team, see
Figure 1. However, several studies report that manual issue assignment is tedious
and error-prone, resulting in frequent reassignment of issue reports, so called “bug
tossing”, and delayed issue resolutions [44, 55, 248].

Several researchers have proposed automating issue assignment by introduc-
ing ML-based tool support. Figure 3 presents an overview of an automated issue
assignment process. First, a classifier is trained on closed issue reports, using
the developer that closed the issue as the label. Then, for future incoming issue
reports, the classifier provides decision support to the CCB, i.e., the ML-based
issue assignment proposes a suitable developer based on historical patterns. As
developers continue to close issue reports, the classifier should be repeatedly re-
trained. Typically, previous work on ML-based issue assignment has represented
issue reports by its NL text, i.e., the title and the description. A few exceptions
include also nominal features available in issue trackers, e.g., submitter, priority,
and platform [6, 308, 368].

Past research on ML-based issue assignment has evaluated several different
classifiers. Čubranić et al. proposed using a Naïve Bayes (NB) classifier in a

2 Related Work 11

Figure 3: Overview of ML-based issue assignment. Solid arrows represent the
current manual process, i.e., a CCB that assigns incoming issue reports. The
dashed arrows depict the envisioned flow of automated assignment, i.e., a trained
classifier provides the CCB with decision support in the assignment step.

pioneering paper [125]. NB has continued to be a popular technique for auto-
mated issue assignment, together with Support Vector Machines (SVM) as intro-
duced by Anvik et al. [23]. However, while NB and SVM dominate in research,
also other ML classifiers have been evaluated, e.g., random forest [6], Bayesian
networks [248], and neural networks [217]. Paper III contains a comprehensive
overview of related work on automated issue assignment.

Previous work on automated issue assignment has focused on Open Source
Software (OSS) development projects, and especially issue reports from either the
Eclipse development projects or the Mozilla Foundation. While the OSS context
is meaningful to study, this thesis instead targets proprietary development projects.
Regarding issue management, we highlight two important differences between
proprietary and OSS projects. First, in OSS projects, anyone can typically sub-
mit issue reports to the issue tracker. In proprietary projects on the other hand, a
majority of issue reports originate from internal development or testing activities.
Thus, we hypothesize that the general quality of proprietary issue reports is higher.
Second, proprietary development is typically organized in teams, but the organiza-
tion of OSS projects is often less clear. Consequently, while previous evaluations
of automated issue assignment have addressed assignment to individual develop-
ers, we instead evaluate assignment to development teams.

2.3 Recommendation Systems for Improved Navigation

The scale of the information landscape in large software engineering projects typ-
ically exceeds the capability of an individual developer [402]. Large software
systems might evolve for decades [5, 170, 462], i.e., trace artifacts are continu-
ously changing, introducing both versioning problems and obsolete information.
Furthermore, with the increase of global software engineering, the producers of

12 INTRODUCTION

information are distributed across different development sites. Consequently, an
important characteristic of a software project is the findability it provides, i.e., “the
degree to which a system or environment supports navigation and retrieval” [344].

Figure 4 presents four steps typically involved in RSSEs supporting naviga-
tion in software projects [XVI]. First, a model of the information space should
be developed, describing all parts of the information landscape the RSSE covers.
To express the relations among artifact types, work proposed in traceability re-
search could be used, e.g., Ramesh and Jarke [384], Wnuk et al. [VII], or Rempel
et al. [394]. Second, the instantiated model need to be populated to capture the
trace artifacts and trace links in the information landscape, e.g., by mining software
repositories [261]. Third, the RSSE calculates recommendations based on user ac-
tions. The calculations can be either triggered by the user explicitly, i.e., reactive
initiation, or without any user invocation, i.e., proactive initiation [483]. Fourth,
the RSSE must present the recommendations to the user. Murphy-Hill and Murphy
list six approaches that previous RSSEs have used to deliver its output [346]: 1)
annotations (textual markup), 2) icons, 3) affordance overlays (highlighting spe-
cific options), 4) pop-ups, 5) dashboards, and 6) e-mail notifications.

Several researchers have proposed RSSEs that alleviate information overload
in software engineering. Čubranić et al. developed Hipikat, an RSSE that supports
software evolution in OSS projects by helping newcomers come up-to-speed by
establishing a “project memory” containing trace artifacts from various informa-
tion repositories, e.g., the source code repository, the issue tracker, and the e-mail
archive [127]. Hipikat then extracts explicit relations among software artifacts, and
deducts additional trace links based on textual similarities. Finally, users interact
with Hipikat through an Eclipse plug-in, and get recommendations presented in
dedicated views. Maiga et al. proposed ReCRAC, an RSSE supporting both issue
assignment and identification of similar issue reports for large software projects
at Ericsson [323]. ReCRAC addresses the challenges of information overload by
content-based filtering [XVI], but the tool has not yet been evaluated. Gethers et
al. presented an approach to recommend change impact during software evolution
in large software projects [192]. They combine IR techniques and analysis of ex-
ecution information to recommend a candidate set of impacted source code, and
they report promising results in a study on four OSS projects. Paper IV presents
further examples of related work on RSSEs supporting navigation in software en-
gineering.

Many RSSEs have been fully developed, but few have been evaluated in real
software engineering projects. Robillard and Walker highlight the lack of user
studies in the recent textbook on RSSEs [402]. They report that while recommen-
dation algorithms can be analyzed in technology-oriented experiments, the only
option to understand how developers react to recommendations is by conducting
user studies. Also Tosun Misirli et al. stress the importance of studying RSSEs de-
ployed in real projects, as the only way for researchers to “understand the domain
and propose technical solutions for real needs of practitioners” [450, pp. 351].

3 Research Overview 13

Figure 4: Principal steps of an RSSE for navigation support [XVI]. The dashed
box indicates the two steps after deployment.

However, they acknowledge that deployment is hard, and that there are very few
examples in the literature describing evaluations of real RSSE usage. Paper IV
responds to the call from the RSSE community, by reporting from an in situ study
of an RSSE deployed in a proprietary development project.

3 Research Overview
This doctoral thesis builds on the prequel licentiate thesis [XI]. The main con-
tribution of the licentiate thesis was empirical evidence confirming the need for
industrial case studies on IR-based tracing. In the licentiate thesis we presented a
systematic mapping study (included as Paper II also in this doctoral thesis) show-
ing that a majority of the previous evaluations were conducted in silico on datasets
smaller than its industrial counterparts, and that the individual artifacts often orig-
inated from university settings. We also confirmed that most human-oriented eval-
uations were conducted in vitro with student subjects, i.e., in controlled class-
room settings. Furthermore, to advance the quality of future evaluations, we pro-
posed an evaluation taxonomy for IR-based tracing, an adaptation of Ingwersen
and Järvelin’s evaluation model for integrated information retrieval, introducing
“the cave of IR evaluation” [237] as a concept in empirical software engineering.

While the licentiate thesis mainly involved exploratory work, this doctoral the-
sis contains evaluated solution proposals. As outlined in the licentiate thesis, we
have continued working on a specific work task that requires developers to explic-
itly specify trace links among software artifacts: Change Impact Analysis (CIA) in
safety-critical software development. We found initial evidence that developers are
more comfortable navigating the source code than its related documentation, thus
we focused work specifically on trace links between non-code artifacts. However,
since the publication of the licentiate thesis, we have broadened the scope of our
work on issue management. Thus, we do not only consider CIA, but also the ini-
tial Issue Assignment (IA), i.e., allocation of an issue report to the most appropriate
development team.

14 INTRODUCTION

Figure 5: The three subsequent phases of research included in this thesis. The Ex-
ploratory phase concluded by an intermediate delivery of the licentiate thesis [XI]
in September 2012. Since then, our work has turned more solution oriented, i.e.,
into the Solution phase and the Utilization phase. Dashed boxes with Roman nu-
merals depict related publications.

The overall research goal of this thesis is to leverage the information available
in historical issue reports to support large-scale software evolution. We further
break down the research goal in the following research questions:

RQ1 How do state-of-practice approaches to maintain relations among develop-
ment artifacts compare to proposals in the scientific literature?

RQ2 How can an increased level of automation support developers in issue man-
agement?

RQ3 How accurate do tools supporting issue management need to be for practi-
tioners to start recognizing their value?

RQ4 How can transfer of research on automated tools for issue management to
industry be supported?

Figure 5 shows an overview of the research included in this thesis, divided into
three phases. The Exploratory phase was initiated by RQ1 and comprises sev-
eral publications, whereof two papers are included in this thesis. Paper I reports

4 Research Methodology 15

from an industrial case study on challenges and practices for alignment of require-
ments engineering and testing. As one of the identified challenges, we provide
evidence that information access in state-of-practice software engineering projects
is important but difficult, i.e., it is challenging for developers to stay on top of the
continuously changing information landscape. Paper II instead targets state-of-
the-art methods supporting maintenance of relations among development artifacts
in software engineering projects, by reporting from a systematic mapping study.
The exploratory phase was summarized in the licentiate thesis [XI], in which we
outlined future work using solutions from Paper II to address challenges identified
in Paper I (RQ2).

The Solution phase starts from RQ2 by posing the tightly connected RQ3, i.e.,
how good does tool support need to be to be useful in industry? In this thesis,
the solution phase is represented by two papers that present tool support that we
developed for automated issue management. Paper III considers IA as a classi-
fication problem, and evaluates an automated approach based on state-of-the-art
ML. Paper IV proposes reusing historical traceability, i.e., the collaboratively cre-
ated trace links, to support CIA triggered by corrective maintenance. We combine
traceability analysis with state-of-the-art IR in an RSSE and evaluate the tool in an
industrial case study.

The final Utilization phase is based on our observations that the correctness
of our proposed tool support strongly depends on the specific development con-
text, i.e., the outcome depends on the nature of the involved development artifacts
(RQ4). Furthermore, we have developed tools that are highly configurable. Pa-
per V attempts to match the two phenomena, i.e., the context dependency and the
configurability, by presenting a framework for parameter tuning using state-of-
the-art design of experiments. To support technology transfer to industry, Paper V
presents a systematic approach to find a feasible parameter setting for automated
tools. As a proof-of-concept, we apply the framework to optimize the correctness
of the tool output from the RSSE in Paper IV, and discuss dangers of optimizing
with regard to a single response variable. While Figure 5 illustrates the sequential
work process shaping this thesis, successful technology transfer rather relies on
iterative industry-academia collaboration [38, 201].

4 Research Methodology

Proper research strategies should be employed to pursue valid answers to the re-
search questions. The research in this thesis is based on empirical research, a
scientific approach to obtain knowledge through observing and measuring phe-
nomena in the real world. Empirical studies result in evidence, pieces of informa-
tion required to build and verify theories [167, 274, 413, 430]. This section gives
an overview of the research methodologies applied in our empirical studies.

16 INTRODUCTION

4.1 Purposes of Empirical Studies
Studies have different purposes, and there is not a single research strategy that
fits them all. Runeson et al. list four purposes for research in software engineer-
ing [413], adapted from Robson [407]:

• Exploratory - discovering what is happening, pursuing new insights, and
generating ideas and hypotheses for future research.

• Descriptive - characterizing the current status of a phenomenon or situation.

• Explanatory - seeking an explanation for a phenomenon, often in the form
of a casual relationship.

• Improving - attempting to improve certain aspects of a phenomenon, and to
evaluate the effect of improvement proposals.

The papers included in this thesis are either exploratory, covering work until the
completion of the licentiate thesis [XI] (cf. Fig. 5), or of improving nature.

Exploratory research is typically conducted in early stages of a research project,
to bring initial understanding to a phenomenon, preferably from rich qualitative
data [167]. Exploratory studies are used to guide future work rather than to draw
definite conclusions. Based on exploratory studies, informed decisions on for ex-
ample the design of subsequent studies, data collection methods, and sampling
strategies can be made. Papers I and II are both dominated by exploratory re-
search. Paper I explored state-of-practice phenomena in industry, and Paper II
summarizes state-of-the-art techniques presented in the scientific literature.

Improving research in software engineering tries to improve the current state-
of-practice. As applied engineering researchers, we are inspired by the rather pro-
voking quote by Theodore von Kármán (1881-1963): “scientists study the world
as it is, engineers create the world that has never been”. Thus, we strive to de-
velop tools and processes to help practitioners develop higher quality software
with less effort. An important part of improving research is the evaluation, i.e., the
assessment of the effects and effectiveness of innovations, interventions, and prac-
tices [407]. The evaluative part involves a systematic collection of data, and a rigid
analysis and interpretation. Paper III presents a solution for automated IA, and an
evaluation based on more than 50,000 issue reports from two companies. Paper
IV proposes automated support for CIA, and reports from an evaluation of the de-
ployed tool. Also Paper V contains improving research, addressing the challenge
of configuring tools for specific contexts.

4.2 Empirical Research Methods
When designing an empirical study, the researcher needs to find a suitable balance
between the level of control and the degree of realism [413]. Studying phenom-
ena in a real-world industrial context means less control of the involved variables,

4 Research Methodology 17

and often there are too many confounding factors to conclude casual relationships.
When isolating real-world phenomena on the other hand, e.g., by controlling sub-
jects in lab environments, there is a risk that the software engineering aspect un-
der study becomes reduced to something hardly representative of industrial real-
ity [167].

Empirical research revolves around observations, and the collected data are
either quantitative or qualitative [407]. Quantitative data constitute numbers ob-
tained from measurements, and generally their purpose is to answer questions
about the relationships between variables. For example, to quantify a relationship,
comparing two or more groups, or for the purpose of explaining, predicting, or
controlling a phenomenon. The researcher uses frequentist [129] or Bayesian [285]
statistics to analyze the quantitative data: descriptive statistics to present the data,
and inferential statistics to draw conclusions. Qualitative data involve words, de-
scriptions, pictures etc. While quantitative data provide ‘exactness’, qualitative
data instead offer ‘richness’ [413], enabling the researcher to understand a phe-
nomenon beyond numbers. In software engineering research, qualitative data are
often collected using interviews, enabling practitioners to express themselves in
their own words. Analysis of qualitative data is based on the researcher’s inter-
pretation, and careful measures should be taken to mitigate biased conclusions.
Researchers primarily rely on qualitative data when studying complex phenomena
that cannot be simplified into discrete measurable variables. As quantitative and
qualitative data are fundamentally different, studies typically reach the strongest
conclusions by collecting and analyzing both kinds of data [422].

The design of empirical studies is often categorized as fixed or flexible [485].
Fixed designs are pre-specified and require enough pre-understanding of a phe-
nomenon to know what to do, and how to measure it, already when the study is
initiated. Studies relying on quantitative data are often of a fixed design. Flexible
designs on the other hand, allow the study design to evolve while data is collected.
The collection and analysis of data is intertwined, and both research questions and
data sources may be adapted to the circumstances of the study. Paper I relies on a
flexible design, and the study is based on qualitative data from interviews. Paper II
used a fixed design, analyzing both quantitative and qualitative data collected from
the scientific literature. Also Papers III and V employed fixed designs, analyzing
quantitative tool output statistically. Paper IV on the other hand covers both a fixed
and a flexible part, combining quantitative and qualitative data.

Empirical studies of both fixed and flexible designs can be conducted using
different research methods. Easterbrook et al. consider five classes of research
methods as the most important in software engineering [167]:

• Experiments - testing hypotheses by manipulating independent variables
and measuring the effect on dependent variables.

• Case studies - investigating a contemporary phenomenon within its real-life
context.

18 INTRODUCTION

• Surveys - identification of population characteristics by generalizing from a
sample.

• Ethnographies - understanding how a community of people make sense of
their social interactions.

• Action research - attempting to solve a real world problem by intervention,
while simultaneously studying the experience of solving the problem.

In this thesis, we neither use survey research nor ethnographies, but the other three
methods are further described in the remainder of this section. However, we do not
use the term “action research” to refer to our solution oriented work, but instead
call it design science, as defined by Wieringa3 [471]. Furthermore, one of the in-
cluded papers in this thesis constitutes a secondary study following the guidelines
for systematic literature reviews by Kitchenham and Charters [273].

Experiments (or controlled experiments) are used in software engineering to
investigate the cause-effect relationships of introducing new methods, techniques
or tools. Different treatments are applied to, or by, different subjects, while other
variables are kept constant, and the effects on response variables are measured [477].
Wohlin et al. categorize experiments as either technology-oriented or human-
oriented, depending on whether artifacts or human subjects are given various treat-
ments. In this thesis, we use technology-oriented experiments to evaluate tool pro-
totypes. As proposed by Walker and Holmes [466], we use simulation to conduct
the technology-oriented experiments. In Papers III, IV, and V we use simulation
to imitate the environment around the tools under evaluation, more specifically we
reenact the historical inflow of issue reports to study the output of our automated
tools. Design of Experiments (DoE) is a mature research field that has been ap-
plied to several application domains [342]. Paper V demonstrates how DoE can be
used tune tools in software engineering with considerably less effort.

A case study in software engineering is conducted to understand a phenomenon
within its real-life context. Such a study draws on multiple sources of evidence to
investigate one or more instances of the phenomenon, and the research method is
especially applicable when the boundary between the phenomenon and its context
cannot be clearly defined. According to Runeson et al., the case under study can be
any contemporary software engineering phenomenon in its real-life setting, e.g.,
a group of people, a process, a specific role, or a technology [413]. Case studies
are often conducted to explore a phenomenon, but they can also be confirmatory,
i.e., designed to test existing theories [167]. Within a case study, researchers also
distinguish between the case(s) and the unit(s) of analysis [485]. In a holistic case
study, the case is studied as a whole. In an embedded case study on the other hand,
multiple units of analysis are studied within a case, e.g., different development

3Wieringa discusses both design science and Technical Action Research (TAR) in his recent text-
book [471], presenting TAR as an empirical method together with for example surveys and experi-
ments.

4 Research Methodology 19

sites, development teams, or roles in the organization. Moreover, a case study can
be characterized as a single-case study, or a multiple-case study if two or more
cases are studied within different contexts [413]. Paper I is categorized as an
exploratory embedded single-case study [413, pp. 185], i.e., the case (alignment
of requirements engineering and testing) is studied in multiple units of analysis
(six different companies). Also Paper IV is an embedded single-case study, where
the CIA work task constitutes the case and two different development teams are
the units of analysis. Moreover, as Paper IV also evaluates the usefulness of a tool,
the case study has both exploratory and confirmatory aspects.

A Systematic Literature Review (SLR) is a secondary study aimed at aggre-
gating a base of empirical evidence. SLRs are an increasingly popular method in
software engineering research [131]. Inspired by evidence-based medicine, SLRs
rely on a rigid search and analysis strategy to ensure identification of a compre-
hensive collection of evidence related to a specific question [273]. A variant of
an SLR is a Systematic Mapping Study, a literature study designed to identify re-
search gaps and direct future research [273,373]. Paper II is a systematic mapping
study targeting IR-based tracing, representing one possible approach to support
maintenance of large information spaces in software engineering.

Design science, a problem solving paradigm, is defined by Wieringa as “the
design and investigation of artifacts in context” where an artifact is “something
created by people for some practical purpose” [471]. We apply design science
methodology to conduct improving empirical research, i.e., we strive to create in-
novative artifacts to improve the software engineering state-of-practice. According
to Wieringa, the two major components in a design science research project are the
design activity and the the investigative activity. The design activity builds on un-
derstanding of the context to develop innovations that support an explicit need.
The investigative activity seeks to understand the interaction between the artifact
and the context, e.g., to investigate the needs of stakeholders, or to evaluate a de-
ployed artifact. Design science is an iterative process, and Hevner refers to the
interplay between the design activity and the investigative activity as the build-
evaluate loop [219]. The two activities alternate during repeated iterations in the
loop until the results are satisfactory. Papers III and IV involve design science, as
we develop tool support for automated issue management in close collaboration
with industry partners. The design activities are based on identified needs in the
the target contexts, and we conduct several iterations of the build-evaluate loop as
the tools evolved.

4.3 Settings of Empirical Studies

Software engineering experiments are sometimes classified as either in vivo or in
vitro [42], depending on the experimental setting and the trade-off between con-
trol and realism. In vitro represents experiments conducted in an environment
where a high level of control can be attained, whereas studies in an in vivo setting

20 INTRODUCTION

instead are executed in a real-world setting, also known as the field. But this tra-
ditional two-tier classification scheme offers only a coarse-grained separation of
experimental settings in empirical software engineering. For example, Travassos
and Barros argue that the increased use of computer models in software engineer-
ing strongly influences the experimentation process, and that this variation is not
properly highlighted in the traditional in vivo/in vitro classification [451].

While working on a secondary study, Travassos and Barros introduced two ad-
ditional levels to the classification: in virtuo and in silico. The extension, inspired
by classification schemes used in biology [223], resulted in a four-tier classifica-
tion. Experiments conducted in virtuo involve a virtual environment, composed
by computer models that represent real-world elements or phenomena. In such
studies, researchers let human subjects interact with the virtual environment. In
the in silico setting on the other hand, experiments are completely executed using
computer models. Again the environment is virtual, but also the interaction with
the environment is simulated using computer models (instead of human subjects).
The benefits of in virtuo and in silico experiments is that they require considerably
less effort, and that they are easier to replicate. Travassos and Barros even propose
a pool of “virtual software engineers” that can be used for pilot runs before any
real-world experiments take place [451].

The description of Travassos and Barros’ four-tier classification scheme is only
intended for human-oriented experiments. The discussion provided by Travassos
and Barros on in silico experiments does not match the type of software engineer-
ing experiments referred to by Wohlin et al. as technology-oriented [477], i.e.,
without human subjects. On the contrary, Travassos and Barros claim that “in sil-
ico studies are still very rare in software engineering” [451]. However, numerous
technology-oriented software engineering experiments have been published, and
also this thesis includes such empirical enquiries in Papers III, IV, and V. Thus, to
better suit the classification of papers included in this thesis, we define technology-
oriented experiments as conducted in an in silico setting. In virtuo studies on the
other hand, do not apply to this thesis, and we do not discuss them further.

To enable classification of all papers in this thesis, we also consider case stud-
ies. Case studies, i.e., an “investigation of a contemporary phenomenon within its
real-life context” [413], can by definition not be conducted in a controlled or sim-
ulated setting. However, we argue that the in vivo setting should be complemented
by an in situ setting. A researcher can study a contemporary phenomenon in its
real-life context by letting practitioners share experiences in interviews, and the
setting can be referred to as in vivo. To refer to the setting as in situ on the other
hand, the phenomenon should be studied in its real-life when it happens, e.g., us-
ing ethnographies [405] or using instrumenting systems [295]. Note that the in
situ setting has been mentioned in previous publications on research methodology
in software engineering, e.g., Perry et al. [372] and Kitchenham et al. [275], but
we explicitly distinguish it from in vivo.

To conclude, in this thesis we use the following four-tier classification scheme

4 Research Methodology 21

of study settings, ordered by an increasing level of realism:

• In silico studies are conducted entirely on a computer. The object under
study is a software artifact and the researcher analyzes its output. Sometimes
the study is designed as a technology-oriented experiment [477], in less rigid
studies in silico evaluations rather act as proofs-of-concept, demonstrating
the feasibility of an approach. In silico evaluations have successfully ad-
vanced state-of-the-art techniques in IR, ML, and RSSEs, e.g., using bench-
marking [415] in the format of contests [119] such as in the TREC experi-
ments for IR [434].

• In vitro studies are executed with human subjects in a controlled environ-
ment. In software engineering, most in vitro studies are human-oriented
experiments in a university lab [451]. Often it is too costly to involve prac-
titioners in the experiments, instead student subjects are frequently studied
in classroom settings [225].

• In vivo studies explore software engineers in their own environments. Typi-
cally we refer to practitioners working in private or public software develop-
ment organizations, but it can also be used for studies of developers working
from home in open source software projects. Case studies based on inter-
views [413, pp. 50], possibly triangulated with analysis of archival data,
constitute examples of studies in an in vivo setting.

• In situ studies seek to understand software engineers in their own envi-
ronments, in real-time as they conduct their work tasks. To accomplish
the real-time data collection, the researcher must use what Lethbridge et
al. call first or second degree data collection methods [295], i.e., the re-
searcher is in direct contact with the software engineers, or the researcher
directly collects raw data from a remote location. Example approaches for in
situ studies include long-term observational studies [278] and instrumenting
systems [295].

Finally, for simplicity, we define that literature studies are conducted in an orthog-
onal secondary setting [273].

4.4 Classification of Included Papers
Table 2 summarizes the research strategy applied in this thesis. For each of the
included papers, we list: 1) the addressed research question, 2) the purpose of the
study, 3) the research method applied, and 4) the setting of the study. The rest of
this section further presents and motivates our classification.

Papers I and II address how relations among software artifacts in large soft-
ware engineering projects are maintained. Paper I is an exploratory in vivo case
study in which we interviewed 30 practitioners in six companies. The goal of the

22 INTRODUCTION

Table 2: Classification of papers included in the thesis, and a mapping to the
research questions.

Paper RQ Purpose Main research methods Setting
I RQ1 Exploratory Single case multi-unit case

study
In vivo

II RQ1 Exploratory Systematic mapping study Secondary
III RQ2, RQ3 Improving Design science, technology-

oriented experiments
In silico

IV RQ2, RQ3 Improving Design science, single case
two-unit case study

In situ

V RQ4 Improving Technology-oriented experi-
ment

In silico

study was to get a deep understanding of the current state of alignment between
Requirements Engineering and Testing (RET) in industry practice. We define the
case as RET alignment in software engineering practice, and each of the six stud-
ied companies is considered a unit of analysis. While other perspectives could be
taken, e.g., enabling a comparative view by considering the study as consisting of
six cases as discussed by Runeson et al. [413, pp. 185], we prefer to pool the 30
interviews for a rich picture of state-of-practice challenges and practices related to
RET alignment. Paper II instead explores the state-of-the-art in the scientific liter-
ature regarding one specific approach to support maintenance of relations among
development artifacts, namely IR-based tracing. We identified 79 primary stud-
ies and classified them based on the type of development artifacts linked, the IR
techniques applied, and the strength of the corresponding empirical evaluations.

RQ2 concerns how an increased level of automation can support issue man-
agement in large software engineering projects. RQ3 is closely related, expressing
how accurate automated tools need to be to actually support software engineers.
We target both RQ2 and RQ3 by two studies with improving purposes, i.e., a large
part of the involved work follows a design science methodology [471]. In Paper
III, we propose increasing the level of automation for IA in proprietary contexts
by training ensemble classifiers. Also, we implement the approach in a tool and
present an evaluation in the form of technology-oriented experiments in silico. In
Paper IV, we discuss providing software engineers with automated decision sup-
port for CIA using the RSSE ImpRec. While we present an in silico study on Imp-
Rec, we primarily evaluate the RSSE in an in situ case study. Two development
teams constitute the units of analysis, and we study how the software engineers in-
teract with ImpRec as part of their work in the field. In both Papers III and IV, we
provide comparisons with current manual approaches and discuss what is needed
by automated tools in issue management, as well as what risks are introduced by
an increased level of automation.

Finally, RQ4 deals with technology transfer, an important final step for applied

5 Results 23

researchers. Our work shows that the accuracy of automated issue management is
highly dependent on the specific development context, i.e., the nature of the in-
volved development artifacts appears to influence the result more than the selected
technique. Thus, tuning the automated tool support for the specific deployment
context is fundamental to reach the potential of a tool. Paper V, also with an
improving purpose, describes how to use design of experiments [342] to system-
atically, in silico, find feasible parameter settings for software engineering tools.

5 Results

This section introduces the included papers, with a particular focus on findings
related to the four RQs. For each paper, we explain the rationale behind the study,
and the empirical data behind the conclusions. We summarize the main contri-
butions of the papers in bullet lists, and conclude by describing how the paper is
related to our parallel work, not included in this thesis.

Paper I: An Industrial Case Study on Alignment of Re-
quirements Engineering and Testing

Both requirements engineering and testing aim to support cost-efficient develop-
ment of software systems, meeting the customers’ demands on functionality and
quality. However, while both requirements engineering and testing constitute ma-
ture research communities in software engineering, few studies have focused on
the alignment of the “two ends of software development”. Paper I provides deep
insights in the current state-of-practice of Requirements Engineering and Testing
(RET) alignment through interviews with practitioners. Figure 6 captures our pre-
understanding of the RET phenomenon in a conceptual model, a starting point for
the discussions with all interviewees in the study.

We conducted a large case study following a rigorous process involving 11
researchers. In total, we interviewed 30 practitioners representing different roles
related to RET (e.g., requirements engineers, testers, and project managers) from
six companies in Sweden and Norway. The interviews were guided by three RQs
exploring: 1) current challenges in RET alignment, 2) current practices supporting
RET alignment, and 3) which challenges are addressed by which practices. The
main contributions of Paper I are:

• Empirical evidence of 16 challenges in RET alignment, including:

– Tracing between requirements and test cases.

– Managing a large document space.

– Maintaining alignment when requirements change.

24 INTRODUCTION

Figure 6: Conceptual model of RET alignment. While the illustration resembles a
single iteration of the traditional V-model, we consider also iterative development,
i.e., “a series of consecutive Vs”, in our conceptual model.

• Identification of 27 practices that support RET alignment in industry, in-
cluding:

– Maintaining trace links between development artifacts.

– Using test cases as requirements.

– Initiating testing activities early in the development process.

• A mapping of the practitioners’ views of how the identified practices address
the RET challenges, providing actionable guidance for long-term process
improvement in industry.

• Four high-level observations on RET alignment:

1. The human side is central, i.e., the communication and collaboration
between people is vital.

2. The quality of the requirements is critical for the subsequent testing
activities.

3. The size of the development organization is a key variation factor in
what challenges arise and what practices are applied.

4. Practices involving requirements documentation and tracing are ap-
plied for development projects mandated by external process require-
ments (e.g., safety standards), but only to a limited extent in organi-

5 Results 25

zations with nothing but internal motivation on formal documentation
and traceability.

Paper I has opened an avenue for future research on RET alignment. The paper
laid the foundation for the RET workshop series4. Due to the size of the study, the
practical undertaking provided valuable experiences from running a large-scale
case study involving 11 researchers and more than 210,000 words in the inter-
view transcripts. Experiences and lessons learned have been reported in a separate
chapter in a textbook on case study research by Runeson et al. [413, pp. 183-199].
Based on the findings from Paper I, we have so far published two additional papers:
1) an experience report on to what extent the identified challenges apply to a case
of large-scale software development in the public sector in Sweden [XIX], and 2)
a deeper analysis of one of the RET practices identified, i.e., using test cases as
requirements [XXIV]. Finally, two subsets of authors have developed theoretical
frameworks to support RET research and practice. Bjarnason et al. used the inter-
view data to inductively generate a theoretical model of ‘gaps’ that obstruct RET
alignment [63], and Unterkalmsteiner et al. developed a taxonomy to describe and
assess RET alignment in an organization [456].

Paper II: A Systematic Mapping Study of IR-based Tracing
Tools

One state-of-practice approach to structure the challenging document space in
large software development projects, confirmed by Paper I, is to maintain trace-
ability from requirements to later artifacts. However, a number of previous studies
have shown that maintaining trace links among artifacts is both tedious and error-
prone. To support traceability management, several researchers have proposed
IR-based tracing to propose candidate trace links between artifacts with a high de-
gree of textual similarity. Paper II surveys existing research on IR-based tracing,
and reports to what extent the approach has been applied to maintain traceability
both between requirements and test artifacts, and development artifacts in general.

We conducted a comprehensive literature review of a decade’s worth of IR-
based tracing research. Our goal was to identify both technical and empirical as-
pects of previous work, i.e., both which IR models that had been implemented, and
the strength of evidence from previous evaluations with regard to feasibility in an
industrial setting. Using an established methodology for systematic literature re-
views, we aggregated empirical data from 132 studies reported in 79 publications.
The main contribution from the literature study is evidence that:

• A majority of research on IR-based tracing implemented algebraic IR mod-
els, most often the classic VSM with cosine similarities.

4International Workshop on Requirements Engineering and Testing (RET’14) [XX] (RET’15)

26 INTRODUCTION

• Most studies address trace links either: 1) between different requirements
abstraction levels, or 2) between requirements and source code (cf. Fig. 7).
A few studies discuss tracing between requirements and test cases, but there
is potential for future work.

• A handful of controlled experiments with student subjects suggest that IR-
based tracing tools help engineers establish correct trace links faster, e.g., in
the context of CIA.

• Most previous evaluations provide low strength of evidence, and case studies
in industry are much needed. For example:

– Most studies do not analyze the usefulness of IR-based tracing further
than tool output, i.e., in silico evaluations conducted “in the cave” [237]
dominate.

– A majority of the evaluations have been conducted in simplified docu-
ment spaces, most often involving fewer than 500 artifacts, and often
the artifacts originate from small student projects.

We mapped the primary studies identified in Paper II onto the levels of the
evaluation taxonomy we proposed in prior work [X], and the outcome was used as
the starting point for two subsequent studies. First, we further investigated the in
silico results reported in the primary studies [XV]. We show that no IR model reg-
ularly outperforms the traditional VSM, and we instead present results indicating
a strong data dependency, i.e., the dataset under study influences the experimen-
tal results more than the choice of IR model. Second, we conducted a qualitative
survey among the authors of the primary studies, regarding the validity of using
artifacts collected from student projects for evaluation of IR-based tracing [IX].
Our results show that a majority of authors consider student artifacts to be only
partly representative to industrial artifacts, but still the student artifacts are rarely
validated for realism prior to using them in tracing experiments. Finally, based
on our observations of different link types depicted in Figure 7, we hypothesize
that issue reports could be considered important information hubs in the informa-
tion landscape, constituting junctures between RE and testing artifacts (cf. Fig. 7).
This hypothesis paved the way for the focus on issue reports permeating Papers
III, IV, and V.

Paper III: Experiments on Automated Issue Assignment
In large software development projects the inflow of issue reports in a project can
be daunting, threatening the engineers’ ability to stay on top of the situation. To be
able to use issue reports to support navigation between RE and testing artifacts, the
overall issue management process needs to be efficient and effective. One of the
challenges involved in early issue triaging is IA, i.e., allocating appropriate devel-
opers to resolve the issue. Several researchers have proposed automated IA using

5 Results 27

Figure 7: Types of trace links in research on IR-based tracing. Most studies
target traces between requirements on different abstraction levels, or between re-
quirements and source code. Fewer studies address tracing between requirements
and test artifacts. We propose using issue reports, illustrated by a bug, as informa-
tions hubs connecting different parts of the conceptual model.

ML, but the previously developed tools have almost exclusively been evaluated in
the context of OSS projects. Paper III explores to what extent results from the
OSS domain can be transferred to the proprietary contexts of two of our industry
partners.

We developed a prototype for automated IA using stacked generalization, i.e.,
a state-of-the-art ML approach to combine individual classifiers into an ensemble.
To evaluate the feasibility in proprietary contexts, we collected historical issue
reports from five projects originating from two industry partners. We conducted
controlled experiments varying ensemble selections and the amount of training
data, and the main contributions of the paper are:

• A prototype for automated IA, based on OSS components, that is easy to
deploy in state-of-practice issue repositories.

• The largest evaluation of ML-based issue team assignment in proprietary
contexts, in contrast to assignment to individual developers in OSS projects,
based on more than 50,000 issue reports from industry.

• Initial evidence that the prototype, without context-specific tuning, has the
potential to assign issue reports, in a fraction of a second, with an accuracy
in line with current manual work.

• An empirically grounded rule-of-thumb: at least 2,000 issue reports should
be included in the training set. However, continuous monitoring of the pre-

28 INTRODUCTION

diction accuracy is fundamental, as the prediction accuracy deteriorates as
older training data is used, i.e., the benefit of adding more issue reports in
the training might be nullified by the disadvantage of training on less recent
data.

Besides IA, we have explored ML-based support for several other decisions
involved in early issue triaging. Inspired by Paper IV, we have defined and super-
vised three MSc thesis projects. First, Johansson explored increasing the number
of features representing an issue report [250], and applying learning-to-rank rank-
ing [311], to improve duplicate detection among issue reports. However, our ef-
forts did not outperform the off-the-shelf IR system Apache Lucene using default
settings [XXI]. Second, Olofsson and Gullin developed a prototype ML-tool at
Sony Mobile Communications that with an accuracy of 70% predicted whether an
issue report would lead to a corrective code change or not [361]. Third, Mauritzon
used latent dirichlet allocation to identify patterns in very large-scale issue reports
from the customer support organization at Sony Mobile Communications [333].
All three MSc thesis projects indicate that an increased level of automation in the
issue inflow, based on ML, has the potential to provide large organizations with
actionable decision support.

Paper IV: An Industrial Case Study on ImpRec: An RSSE
for Change Impact Analysis

Once an issue report has been assigned to the appropriate development team, and
the need for a corrective code change has been confirmed, a developer should
assess how the change will affect the rest of the software system. Especially in
safety-critical development contexts CIA is a fundamental activity, mandated by
various safety standards as a formal activity that must be completed prior to chang-
ing any source code. Not only do developers need to specify how other pieces of
source code are impacted, but also how requirements might be influenced, whether
any of the system’s quality attributes will be affected, and what test cases should
be re-executed to verify the changes etc. Several studies report that conducting a
CIA can be a cumbersome and error-prone activity in complex software systems,
and that practitioners mostly conduct CIA without tool support.

We propose supporting CIA by establishing a knowledge base of previous im-
pact, i.e., a collaboratively created network of trace links, connecting historical
issue reports and various development artifacts in the information landscape. We
implement the approach in the RSSE ImpRec, a prototype tool for automated CIA,
tailored for an organization developing safety-critical automation systems. We
evaluate ImpRec in a two-step industrial case study, consisting of a static valida-
tion followed by a dynamic validation et al. [200]. The main contributions of the
case study, and the involved design science, are:

5 Results 29

• A prototype RSSE for automated CIA, combining state-of-the-art IR with a
collaboratively created knowledge base of trace links.

• A longitudinal in situ evaluation of ImpRec deployed in two separate de-
velopment teams, a type of human-oriented research that has been much
neglected within RSSE research [402, pp. 9].

• A quantitative assessment of the ImpRec correctness, i.e., the static valida-
tion, complemented by a qualitative evaluation of the ImpRec utility, i.e., the
dynamic validation, two quality dimensions proposed by the RSSE commu-
nity [32].

• A discussion, based on the QUPER model [49], on how accurate RSSE
output for CIA needs to be for developers to consider it useful.

The development of ImpRec started before the case study reported in Paper
IV was initiated. While ImpRec evolved considerably during the case study, the
backbone development of ImpRec was presented in a previous chapter in an edited
book on RSSEs [XVI]. The book chapter in turn builds on three publications.
First, we showed the presence of extensive networks of issue reports, consisting
of related issues, in the public Android issue repository and a proprietary coun-
terpart [XIV]. Based on this finding, we argued that network analysis could be
applied to improve tools supporting search and navigation in software projects.
Second, we suggested link mining in historical CIA reports to establish a seman-
tic network of system traceability [XIII]. Also, we provided initial suggestions on
how the trace links in the semantic network could be (re-)used in tool support for
CIA. Third, in a study on duplicate detection, we showed that Apache Lucene, a
state-of-the-art OSS IR solution, provides a promising approach to identify similar
issue reports [XXI]. The implementation of ImpRec combines elements from the
three publications, namely: 1) network analysis to support search and navigation,
2) link mining to enable traceability reuse, and 3) scalable searching for similar
issue reports using Apache Lucene. Parallel to the case study in Paper IV, we
conducted a survey with practitioners to better understand the challenges involved
in state-of-practice CIA [XXII]. The survey covers several industry sectors, e.g.,
automotive, aerospace, and railroad, thus we show that many challenges identified
in the automation context generalize to other domains, such as: insufficient tool
support and a vast number of artifacts to trace.

Paper V: Tuning Software Engineering Tools Using Design
of Experiments

Software engineering tools are often highly configurable through parameters. While
the parametrization allows context-specific tuning, it also requires the users to find
a feasible parameter setting. Several studies show that default settings might not

30 INTRODUCTION

let tools reach their potential. However, as software engineering tools often imple-
ment advanced techniques, finding a feasible parameter setting often constitutes a
considerable challenge.

Paper V describes how carefully designed experiments can be used to tune
software engineering tools. We present TuneR, a three-phase tuning framework
using R, combining space-filling designs and response surface methodology. As
an illustration of how to apply TuneR, and as a proof-of-concept of the framework,
we use it to tune ImpRec to the safety-critical context presented in Paper IV. The
main contributions of the study are:

• A tuning framework for software engineering tools with extensive guide-
lines and a hands-on example.

• A discussion on how traditional Design of Experiments (DoE) and Design
of Computer Experiments (DoCE) differ from experiments intended to tune
software engineering tools.

• A proof-of-concept tuning of ImpRec, resulting in a 21% increase in the
response variable as compared to the initial ad hoc tuning during ImpRec
development.

• Using an exhaustive approach, we show that a 24% improvement would
have been possible. However, the exhaustive approach requires more than
50 hours of computing time, and do not provide any insights in how the
parameter interact.

During the work on this thesis, we experienced how much the performance of a
tool depends on the context, and the need for easy-to-follow tuning guidelines for
software engineering tools became evident. The strongest piece of evidence comes
from the Paper II follow-up study [XV], in which we show that the dataset under
study appears to influence the results of IR-based tracing more than the selected IR
model. However, also in our other tool-oriented studies, we noticed that one single
parameter setting typically does not provide results that generalize to all contexts.
The observed importance of parameter settings is in line with work by other tool
researchers, e.g., Arcuri and Fraser [25] and Thomas et al. [446], and we argue
that tuning research could support tool adaptation in industry.

6 Synthesis

This section provides answers to the four research questions, by synthesizing the
results from the included papers.

6 Synthesis 31

RQ1: How do state-of-practice approaches to maintain
relations between development artifacts compare to pro-
posals in the scientific literature?

Paper I reports from a broad case study on RET alignment in industry practice.
While the scope of the study goes beyond maintenance of artifact relations, some
findings are closely related. For example, practitioners in three of the six studied
companies explicitly report “managing a large document space” as a RET chal-
lenge. The interviewees report that the sheer number of development artifacts
makes it difficult to get an overview, as sometimes tens or hundreds of thousands
of requirements, test cases, and other documents constitute the information land-
scape in large software engineering projects. The information overload is further
complicated by constant modifications of development artifacts in evolving sys-
tems, changes that might lead to redundant information, in line with Wnuk et al.’s
observation of obsolete requirements [475]. Some interviewees in Paper I also
stress that the information management in software engineering projects is ob-
structed by inadequate tool support. For example, updating information can be
cumbersome, and tools turn into “information silos” due to poor interoperability.
A state-of-practice approach to structure large information spaces is to maintain
explicit trace links between artifacts, but several interviewees report that connect-
ing artifacts in different databases is tedious manual work, especially in projects
with large legacies. The challenge of maintaining trace links is well-known in the
literature [202], and our findings from Paper I provide further evidence. Still, in
development contexts regulated by strict process standards (e.g., IEC 61511 [238]
and ISO 26262 [241]), both backward and forward traceability must be maintained
through the entire product lifecycle.

Several researchers have proposed supporting trace link management by in-
creasing the level of automation through tool support. Based on the assumption
that development artifacts that are textually similar are likely to be related, a fam-
ily of tools based on IR approaches have evolved. Paper II shows that parts of the
traceability research community have been highly active in research on IR-based
tracing, and tools and approaches have been proposed and improved for more than
a decade. However, we show that the strength of evidence supporting the useful-
ness of IR-based tracing is low, as no tools have been evaluated in large in situ
studies. We also argue that a purely academic race for marginally better tool out-
put brings little practical value, especially since the current generation of tracing
tools appear to have plateaued [114]. Our sceptical position toward minor tool im-
provements resonates with findings from experiments by Cuddeback et al. [128]
and Dekhtyar et al. [151]; even though the correctness of a tracing tool’s output
improves, it does not necessarily lead to better overall decisions by the human
working with the tool. While we have also touched upon this phenomenon in a
pilot experiment [VI], only further user studies can provide holistic understanding
of the interaction between humans and tracing tools.

32 INTRODUCTION

Based on Papers I and II we conclude that state-of-practice management of
artifact relations in information spaces include management of explicit trace links,
and that several researchers have proposed introducing IR-based tools to support
the tracing. However, there is still a considerable gap between industry practice
and the research proposed by the traceability community. Apart from a case study
on a small development organization in China [304], there are no success stories
reporting utility of IR-based tracing in industry. Instead, the strongest evidence in
support of IR-based tracing tools comes from experiments with student subjects in
classroom settings (e.g., De Lucia et al. [148] and Huffman Hayes et al. [232]). To
close the gap between research and industry, we stress that there is a strong need to
perform industrial case studies to understand how, and if, developers can benefit
from IR-based tracing. Thus, we reinforce CoEST’s call for additional empirical
work [202].

RQ2: How can an increased level of automation support
developers in issue management?

The constant inflow of issue reports in large software development projects can
be daunting, putting developers in a state of information overload. Most previous
research on tool support for issue management has focused on the inflow of issue
reports in OSS development projects, where typically anyone can submit reports in
public issue trackers. In this thesis, we show that also in proprietary projects, with
internal issue management processes, the inflow of issue reports might constitute
a considerable challenge. Even though the obvious “junk reports” that sometimes
plague OSS projects (e.g., general nonsense, spam, and even worms [52]) are rare
in proprietary contexts, also the volume of valid issue reports can be obstructive.

In Papers III and IV, we explore the effect of increasing the level of automa-
tion in the issue management process by providing additional decision support.
We target two specific work tasks involved in issue management, both highlighted
as challenging by our industry partners. First, we address IA, the activity of al-
locating appropriate developers to resolve an issue. In some projects, frequent
re-allocations, referred to as “bug tossing”, causes both delayed issue resolutions
and general frustration among developers [55, 248]. Second, we target CIA, the
task of assessing the impact of software changes on the rest of the system. CIA
is a fundamental activity in development and evolution of safety-critical software
systems, but several studies report it to be costly and error-prone [68, 208, 271].

The overall approach we advocate in this thesis, the backbone of both Pa-
pers III and IV, is to guide issue management based on historical patterns in the
issue tracker. We posit that there is potential to provide actionable decision sup-
port based on a project’s history of issue reports, and that it is wasteful to not
pay attention to the ever-growing amount of information available in issue track-
ers. While the last decade saw numerous publications describing automated tool
support along those lines, the number of studies reporting success stories from

6 Synthesis 33

industry remains low. On the other hand, our position concurs with the ongoing
expansion of data-driven decision support and business intelligence in various do-
mains [256, 380], and we argue that software development projects should be no
exception.

Finding patterns in issue trackers appears to be particularly promising for sup-
porting navigation of large project landscapes. Previous studies argue that the
issue tracker of a project acts as a collaborative hub [24, 100], effectively con-
necting both developers and development artifacts. Both Papers III and IV report
successful evaluations of tools that leverage on historical issue reports to provide
decision support in issue management, reaching Levels 4 and 3 as defined by Para-
suraman [367] (cf. Table 1). In Paper III, we use ML to train classifiers on his-
torical issue reports from five proprietary development projects, and demonstrate
increased automation in team assignment of incoming issue reports. In Paper IV,
we describe how an RSSE can reuse a proprietary project’s history, captured in
a collaboratively created knowledge base, to recommend potential impact when
implementing corrective changes due to incoming issue reports.

RQ3: How accurate do tools supporting issue manage-
ment need to be for practitioners to start recognizing their
value?

To confirm whether tool support actually supports developers in industry, studies
must consider what happens when human users enter the picture. Avazpour et al.
discuss evaluation of RSSEs from different perspectives by defining 16 quality di-
mensions [32], e.g., correctness, novelty, usability, and scalability. In this thesis,
we focus on two of the quality dimensions: correctness and utility. Correctness
compares how close an RSSE’s output is to the output that is assumed to be correct,
and utility measures how much value a user actually gains from the RSSE’s out-
put. While correctness is a quality dimension that can be assessed using in silico
studies, understanding utility requires human-oriented studies. However, as high-
lighted in Paper II, there are few published user studies on IR-based tracing tools.
Moreover, the lack of user studies generalizes to both other aspects of traceability
research [202] and evaluations of RSSEs in general [402].

In Papers III and IV, we map the correctness of the proposed tools to the utility
of the tools. In both papers, we discuss utility based on the QUPER model [49].
The QUPER model considers quality to be a continuous, but non-linear, charac-
teristic with three distinguishable breakpoints: 1) utility, 2) differentiation, and 3)
saturation. In this thesis, we are particularly interested in whether the proposed
tools have passed the utility breakpoint, i.e., do developers working with our tools
recognize their value?

Paper III argues that the correctness, discussed in terms of prediction accuracy,
of an automated tool does not have to be as high as for a fully manual process
to bring value in IA, since the automated process provides candidate assignments

34 INTRODUCTION

in a fraction of a second. Furthermore, we envision that deployed automated IA
supports issue management by providing decision support, but does not fully re-
place the human decision making. However, preliminary measurements of bug
tossing in one of the studied organizations indicate that the correctness of the au-
tomated approach is in line with the current manual process, thus we claim that
our approach has passed the utility breakpoint. Future work should be directed
at deploying the tool in an operational setting, to fully understand the potential of
automated IA.

Paper IV reports from a more direct mapping of correctness and utility. First
we measured the correctness of our RSSE using in silico simulations, re-enacting
the historical inflow of issue reports, by conducting automated CIA for a repre-
sentative subset of the inflow. The simulations yielded correctness similar to what
has been reported in related work on automated CIA, i.e., about 40% of the true
impact is presented among the top-20 recommendations. Reassured by the simu-
lation results, we deployed the RSSE in two development teams in a longitudinal
in situ study. As a final step in the study, we conducted interviews with developers
to collect their experiences. Again we based discussions on the QUPER model,
and we conclude that the additional search and navigation provided by ImpRec,
at the current level of correctness, corresponds to a tool that has passed the utility
breakpoint.

During the work on this thesis, we have also identified other examples of re-
search on automated issue management that have transferred to state-of-practice
tools. Bugzilla5 has support for duplicate detection of issue reports at submission
time. While the user types the title of a new issue report, Bugzilla concurrently
presents possible duplicates. HP Quality Center also provides automated duplicate
detection of issue reports, and the feature is explicitly used in the marketing of the
tool [220]. Furthermore, Cavalcanti et al. report that nine other issue trackers
implement IR techniques for duplicate detection, including JIRA and Trac [100].
However, the authors conclude that the advanced techniques presented in research
papers have not yet been adopted in state-of-practice issue trackers, an observa-
tion that has also been reported in a literature study by Zhang et al. [493]. Both
Cavalcanti et al. and Zhang et al. hypothesize that the results reported in state-
of-the-art research might not be sufficient to convince industry practitioners. In
May 2012 on the other hand, a US patent with the title “System and method for
maintaining requirements traceability” was granted [48], describing an approach
to synchronize artifacts during software evolution. While the actual tracing pro-
cess is only described in general terms, a research paper implementing IR-based
tracing is one of few academic publications cited [314]. To conclude, we argue
that the examples of initial technology transfer mentioned above indicate that at
least parts of the research on automated issue management is mature enough for
industrial use, as for example rudimentary duplicate detection has disseminated to
state-of-practice issue trackers.

5http://www.bugzilla.org/

6 Synthesis 35

RQ4: How can transfer of research on automated tools for
issue management to industry be supported?

Developing research prototypes is not the end goal of software engineering re-
search; we should also consider how to transfer new technology to industry prac-
tice [201]. A frequent concern in studies on prototype tools, often discussed as
a threat to validity, is the scalability of various approaches. For the tools pro-
posed in Papers III and IV, we have developed solutions with the industrial scale
in mind. The techniques involved in this thesis typically perform better as more
data is available, i.e., we leverage on the scale of the problem. In this thesis, we
address another obstacle to successful technology transfer of tools to industry: to
properly adapt them to a specific operational setting.

The correctness of output from software engineering tools is typically context
dependent. Often advanced algorithms are implemented that rarely have a single
setting that yields the best results in all contexts [479]. We have highlighted the
evident data dependency for IR-based tracing tools in a follow-up study of Paper
II, showing that the dataset used for evaluating a tool might influence the correct-
ness more than the selected IR model [XV]. Also within an operational context
the performance of a tool might vary over time, due to changes in either the soft-
ware under development or the development process applied. We discuss this phe-
nomenon in Paper III, and stress the importance of continuously monitoring the
quality of the tool output, as sudden decreases might indicate that an ML-based
approach should disregard parts of the available training data.

To help tackling the challenge of variations in operational contexts, many tools
proposed by software engineering researchers are highly configurable. However,
researchers cannot expect practitioners to master the underlying mechanisms of
their tools, thus practitioners need support for both initial tool deployment and
subsequent maintenance. In Paper III we apply stacked generalization [478], an
approach to combine multiple classifiers in an ensemble. While the idea of the
ensemble is to provide a more robust ML-based tool for IA, there are still several
variation points that need to be considered before deployment in industry, e.g.,
which classifiers to include in the ensemble, and how to preprocess the textual data.
In Paper IV we present ImpRec, an RSSE with a configurable ranking function for
candidate impact. The parameters of the ranking function set relative weights of
the influence of the textual similarity and the network measures, but finding a
feasible setting is not straight-forward.

Several studies show that relying on the default settings of a tool might lead
to suboptimal performance [25, 58, 313], and we argue that there is a need for
tuning guidelines for software engineering tool support. In Paper V, written in a
tutorial style, we introduce TuneR: an experimental framework for tuning software
engineering tools. Based on established research on design of experiments [342],
successful in numerous engineering applications [236], we discuss how to adapt
the experimental approach to better suit the tuning of software engineering tools.

36 INTRODUCTION

TuneR combines space-filling designs and response surface methodology in a three
phase framework, and as a proof-of-concept we apply TuneR to improve the cor-
rectness of ImpRec by 20.9%.

Finally, Paper IV includes a preliminary discussion on another aspect of tech-
nology transfer: the usability of the tool support. Usability, also defined as a
quality dimension by Avazpour et al. [32], implies that a tool should be both effec-
tive and efficient, as well as providing some degree of satisfaction for their target
users. Interviews with developers regarding experiences with ImpRec confirm the
importance of providing tool support that is easy to use, and that lowering thresh-
olds that inhibit tool use is critical. Some highlighted aspects of usability include
true integration into the existing issue tracker, fast tool queries, and intuitive op-
tions to filter output. The importance of information filtering is in line with our
previous finding from focus groups on tool support for regression test scoping,
stressing that interaction with tool output is central [XVII].

7 Threats to Validity

The results of any research effort should be questioned, even though proper re-
search methodologies were applied. The validity of the research is the foundation
on which the trustworthiness of the results is established. We discuss the primary
validity threats related to our RQs, and the actions taken to reduce the threats, using
the classification proposed by Runeson et al. [413]. Based on our research goals,
we emphasize external validity rather than internal validity. At the same time, con-
struct validity and reliability were maximized given the resources available during
the studies.

Construct validity is concerned with the relation between theories behind the
research and the observations. Consequently, it covers the choice and collection of
measures for the studied concepts. For example, the questions during an interview
must not be misunderstood or misinterpreted by the interviewee. Two strategies
to increase construct validity are: 1) using multiple sources of evidence, and 2)
establishing chains of evidence [485].

RQ1 is partly answered through a large interview study [Paper I], a study that
involved 11 researchers and 30 interviewees. While the selection of interviewees
covered six companies, there is still a risk that we captured a limited or unbal-
anced view of the construct, i.e., RET alignment. Two other construct validity
threats apply to our interview study, as well as to interview studies in general.
First, academic researchers and industry practitioners might use different termi-
nology, leading to misunderstandings. Second, the interview situation might influ-
ence the interviewee to either hide facts or to respond after assumed expectations,
a phenomenon called reactive bias. We mitigated these threats during the design
of the study, by iteratively developing an interview guide that was both reviewed
and piloted, as well as by producing a conceptual model of RET alignment that

7 Threats to Validity 37

was discussed early in the interviews to align the terminology (cf. Fig. 6). To re-
duce the reactive bias, we did not offer any rewards for participation in the study,
and all interviewees were guaranteed anonymity. The other part of RQ1, the state-
of-the-art review, is addressed by a systematic mapping study. We argue that the
identification of primary studies is subject to threats to construct validity, as the
search string we use must match the terminology used by traceability researchers.
To mitigate this threat, we validated the search string on a ‘gold standard’ set
of publications, established by a combination of database searches and snowball
sampling [476].

RQ3 is primarily discussed based on the QUPER model [49]. In Paper III we
use the model in our argumentation regarding the utility breakpoint, and in Paper
IV we use it directly in interviews with practitioners to stimulate discussions on
QUPER’s three quality breakpoints. We consider two threats to using QUPER
in these ways as particularly important. First, QUPER was developed to support
roadmapping of quality requirements in market-driven requirements engineering,
but we use the model to discuss the value of automated tools. Second, the inter-
viewees might not have properly understood the QUPER model, or our approach
to map the quality of tool output to its breakpoints. To mitigate these threats, the
interview guide used in Paper IV was reviewed, with a focus on understandability,
by several researchers including the principal QUPER developer. Furthermore, a
previous evaluation of QUPER describes the model as “not very easy [to under-
stand], but definitely not difficult” [49], and the interviewees in Paper IV did also
not signal any considerable problems.

Internal validity is related to issues that may affect the causal relationship
between treatment and outcome. In experiments, the internal validity refers to
whether the effect is caused by the independent variables or other confounding
factors. To minimize the effect of confounding factors, experimental designs typ-
ically employ randomization, replication, and blocking [342]. In a case study
reporting a successful tool evaluation, an example internal validity threat is work
processes that change during the data collection, i.e., the observed improvements
might have been caused by process improvements rather than additional tool sup-
port. For descriptive and exploratory studies however, internal validity is typically
not a threat as casual claims rarely are made [485].

The four RQs introduced in this chapter are all of exploratory nature, as indi-
cated by the ‘how’ formulations. Consequently, we do not consider confounding
factors a primary validity threat. However, causality is indirectly involved, as Pa-
pers III, IV, and V to various extent report results from experiments. An example
threat to the internal validity in Paper III is that we use default settings for all
classifiers studied, a choice that possibly favors some of them, thus the ensemble
selections we conclude as the best in the different study contexts might have been
influenced. Moreover, Paper II is a secondary study aggregating experimental re-
sults from previous work, thus our conclusions are affected by the threats to the
primary studies. However, in the light of the four ‘how’ RQs stated in this chapter,

38 INTRODUCTION

the absence of casual claims limits the threats to internal validity of our corre-
sponding conclusions. Further discussions on internal validity are available in the
individual papers.

External validity concerns the ability to generalize the findings outside the
actual scope of the study, i.e., results obtained in a specific context may not be
valid in other contexts. While quantitative studies can apply statistics and sampling
strategies to strengthen generalizability, qualitative studies must rely on analytical
generalization [413, pp. 71], i.e., researchers can extend results to other cases that
have similar characteristics. To support analytical generalization from a qualitative
study, it is essential to present a comprehensive context description [374]. Other
strategies to address threats to external validity include studying multiple cases
and replicating experiments [485].

Related to RQ2, we propose two tool solutions to increase the level of automa-
tion: ML-based IA and an RSSE for CIA. The first tool is evaluated using more
than 50,000 issue reports from five projects in industry. While the issue reports
originate from only two proprietary contexts developing embedded software sys-
tems, both the content of the issue reports and the team structures are similar to
what we have observed in other companies. Furthermore, our approach is in line
with previous work evaluated in OSS projects and we have not tuned the tools to
the specific projects. To conclude, we consider the external validity of our ap-
proach to automated IA as high. The second tool on the other hand, implemented
in the tool ImpRec, is tailored for one specific development organization. Imp-
Rec’s knowledge base is mined from the issue tracker in that organization, and
obviously the tool, in its current form, can only be used in this context. How-
ever, as safety standards from different domains share many aspects of traceability
and CIA, we argue that the overall approach, i.e., to enable reuse of previously
established trace links [XIII], has potential to support also other safety-critical de-
velopment contexts.

Also regarding the other three RQs, it is worthwhile to question the gener-
alizabilty of our findings. RQ1 explores state-of-practice RET alignment in six
different companies, but we focus on one single state-of-the-art approach to man-
age artifact relations, i.e., maintaining trace links among software artifacts. How-
ever, there are several other approaches to support engineers in large software
engineering information landscapes, e.g., model-based engineering [158], non-
IR tools supporting traceability management [113], and general process improve-
ment [286]. RQ3 addresses how good automated solutions in issue management
need to be for practitioners to recognize their value. We exclusively discuss the
utility breakpoint of our two tool solutions, and it is possible that our findings do
not extend to other related approaches to increase the level of automation in issue
management, e.g., severity prediction [290], effort estimation [XXVI], and fault
localization [389]. Finally, within the scope of RQ4, we propose a tuning frame-
work to support technology transfer. The tuning framework has only been applied
for ImpRec, thus it should be evaluated also for other automated solutions. More-

8 Conclusion and Future Work 39

over, there are other obstacles to technology transfer than the tuning issue, e.g.,
large-scale deployment of tool support [164], and the challenge of conformance
to existing development processes [30]. To further support technology transfer to
industry, we should address such other obstacles in future work.

Reliability relates to whether the same outcome could be expected by another
set of researchers, both in terms of what data was collected and how the data was
analyzed. For qualitative studies, the analysis relies on the interpretation of the
researchers, thus exact replications are highly improbable. During a qualitative
study, researchers should be aware of, and critically confront, favored lines of
interpretation [12]. An example threat to reliability is a poorly designed case study
protocol, obscuring the practical steps involved in data collection and analysis.

The state-of-practice analysis of RQ1 is purely based on qualitative research,
i.e., interview studies with practitioners, thus the reliability of our findings should
be questioned. Our approach to increase reliability is based on the number of re-
searchers involved in the study. To reduce the influence of individual researchers,
all findings in the study, as well as all steps leading to that conclusion, were re-
viewed by at least one other researcher. Furthermore, the research process was
systematically documented in the case study protocol; a living document during
the entire research endeavor. Nonetheless, another set of researchers might have
reported other challenges, e.g., less emphasis could potentially by placed on the
tracing of artifacts by researchers with different preunderstandings.

Also RQ2 and RQ3 are subject to threats to reliability, as we primarily answer
them by synthesizing findings from the included papers. Synthesizing evidence
from other studies, especially qualitative results, also involves a high degree of in-
terpretation [124]. We propose automated solutions for issue management related
to two challenges highlighted by our industry partners; other researchers might,
in collaboration with their industry partners, decide to focus on other topics. An
important concern relates to the general dangers of automation; each increase in
the level of automation introduces new risks [367]. In particular, in Paper IV we
could have investigated this further, and it is possible that other researchers would
claim that introducing additional tool support in safety-critical development con-
texts is generally unwise. Also, regarding RQ3, the discussions related to the
utility breakpoint in the QUPER model are based on our interpretations. To fully
understand how much practitioners benefit from automated tools, and whether the
current level of correctness offered by the tools in this thesis is indeed helpful,
future studies of tools deployed in real operational settings must be conducted.

8 Conclusion and Future Work

The overall goal of this thesis is to leverage the information available in historical
issue reports to support large-scale software evolution. To work toward this goal,
we have conducted research in three sequential phases: 1) the exploratory phase,

40 INTRODUCTION

2) the solution phase, and 3) the utilization phase. All publications included in this
thesis build on empirical research, primarily case study research and experiments.

The exploratory phase is represented by two papers investigating information
management in software engineering, covering current state of industry practice
and the state of research contributions, respectively. In Paper I, based on a case
study of six companies, we show that it is difficult for developers to stay on top of
the highly dynamic information landscapes of large software engineering projects.
We also show that one of the applied practices to maintain structure in a software
engineering project, especially in safety-critical development contexts, is to man-
age explicit trace links among development artifacts. However, trace link man-
agement is known to be labor-intensive, thus in response several researchers have
developed tracing tools implementing Information Retrieval (IR) techniques. Pa-
per II reports from a systematic mapping study of IR-based tracing and shows
that while 79 papers were published before 2011, the number of evaluations in
industry is suspiciously low. Consequently, we conclude that there is a consider-
able gap between the state-of-practice and approaches suggested by the scientific
community, and that additional case studies in industry are needed to close the
gap (RQ1). Guided by these conclusions, we focused the remainder of the thesis
project on case studies and experiments in real world proprietary software engi-
neering contexts.

The solution phase builds on the exploratory phase by using techniques from
Paper II to address difficulties identified in Paper I, and more specifically, chal-
lenges related to information access in large software engineering projects. Fo-
cusing on the constant inflow of issue reports, we present automated tools that
leverage on the volume of historical issue reports to deliver actionable decision
support (RQ2), and we evaluate our proposed tools using more than 60,000 issue
reports from proprietary projects in industry. Paper III proposes ensemble-based
Machine Learning (ML) for Issue Assignment (IA). Paper IV introduces a Recom-
mendation System for Software Engineering (RSSE), ImpRec, which uses a col-
laboratively created knowledge base to support non-code Change Impact Analysis
(CIA) in a safety-critical development context. In the solution phase, we also ex-
plore whether the proposed tools provide utility to the users (RQ3). Our results in
Paper III indicate utility, as our ensemble learner performs in line with the current
manual process, but the IA is completed without time-consuming manual analysis.
In Paper IV, we evaluate ImpRec both in silico, i.e., in technology-oriented exper-
iments, and in situ by deploying the RSSE in two development teams. Based on
discussions with study participants around the QUPER model, we conclude that
the additional search and navigation provided by ImpRec, correctly identifying
about 50% of the non-code change impact within the top-20 recommendations,
provides a useful starting point during CIA.

The final phase in this thesis, the utilization phase, addresses how to support
transfer of research results on automated issue management to industry (RQ4).
In agreement with previous work, we have experienced that the accuracy of au-

8 Conclusion and Future Work 41

tomated tools strongly depends on the operational context, i.e., the nature of the
development artifacts in the specific software engineering project. Furthermore,
automated tools implementing techniques based on IR, ML, or RSSEs are typi-
cally highly configurable through parameters. However, researchers cannot expect
practitioners to understand all the details required to obtain a feasible parameter
setting. Consequently, to support the tuning of automated tools to a specific oper-
ational context, Paper V presents guidelines in the form of TuneR: an experimen-
tal framework for tuning software engineering tools. TuneR packages research
knowledge in a form that allows advanced practitioners to tune automated tools
for their specific contexts. As a proof-of-concept, we apply TuneR to improve the
correctness of ImpRec by 20%.

In conclusion, this thesis presents how an increased level of automation in is-
sue management can support tasks central to software evolution. We show that
approaches leveraging historical issue reports are mature enough to support prac-
titioners in industry. Moreover, by conducting studies beyond “the cave”, i.e.,
outside the comfort zone of academic evaluations on de facto benchmarks in the
lab, we show that tool performance clearly depends on the data involved in the
operational setting. The empirical evidence we present regarding data dependency
should have implications for future research on automated tools; the practical value
of minor tool improvements on specific datasets, despite statistically significant
results, could be debated due to uncertain generalizability. In this thesis, we ad-
dress the challenge of data and context dependency by presenting TuneR, a tuning
framework that helps releasing the potential of software engineering tool support.

Work on this thesis has opened several potential directions for future work.
First and foremost, we stress that there is a need for further research in connection
with the utilization phase. Analogous to recommendations from other researchers,
i.e., both the RSSE community [402] and the traceability community [202], more
in situ research with users is needed to understand how automated issue manage-
ment can best be applied in industry, in line with the study we present in Paper IV.
There are several important questions that have not yet been explored in literature,
even though they are critical to successful technology transfer. First, how can tool
support that increases the level of automation in issue management be deployed in
an organization without jeopardizing developers’ ability to think beyond the rec-
ommendations? Two possible research directions to tackle this challenge are: 1)
tailoring work processes based on the increased level of automation, and 2) de-
veloping methods to deliver the recommendations in ways that stimulate critical
thinking. Second, once the automated system has been deployed, how should it be
maintained? As presented in Paper III, the prediction accuracy might deteriorate
over time, thus it is critical to continuously monitor the output quality. But how
could the tools best be retrained, or reconfigured, when a significant change has
been detected? For an automated system to be successful over time in industry,
it must be developed with maintainability in consideration, as industry practition-
ers cannot be assumed to be experts in advanced techniques such as IR and ML.

42 INTRODUCTION

Avazpour et al. refer to this quality aspect of an RSSE as stability [32].
Another avenue for future work based on the contributions of this thesis in-

volves technical aspects of automated issue assignment. Previous research re-
veals that academic researchers tend to focus on such aspects, thus we expect
advances in a number of areas. First, research on automated issue management
typically studies a static dataset of development artifacts, i.e., “batch learning”
from a one-shot dump of part of the informations landscape of a software engineer-
ing project. In a real setting, the inflow of additional development artifacts, and
the constant evolution of existing artifacts, introduces questions on how RSSEs
should be practically updated. Thus, future work should investigate online learn-
ing for RSSEs [226], to develop automated tools that do not require complete
retraining as new training data becomes available. Second, future RSSEs might
better incorporate direct feedback from the user, in line with work by Čubranić
et al. on Hipikat [127]. By enabling quick and easy feedback through the user
interface, an RSSE would be able to adjust recommendations faster than through
the traditional re-training loop presented in Figure 3. Relevance feedback is well-
known in IR [325], and those ideas have already been employed in IR-based trac-
ing tools [146, 154, 282]. Third, the correctness of an RSSE cannot go beyond the
quality of the features used to represent the software artifacts in the information
landscape. Thus, we anticipate that many of the advances in research on automated
tools, as well as successful applications in the field, will come after significant
feature engineering, i.e., identifying, integrating, cleaning, and preprocessing of
artifact properties. In accordance with lessons learned in ML communicated by
Domingos [161], our experiences acknowledge feature engineering as being the
key to successful application of the family of tools discussed in this thesis.

The next generation of issue trackers should incorporate decision support to
learn from the constant inflow of issue reports. The ever-increasing volume of is-
sue reports is not merely a burden; tool developers should embrace the bugs and
harness their rich information, collected as issue reports move through different
states during the resolution process. Recommendation systems are commonplace
for numerous applications on the web, and everyone with an online presence has
received years of training on assessing the value of automated suggestions. It is
time for software engineering to leverage the bug inflow, both to increase develop-
ers’ confidence by confirming existing views, i.e., that an issue is likely to imply
“business as usual”, and to detect anomalies among the incoming issue reports.
While several important research questions remain to be explored, we argue that
tool developers should already start looking at automated decision support for is-
sue management. Anything else would be a waste of good bugs.

PART I: THE EXPLORATORY
PHASE

CHAPTER I

CHALLENGES AND
PRACTICES IN ALIGNING

REQUIREMENTS WITH
VERIFICATION AND

VALIDATION: A CASE STUDY
OF SIX COMPANIES

Abstract

Weak alignment of requirements engineering (RE) with verification and valida-
tion (VV) may lead to problems in delivering the required products in time with
the right quality. For example, weak communication of requirements changes to
testers may result in lack of verification of new requirements and incorrect veri-
fication of old invalid requirements, leading to software quality problems, wasted
effort and delays. However, despite the serious implications of weak alignment
research and practice both tend to focus on one or the other of RE or VV rather
than on the alignment of the two. We have performed a multi-unit case study to
gain insight into issues around aligning RE and VV by interviewing 30 practition-
ers from 6 software developing companies, involving 10 researchers in a flexible
research process for case studies. The results describe current industry challenges
and practices in aligning RE with VV, ranging from quality of the individual RE
and VV activities, through tracing and tools, to change control and sharing a com-
mon understanding at strategy, goal and design level. The study identified that
human aspects are central, i.e. cooperation and communication, and that require-
ments engineering practices are a critical basis for alignment. Further, the size of
an organisation and its motivation for applying alignment practices, e.g. external

46 Challenges and Practices in Aligning Requirements with Verification . . .

enforcement of traceability, are variation factors that play a key role in achieving
alignment. Our results provide a strategic roadmap for practitioners improvement
work to address alignment challenges. Furthermore, the study provides a founda-
tion for continued research to improve the alignment of RE with VV.

Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalmsteiner, Eme-
lie Engström, Björn Regnell, Giedre Sabaliauskaite, Annabella Loconsole, Tony
Gorschek, and Robert Feldt, Empirical Software Engineering, 19(6), pp. 1809-
1855, 2014.

1 Introduction
Requirements engineering (RE) and verification and validation (VV) both aim to
support development of products that will meet customers’ expectations regarding
functionality and quality. However, to achieve this RE and VV need to be aligned
and their ‘activities or systems organised so that they match or fit well together’
(MacMillan Dictionary’s definition of ‘align’). When aligned within a project
or an organisation, RE and VV work together like two bookends that support a
row of books by buttressing them from either end. RE and VV, when aligned,
can effectively support the development activities between the initial definition of
requirements and acceptance testing of the final product [133].

Weak coordination of requirements with development and testing tasks can
lead to inefficient development, delays and problems with the functionality and
the quality of the produced software, especially for large-scale development [283].
For example, if requirements changes are agreed without involving testers and
without updating the requirements specification, the changed functionality is ei-
ther not verified or incorrectly verified. This weak alignment of RE and work that
is divided and distributed among engineers within a company or project poses a
risk of producing a product that does not satisfy business and/or client expecta-
tions [198]. In particular, weak alignment between RE and VV may lead to a
number of problems that affect the later project phases such as non-verifiable re-
quirements, lower product quality, additional cost and effort required for removing
defects [414]. Furthermore, Jones et al. [252] identified three other alignment re-
lated problems found to affect independent testing teams, namely uncertain test
coverage, not knowing whether changed software behaviour is intended, and lack
of established communication channels to deal with issues and questions.

There is a large body of knowledge for the separate areas of RE and VV, some
of which touches on the connection to the other field. However, few studies have
focused specifically on the alignment between the two areas [39] though there
are some exceptions. Kukkanen et al. reported on lessons learnt in concurrently
improving the requirements and the testing processes based on a case study [286].
Another related study was performed by Uusitalo et al. who identified a set of
practices used in industry for linking requirements and testing [458]. Furthermore,

2 Related Work 47

RE alignment in the context of outsourced development has been pointed out as a
focus area for future RE research by Cheng and Attlee [108].

When considering alignment, traceability has often been a focal point [39,365,
468]. However, REVV alignment also covers the coordination between roles and
activities of RE and VV. Traceability mainly focuses on the structuring and organ-
isation of different related artefacts. Connecting (or tracing) requirements with the
test cases that verify them support engineers in ensuring requirements coverage,
performing impact analysis for requirements changes etc. In addition to tracing,
alignment also covers the interaction between roles throughout different project
phases; from agreeing on high-level business and testing strategies to defining and
deploying detailed requirements and test cases.

Our case study investigates the challenges of RE and VV (REVV) alignment,
and identifies methods and practices used, or suggested for use, by industry to ad-
dress these issues. The results reported in this paper are based on semi-structured
interviews of 90 min each with 30 practitioners from six different software comp-
anies, comprising a wide range of people with experience from different roles
relating to RE and VV. This paper extends on preliminary results of identifying
the challenges faced by one of the companies included in our study [414]. In this
paper, we report on the practices and challenges of all the included companies
based on a full analysis of all the interview data. In addition, the results are herein
categorised to support practitioners in defining a strategy for identifying suitable
practices for addressing challenges experienced in their own organisations.

The rest of this paper is organised as follows: Section 2 presents related work.
The design of the case study is described in Section 3, while the results can be
found in Section 4. In Section 5 the results are discussed and, finally the paper is
concluded in Section 6.

2 Related Work

The software engineering fields RE and VV have mainly been explored with a fo-
cus on one or the other of the two fields [39], though there are some studies inves-
tigating the alignment between the two. Through a systematic mapping study into
alignment of requirements specification and testing, Barmi et al. found that most
studies in the area were on model-based testing including a range of variants of
formal methods for describing requirements with models or languages from which
test case are then generated. Barmi et al. also identified traceability and empirical
studies into alignment challenges and practices as main areas of research. Only
3 empirical studies into REVV alignment were found. Of these, two originate
from the same research group and the third one is the initial results of the study
reported in this paper. Barmi et al. draw the conclusions that though the areas of
model-based engineering and traceability are well understood, practical solutions
including evaluations of the research are needed. In the following sections pre-

48 Challenges and Practices in Aligning Requirements with Verification . . .

vious work in the field is described and related to this study at a high level. Our
findings in relation to previous work are discussed in more depth in Section 5.

The impact of RE on the software development process as a whole (includ-
ing testing) has been studied by Damian et al. [134] who found that improved
RE and involving more roles in the RE activities had positive effects on testing.
In particular, the improved change control process was found to ‘bring together
not only the functional organisation through horizontal alignment (designers, de-
velopers, testers and documenters), but also vertical alignment of organisational
responsibility (engineers, teams leads, technical managers and executive manage-
ment)’ [134]. Furthermore, in another study Damian and Chisan [133] found that
rich interactions between RE and testing can lead to pay-offs in improved test
coverage and risk management, and in reduced requirements creep, overscoping
and waste, resulting in increased productivity and product quality. Gorschek and
Davis [198] have proposed a taxonomy for assessing the impact of RE on, not just
project, but also on product, company and society level; to judge RE not just by
the quality of the system requirements specification, but also by its wider impact.

Jointly improving the RE and testing processes was investigated by Kukka-
nen et al. [286] through a case study on development performed partly in the
safety-critical domain with the dual aim of improving customer satisfaction and
product quality. They report that integrating requirements and testing processes,
including clearly defining RE and testing roles for the integrated process, improves
alignment by connecting processes and people from requirements and testing, as
well as, applying good practices that support this connection. Furthermore, they
report that the most important aspect in achieving alignment is to ensure that ‘the
right information is communicated to the right persons’ [286, pp. 484]. Success-
ful collaboration between requirements and test can be ensured by assigning and
connecting roles from both requirements and test as responsible for ensuring that
reviews are conducted. Among the practices implemented to support requirements
and test alignment were the use of metrics, traceability with tool support, change
management process and reviews of requirements, test cases and traces between
them [286]. The risk of overlapping roles and activities between requirements and
test, and gaps in the processes was found to be reduced by concurrently improv-
ing both processes [286]. These findings correlate very well with the practices
identified through our study.

Alignment practices that improve the link between requirements and test are
reported by Uusitalo et al. [458] based on six interviews, mainly with test roles,
from the same number of companies. Their results include a number of practices
that increase the communication and interaction between requirements and testing
roles, namely early tester participation, traceability policies, consider feature re-
quests from testers, and linking test and requirements people. In addition, four of
the companies applied traceability between requirements and test cases, while ad-
mitting that traces were rarely maintained and were thus incomplete [458]. Link-
ing people or artefacts were seen as equally important by the interviewees who

2 Related Work 49

were unwilling to select one over the other. Most of the practices reported by
Uusitalo et al. were also identified in our study with the exception of the specific
practice of linking testers to requirements owners and the practice of including
internal testing requirements in the project scope.

The concept of traceability has been discussed, and researched since the very
beginning of software engineering, i.e. since the 1960s [386]. Traceability be-
tween requirements and other development artefacts can support impact analy-
sis [134, 204, 286, 385, 458, 468], lower testing and maintenance costs [286, 468],
and increased test coverage [458,468] and thereby quality in the final products [385,
468]. Tracing is also important to software verification due to being an (acknowl-
edged) important aspect in high quality development [385, 468]. The challenges
connected to traceability have been empirically investigated and reported over the
years. The found challenges include volatility of the traced artefacts, informal pro-
cesses with lack of clear responsibilities for tracing, communication gaps, insuf-
ficient time and resources for maintaining traces in combination with the practice
being seen as non-cost efficient, and a lack of training [111]. Several methods for
supporting automatic or semi-automatic recovery of traces have been proposed as
a way to address the cost of establishing and maintaining traces [144,232,316]. An
alternative approach is proposed by Post et al. [379] where the number of traces
between requirements and test are reduced by linking test cases to user scenar-
ios abstracted from the formal requirements, thus tracing at a higher abstraction
level. When evaluating this approach, errors were found both in the formal re-
quirements and in the developed product [379]. However, though the evaluation
was performed in an industrial setting the set of 50 requirements was very small.
In conclusion, traceability in full-scale industrial projects remains an elusive and
costly practice to realise [204,245,383,468]. It is interesting to note that Gotel and
Finkelstein [204] conclude that a ‘particular concern’ in improving requirements
traceability is the need to facilitate informal communication with those responsible
for specifying and detailing requirements. Another evaluation of the traceability
challenge reported by Ramesh identifies three factors as influencing the implemen-
tation of requirements traceability, namely environmental (tools), organisational
(external organisational incentive on individual or internal), and development con-
text (process and practices) [383].

Model-based testing is a large research field within which a wide range of for-
mal models and languages for representing requirements have been suggested [158].
Defining or modelling the requirements in a formal model or language enables
the automatic generation of other development artefacts such as test cases, based
on the (modelled) requirements. Similarly to the field of traceability, model-
based testing also has issues with practical applicability in industrial develop-
ment [341, 356, 487]. Two exceptions to this is provided by Hasling et al. [214]
and by Nebut et al. [356] who both report on experiences from applying model-
based testing by generating system test cases from UML descriptions of the re-
quirements. The main benefits of model-based testing are in increased test cov-

50 Challenges and Practices in Aligning Requirements with Verification . . .

erage [214, 356], enforcing a clear and unambiguous definition of the require-
ments [214] and increased testing productivity [207]. However, the formal rep-
resentation of requirements often results in difficulties both in requiring special
competence to produce [356], but also for non-specialist (e.g. business people) in
understanding the requirements [317]. Transformation of textual requirements into
formal models could alleviate some of these issues. However, additional research
is required before a practical solution is available for supporting such transforma-
tions [487]. The generation of test cases directly from the requirements implicitly
links the two without any need for manually creating (or maintaining) traces. How-
ever, depending on the level of the model and the generated test cases the value of
the traces might vary. For example, for use cases and system test cases the tracing
was reported as being more natural than when using state machines [214]. Er-
rors in the models are an additional issue to consider when applying model-based
testing [214]. Scenario-based models where test cases are defined to cover require-
ments defined as use cases, user stories or user scenarios have been proposed as
an alternative to the formal models, e.g. by Regnell and Runeson [392], Regnell
et al. [393] and Melnik et al. [336]. The scenarios define the requirements at a
high level while the details are defined as test cases; acceptance test cases are used
to document the detailed requirements. This is an approach often applied in agile
development [94]. Melnik et al. [336] found that using executable acceptance test
cases as detailed requirements is straight-forward to implement and breeds a test-
ing mentality. Similar positive experiences with defining requirements as scenarios
and acceptance test cases are reported from industry by Martin and Melnik [330].

3 Case Study Design

The main goal of this case study was to gain a deeper understanding of the issues
in REVV alignment and to identify common practices used in industry to address
the challenges within the area. To this end, a flexible exploratory case study de-
sign [407, 413] was chosen with semi-structured interviews as the data collection
method. In order to manage the size of the study, we followed a case study pro-
cess suggested by Runeson et al. [413, chapter 14] which allowed for a structured
approach in managing the large amounts of qualitative data in a consistent manner
among the many researchers involved. The process consists of the following five
interrelated phases (see Fig. 1 for an overview, including in- and outputs of the
different phases):

1. Definition of goals and research questions

2. Design and planning including preparations for interviews

3. Evidence collection (performing the interviews)

3 Case Study Design 51

1. Definition 2. Design and
planning

3. Evidence
collection 4. Data analysis

Goals
Research questions
Conceptual model

Case study design
Case study protocol
Interview guide

Audio files
Transcripts

Coded transcripts
Abstracted statements
Clusters of statements

Reports

5. Reporting

Figure 1: Overview of the research process including in- and output for each
phase.

4. Data analysis (transcription, coding, abstraction and grouping, interpreta-
tion)

5. Reporting

Phases 1-4 are presented in more detail in Sections 3.1 to 3.4, while threats to
validity are discussed in Section 3.5. A more in-depth description with lessons
learned from applying the process in this study is presented by Runeson et al.
[413, chapter 14]. A description of the six case companies involved in the study
can be found in Section 3.2.

The ten authors played different roles in the five phases. The senior researchers,
Regnell, Gorschek, Runeson and Feldt lead the goal definition of the study. They
also coached the design and planning, which was practically managed by Lo-
console, Sabaliauskaite and Engström. Evidence collection was distributed over
all ten researchers. Loconsole and Sabaliauskaite did the transcription and coding
together with Bjarnason, Borg, Engström and Unterkalmsteiner, as well as the pre-
liminary data analysis for the evidence from the first company [414]. Bjarnason,
Borg, Engström and Unterkalmsteiner did the major legwork in the intermediate
data analysis, coached by Regnell, Gorschek and Runeson. Bjarnason and Rune-
son made the final data analysis, interpretation and reporting, which was then
reviewed by the rest of the authors.

3.1 Definition of Research Goal and Questions

This initial phase (see Fig. 1) provided the direction and scope for the rest of the
case study. A set of goals and research questions were defined based on previous
experience, results and knowledge of the participating researchers, and a literature
study into the area. The study was performed as part of an industrial excellence
research centre, where REVV alignment was one theme. Brainstorming sessions
were also held with representatives from companies interested in participating
in the study. In these meetings the researchers and the company representatives
agreed on a main long-term research goal for the area: to improve development ef-
ficiency within existing levels of software quality through REVV alignment, where

52 Challenges and Practices in Aligning Requirements with Verification . . .

this case study takes a first step into exploring the current state of the art in indus-
try. Furthermore, a number of aspects to be considered were agreed upon, namely
agile processes, open source development, software product line engineering, non-
functional requirements, and, volume and volatility of requirements. As the study
progressed the goals and focal aspects were refined and research questions formu-
lated and documented by two researchers. Four other researchers reviewed their
output. Additional research questions were added after performing two pilot in-
terviews (in the next phase, see Section 3.2). In this paper, the following research
questions are addressed in the context of software development:

RQ1 What are the current challenges, or issues, in achieving REVV alignment?

RQ2 What are the current practices that support achieving REVV alignment?

RQ3 Which current challenges are addressed by which current practices?

The main concepts of REVV alignment to be used in this study were identified
after discussions and a conceptual model of the scope of the study was defined
(see Fig. 2). This model was based on a traditional V-model showing the artefacts
and processes covered by the study, including the relationships between artefacts
of varying abstraction level and between processes and artefacts. The discussions
undertaken in defining this conceptual model led to a shared understanding within
the group of researchers and reduced researcher variation, thus ensuring greater
validity of the data collection and results. The model was utilised both as a guide
for the researchers in subsequent phases of the study and during the interviews.

3.2 Design and Planning
In this phase, the detailed research procedures for the case study were designed and
preparations were made for data collection. These preparations included designing
the interview guide and selecting the cases and interviewees.

The interview guide was based on the research questions and aspects, and the
conceptual model produced in the Definition phase (see Figs. 1 and 2). The guide
was constructed and refined several times by three researchers and reviewed by
another four. User scenarios related to aligning requirements and testing, and ex-
amples of alignment metrics were included in the guide as a basis for discussions
with the interviewees. The interview questions were mapped to the research ques-
tions to ensure that they were all covered. The guide was updated twice; after
two pilot interviews, and after six initial interviews. Through these iterations the
general content of the guide remained the same, though the structure and order
of the interview questions were modified and improved. The resulting interview
guide is published by Runeson et al. (2012, appendix C). Furthermore, a consent
information letter was prepared to make each interviewee aware of the conditions
of the interviews and their rights to refuse to answer and to withdraw at any time.
The consent letter is published by Runeson et al. [413, Appendix E].

3 Case Study Design 53

Figure 2: The conceptual model of the area under study, produced in phase 1.

The case selection was performed through a brainstorming session held within
the group of researchers where companies and interviewee profiles that would
match the research goals were discussed. In order to maximise the variation of
companies selected from the industrial collaboration network, with respect to size,
type of process, application domain and type of product, a combination of max-
imum variation selection and convenience selection was applied [413, pp.35 and
pp.112]. The characteristics of the case companies are briefly summarised in Ta-
ble 1. It is clear from the summary that they represent: a wide range of domains;
size from 50 to 1,000 software developers; bespoke and market driven develop-
ment; waterfall and iterative processes; using open source components or not, etc.
At the time of the interviews a major shift in process model, from waterfall to
agile, was underway at Company F. Hence, for some affected factors in Table 1,
information is given as to for which model the data is valid.

Our aim was to cover processes and artefacts relevant to REVV alignment for
the whole life cycle from requirements definition through development to system
testing and maintenance. For this reason, interviewees were selected to represent
the relevant range of viewpoints from requirements to testing, both at managerial
and at engineering level. Initially, the company contact persons helped us find suit-
able people to interview. This was complemented by snowball sampling [407] by
asking the interviewees if they could recommend a person or a role in the company
whom we could interview in order to get alignment-related information. These
suggestions were then matched against our aim to select interviewees in order to
obtain a wide coverage of the processes and artefacts of interest. The selected
interviewees represent a variety of roles, working with requirements, testing and
development; both engineers and managers were interviewed. The number of in-

54 Challenges and Practices in Aligning Requirements with Verification . . .

terviews per company was selected to allow for going in-depth in one company
(Company F) through a large number of interviews. Additionally, for this large
company the aim was to capture a wide view of the situation and thus mitigate the
risk of a skewed sampled. For the other companies, three interviews were held per
company. An overview of the interviewees, their roles and level of experience is
given in Table 2. Note that for Company B, the consultants that were interviewed
typically take on a multitude of roles within a project even though they can mainly
be characterised as software developers they also take part in requirements analysis
and specification, design and testing activities.

3.3 Evidence Collection

A semi-structured interview strategy [407] was used for the interviews, which
were performed over a period of 1 year starting in May 2009. The interview
guide [413, Appendix C] acted as a checklist to ensure that all selected topics were
covered. Interviews lasted for about 90 min. Two or three researchers were present
at each interview, except for five interviews, which were performed by only one
researcher. One of the interviewers led the interview, while the others took notes
and asked additional questions for completeness or clarification. After consent
was given by the interviewee audio recordings were made of each interview. All
interviewees consented.

The audio recordings were transcribed word by word and the transcriptions
were validated in two steps to eliminate un-clarities and misunderstandings. These
steps were: (i) another researcher, primarily one who was present at the interview,
reviewed the transcript, and (ii) the transcript was sent to the interviewee with
sections for clarification highlighted and the interviewee had a chance to edit the
transcript to correct errors or explain what they meant. These modifications were
included into the final version of the transcript, which was used for further data
analysis.

The transcripts were divided into chunks of text consisting of a couple of sen-
tences each to enable referencing specific parts of the interviews. Furthermore,
an anonymous code was assigned to each interview and the names of the inter-
viewees were removed from the transcripts before data analysis in order to ensure
anonymity of the interviewees.

3.4 Data Analysis

Once the data was collected through the interviews and transcribed (see Fig. 1),
a three-stage analysis process was performed consisting of: coding, abstraction
and grouping, and interpretation. These multiple steps were required to enable the
researchers to efficiently navigate and consistently interpret the huge amounts of
qualitative data collected, comprising more than 300 pages of interview transcripts.

3 Case Study Design 55

Table 1: Overview of the companies covered by this case study. At Company F
a major process change was taking place at the time of the study and data specific
to the previous waterfall-based process are marked with ‘previous’.

T
ab

le
1

O
ve
rv
ie
w
of

th
e
co
m
pa
ni
es

co
ve
re
d
by

th
is
ca
se

st
ud

y.
A
tc
om

pa
ny

F
a
m
aj
or

pr
oc
es
s
ch
an
ge

w
as

ta
ki
ng

pl
ac
e
at
th
e
tim

e
of

th
e
st
ud

y
an
d
da
ta
sp
ec
if
ic
to
th
e
pr
ev
io
us

w
at
er
fa
ll-
ba
se
d
pr
oc
es
s
ar
e

m
ar
ke
d
w
ith

‘p
re
vi
ou

s’

C
om

pa
ny

A
B

C
D

E
F

T
yp
e
of

co
m
pa
ny

S
of
tw
ar
e
de
ve
lo
pm

en
t,

em
be
dd
ed

pr
od
uc
ts

C
on
su
lti
ng

S
of
tw
ar
e
de
ve
lo
pm

en
t

S
ys
te
m
s
en
gi
ne
er
in
g,

em
be
dd
ed

pr
od
uc
ts

S
of
tw
ar
e
de
ve
lo
pm

en
t,

em
be
dd
ed

pr
od
uc
ts

S
of
tw
ar
e
de
ve
lo
pm

en
t,

em
be
dd
ed

pr
od
uc
ts

#
em

pl
oy
ee
s
in

so
ft
w
ar
e
de
ve
lo
pm

en
t

of
ta
rg
et
ed

or
ga
ni
sa
tio

n
12
5–
15
0

13
5

50
0

50
–1

00
30
0–
35
0

1,
00
0

#
em

pl
oy
ee
s
in

ty
pi
ca
l
pr
oj
ec
t

10
M
os
tly

4–
10
,
bu
t

va
ri
es

gr
ea
tly

50
–8

0
so
ft
w
ar
e
de
ve
lo
pe
rs
:

10
–2
0

6–
7
pe
r
te
am

,
10
–1

5
te
am

s
P
re
vi
ou
s
pr
oc
es
s:

80
0–
1,
00
0
pe
rs
on

ye
ar
s

D
is
tr
ib
ut
ed

N
o

C
ol
lo
ca
te
d
(p
er

pr
oj
ec
t,

of
te
n
on
-s
ite

at
cu
st
om

er
)

Y
es

Y
es

Y
es

Y
es

D
om

ai
n
/
S
ys
te
m

ty
pe

C
om

pu
te
r
ne
tw
or
ki
ng

eq
ui
pm

en
t

A
dv
is
or
y/
te
ch
ni
ca
l

se
rv
ic
es
,

ap
pl
ic
at
io
n
m
an
ag
em

en
t

R
ai
l
tr
af
fi
c
m
an
ag
em

en
t

A
ut
om

ot
iv
e

T
el
ec
om

T
el
ec
om

S
ou
rc
e
of

re
qu
ir
em

en
ts

M
ar
ke
t
dr
iv
en

B
es
po
ke

B
es
po
ke

B
es
po
ke

B
es
po
ke

an
d
m
ar
ke
td

ri
ve
n

B
es
po
ke

an
d
m
ar
ke
t
dr
iv
en

M
ai
n
qu
al
ity

fo
cu
s

A
va
ila
bi
lit
y,
pe
rf
or
m
an
ce
,

se
cu
ri
ty

D
ep
en
ds

on
cu
st
om

er
fo
cu
s

S
af
et
y

S
af
et
y

A
va
ila
bi
lit
y,
P
er
fo
rm

an
ce
,

re
lia
bi
lit
y,
se
cu
ri
ty

P
er
fo
rm

an
ce
,
st
ab
ili
ty

C
er
tif
ic
at
io
n

N
o
so
ft
w
ar
e
re
la
te
d
ce
rt
if
ic
at
io
n

N
o

IS
O
90
01
,
IS
O
14
00
1,

O
H
S
A
S
18
00
1

IS
O
90
01
,
IS
O
14
00
1

IS
O
90
01
,
IS
O
14
00
1

(a
im

in
g
to
w
ar
ds

ad
he
ri
ng

to
T
L
90
00
)

IS
O
90
01

P
ro
ce
ss

M
od
el

It
er
at
iv
e

A
gi
le

in
va
ri
an
ts

W
at
er
fa
ll

R
U
P,
S
cr
um

S
cr
um

,
eR

U
P,
a

sp
ri
nt
s
is
3
m
on
th
s

It
er
at
iv
e
w
ith

ga
te
de
ci
si
on
s

(a
gi
le

in
fl
ue
nc
ed
).

P
re
vi
ou
s:
W
at
er
fa
ll

D
ur
at
io
n
of

a
ty
pi
ca
l
pr
oj
ec
t

6–
18

m
on
th
s

N
o
ty
pi
ca
l
pr
oj
ec
t

1–
5
ye
ar
s
to

fi
rs
td

el
iv
er
y,

th
en

ne
w

so
ft
w
ar
e

re
le
as
e
fo
r
1–

10
ye
ar
s

1–
5
ye
ar
s
to

fi
rs
t
de
liv

er
y,

th
en

ne
w

so
ft
w
ar
e

re
le
as
es

fo
r
1–
10

ye
ar
s

1
ye
ar

P
re
vi
ou
s
pr
oc
es
s
2
ye
ar
s

#
re
qu
ir
em

en
ts
in

ty
pi
ca
l
pr
oj
ec
t

10
0
(2
0–

30
pa
ge
s
H
T
M
L
)

N
o
ty
pi
ca
l
pr
oj
ec
t

60
0–
80
0
at

sy
st
em

le
ve
l

F
or

so
ft
w
ar
e:
20
–4

0
us
e
ca
se
s

50
0–
70
0
us
er

st
or
ie
s

P
re
vi
ou
s
pr
oc
es
s:
14
,0
00

#
te
st
ca
se
s
in

a
ty
pi
ca
l
pr
oj
ec
t

~1
,0
00

te
st
ca
se
s

N
o
ty
pi
ca
l
pr
oj
ec
t

25
0
at

sy
st
em

le
ve
l

11
,0
00
+

P
re
vi
ou
s
pr
oc
es
s
20
0,
00
0

at
pl
at
fo
rm

le
ve
l,
7,
00
0

at
sy
st
em

le
ve
l

P
ro
du
ct

L
in
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

O
pe
n
S
ou
rc
e

Y
es

Y
es
.
W
id
e
us
e,

in
cl
ud
in
g

co
nt
ri
bu
tio

ns

Y
es
,
pa
rt
ly

N
o

N
o

Y
es

(w
ith

ne
w

ag
ile

pr
oc
es
s
m
od
el
)

Empir Software Eng

Author's personal copy

56 Challenges and Practices in Aligning Requirements with Verification . . .

Table 2: Overview of interviewees’ roles at their companies incl. level of expe-
rience in that role; S(enior) = more than 3 years, or J(unior) = up to 3 years. Xn
refers to interviewee n at Company X. Note: most interviewees have additional
previous experience.

Role A B C D E F
Reqts. engineer F1(S),

F6(S),
F7(S)

Systems architect D3(J) E1(S) F4(S)
Software developer B1(J),

B2(S),
B3(S)

Test engineer A2(S) C1(S),
C2(J)

D2(S) E3(S) F9(S),
F10(S),
F11(J),
F12(S),
F14(S)

Project manager A1(J) C3(S) D1(S) F3(J), F8(S)
Product manager A3(S) E2(S)
Process manager F2(J),

F5(S),
F15(J)

3 Case Study Design 57

Coding of the transcripts, i.e. the chunks, was performed to enable locating
relevant parts of the large amounts of interview data during analysis. A set of
codes, or keywords, based on the research and interview questions was produced,
initially at a workshop with the participating researchers. This set was then iter-
atively updated after exploratory coding and further discussions. In the final ver-
sion, the codes were grouped into multiple categories at different abstraction lev-
els, and a coding guide was developed. To validate that the researchers performed
coding in a uniform way, one interview transcript was selected and coded by all
researchers. The differences in coding were then discussed at a workshop and the
coding guide was subsequently improved. The final set of codes was applied to
all the transcripts. The coding guide and some coding examples are published by
Runeson et al. [413, Appendix D].

Abstraction and grouping of the collected data into statements relevant to the
goals and questions for our study was performed in order to obtain a manageable
set of data that could more easily be navigated and analysed. The statements can
be seen as an index, or common categorisation of sections belonging together, in
essence a summary of them as done by Gorschek and Wohlin [199, 200], Petters-
son et al. [375] and Höst et al. [224]. The statements were each given a unique
identifier, title and description. Their relationship to other statements, as derived
from the transcripts, was also abstracted. The statements and relationships be-
tween them were represented by nodes connected by directional edges. Figure
3 shows an example of the representation designed and used for this study. In
particular, the figure shows the abstraction of the interview data around cross-role
reviews of requirements, represented by node N4. For example, the statement
‘cross-role reviews’ was found to contribute to statements related to requirements
quality. Each statement is represented by a node. For example, N4 for ‘cross-role
review’, and N1, N196 and N275 for the statements related to requirements qual-
ity. The connections between these statements are represented by a ‘contributes
to’ relationship from N4 to each of N1, N196 and N275. These connections are
denoted by a directional edge tagged with the type of relationship. For exam-
ple, the tags ‘C’ for ‘contributes to’, ‘P’ for ‘prerequisite for’ and ‘DC’ for ‘does
not contribute to’. In addition, negation of one or both of the statements can be
denoted by applying a post- or prefix ‘not’ (N) to the connection. The type of rela-
tionships used for modelling the connections between statements were discussed,
defined and agreed on in a series of work meetings. Traceability to the origin of
the statements and the relationships between them was captured and maintained
by noting the id of the relevant source chunk, both for nodes and for edges. This
is not shown in Figure 3.

The identified statements including relationships to other statements were ex-
tracted per transcript by one researcher per interview. To ensure a consistent ab-
straction among the group of researchers and to enhance completeness and cor-
rectness, the abstraction for each interview was reviewed by at least one other re-
searcher and agreed after discussing differences of opinion. The nodes and edges

58 Challenges and Practices in Aligning Requirements with Verification . . .

Figure 3: Part of the abstraction representing the interpretation of the interviewee
data. The relationships shown denote C - contribute to, P - prerequisite for, and
DC - does not contribute to.

identified by each researcher were merged into one common graph consisting of
341 nodes and 552 edges.

Interpretation of the collected evidence involved identifying the parts of the
data relevant to a specific research question. The abstracted statements derived
in the previous step acted as an index into the interview data and allowed the
researchers to identify statements relevant to the research questions of challenges
and practices. This interpretation of the interview data was performed by analysing
a graphical representation of the abstracted statements including the connections
between them. Through the analysis nodes and clusters of nodes related to the
research questions were identified. This is similar to explorative coding and, for
this paper, the identified codes or clusters represented REVV alignment challenges
and practices with one cluster (code) per challenge and per practice. Due to the
large amount of data, the analysis and clustering was initially performed on sub-
sets of the graphical representation, one for each company. The identified clusters
were then iteratively merged into a common set of clusters for the interviews for
all companies. For example, for the nodes shown in Figure 3 the statements ‘The
requirements are clear’ (N196) and ‘The requirements are verifiable’ (N275) were
clustered together into the challenge ‘Defining clear and verifiable requirements’
(challenge Ch3.2, see Section 4.1) based on connections (not shown in the exam-
ple) to other statements reflecting that this leads to weak alignment.

Even with the abstracted representation of the interview transcripts, the inter-
pretation step is a non-trivial task which requires careful and skilful consideration
to identify the nodes relevant to specific research questions. For this reason, the
clustering that was performed by Bjarnason was reviewed and agreed with Rune-
son. Furthermore, the remaining un-clustered nodes were reviewed by Engström,

3 Case Study Design 59

and either mapped to existing clusters, suggested for new clusters or judged to be
out of scope for the specific research questions. This mapping was then reviewed
and agreed with Bjarnason.

Finally, the agreed clusters were used as an index to locate the relevant parts of
the interview transcripts (through traces from the nodes and edges of each cluster
to the chunks of text). For each identified challenge and practice, and mapping
between them, the located parts of the transcriptions were then analysed and in-
terpreted, and reported in this paper in Sections 4.1, 4.2 and 4.3, respectively for
challenges, practices, and the mapping.

3.5 Threats to Validity

There are limitations and threats to the validity to all empirical studies, and so also
for this case study. As suggested by Runeson and Höst [412, 413], the construct
validity, external validity and reliability were analysed in the phases leading up to
the analysis phase of the case study, see Figure 1. We also report measures taken
to improve the validity of the study.

Construct Validity

Construct validity refers to how well the chosen research method has captured
the concepts under study. There is a risk that academic researchers and indus-
try practitioners may use different terms and have different frames of reference,
both between and within these categories of people. In addition, the presence of
researchers may threaten the interviewees and lead them to respond according to
assumed expectations. The selection of interviewees may also give a limited or
unbalanced view of the construct. In order to mitigate these risks, we took the
following actions in the design step:

• Design of the interview guide and reference model: The interview guide was
designed based on the research questions and reviewed for completeness and
consistency by other researchers. It was piloted during two interviews and
then revised again after another six. The risk that the language and terms
used may not be uniformly understood was addressed by producing a con-
ceptual model (see Fig. 2), which was shown to the interviewees to explain
the terminology. However, due to the semi-structured nature of the guide
and the different interviewers involved the absence of interviewee data for
a certain concept, challenge or practice cannot be interpreted as the absence
of this item either in the interviewees experience or in the company. For
similar reasons, the results do not include any ranking or prioritisation as to
which challenges and practices are the most frequent or most effective.

• Prolonged involvement: The companies were selected so that at least one of
the researchers had a long-term relation with them. This relationship helped

60 Challenges and Practices in Aligning Requirements with Verification . . .

provide the trust needed for openness and honesty in the interviews. To
mitigate the bias of knowing the company too well, all but five interviews
(Companies D and E) were conducted by more than one interviewer.

• Selection of interviewees: To obtain a good representation of different as-
pects, a range of roles were selected to cover requirement, development and
testing, and also engineers as well as managers, as reported in Table 2. The
aim was to cover the relevant aspects described in the conceptual model,
produced during the Definition phase (see Section 3.1, Figs. 1 and 2). There
is a risk that the results might be biased due to a majority of the intervie-
wees being from Company F. However, the results indicate that this risk
was minor, since a majority of the identified items (see Section 4) could be
connected to multiple companies.

• Reactive bias: The presence of a researcher might limit or influence the out-
come either by hiding facts or responding after assumed expectations. To
reduce this threat the interviewees were guaranteed anonymity both within
the company and externally. In addition, they were not given any rewards
for their participation and had the right to withdraw at any time without re-
quiring an explanation, though no interviewees did withdraw. This approach
indicated that we were interested in obtaining a true image of their reality
and encouraged the interviewees to share this.

Internal Validity

Even though the conclusions in this paper are not primarily about causal relations,
the identification of challenges and practices somewhat resembles identifying fac-
tors in casual relations. In order to mitigate the risk of identifying incorrect factors,
we used data source triangulation by interviewing multiple roles at a company.
Furthermore, extensive observer triangulation was applied in the analysis by al-
ways including more than one researcher in each step. This strategy also partly
addressed the risk of incorrect generalisations when abstracting challenges and
practices for the whole set of companies. However, the presented results repre-
sent one possible categorisation of the identified challenges and practices. This is
partly illustrated by the fact that not all identified practices can be connected to a
challenge.

The interviews at one of the case companies were complicated by a major
process change that was underway at the time of the study. This change posed
a risk of confusing the context for which a statement had been experienced; the
previous (old) way of working or the newly introduced agile practices. To mitigate
this risk, we ensured that we correctly understood which process the response
concerned, i.e. the previous or the current process.

Furthermore, due to the nature of semi-structured interviews in combination
with several different interviewers it is likely that different follow-on questions

3 Case Study Design 61

were explored by the various researchers. This risk was partly mitigated by jointly
defining the conceptual model and agreeing on a common interview guide that
was used for all interviews. However, the fact remains that there are differences
in the detailed avenues of questioning which has resulted in only being able to
draw conclusions concerning what was actually said at the interviews. So, for
example, if the completeness of the requirements specification (Ch3.2) was not
explicitly discussed at an interview no conclusions can be drawn concerning if this
is a challenge or not for that specific case.

External Validity

For a qualitative study like this, external validity can never be assured by sam-
pling logic and statistical generalisation, but by analytical generalisation which
enables drawing conclusions and, under certain conditions, relating them also to
other cases [407,413]. This implies that the context of the study must be compared
to the context of interest for the findings to be generalised to. To enable this pro-
cess, we report the characteristics of the companies in as much detail as possible
considering confidentiality (see Table 1). The fact that six different companies of
varying size and domain are covered by the study, and some results are connected
to the variations between them indicates that the results are more general than if
only one company had been studied. But, of course, the world consists of more
than six kinds of companies, and any application of the results of this study need
to be mindfully tailored to other contexts.

Reliability

The reliability of the study relates to whether the same outcome could be expected
with another set of researchers. For qualitative data and analysis, which are less
procedural than quantitative methods, exact replication is not probable. The analy-
sis lies in interpretation and coding of words, and the set of codes would probably
be partly different with a different set of researchers.

To increase the reliability of this study and to reduce the influence by single
researchers, several researchers have taken part in the study in different roles. All
findings and each step of analysis have been reviewed by and agreed with at least
one other researcher. In addition, a systematic and documented research process
has been applied (see Fig. 1) and a trace of evidence has been retained for each
analysis steps. The traceability back to each source of evidence is documented and
kept even in this report to enable external assessment of the chain of evidence, if
confidentially agreements would allow.

Finally, the presentation of the findings could vary depending on categorisa-
tion of the items partly due to variation in views and experience of individual
researchers. For example, a challenge in achieving alignment such as Ch2 Col-
laborating successfully (see Section 4.1) could be identified also as a practice at
the general level, e.g. to collaborate successfully could be defined as an alignment

62 Challenges and Practices in Aligning Requirements with Verification . . .

practice. However, we have chosen to report specific practices that may improve
collaboration and thereby REVV alignment. For example, P1.1 Customer commu-
nication at all requirements levels and phases can support improved coordination
of requirements between the customer and the development team. To reduce the
risk of bias in this aspect, the results and the categorisation of them was first pro-
posed by one researcher and then reviewed by four other researchers leading to
modifications and adjustments.

4 Results

Practitioners from all six companies in the study found alignment of RE with VV
to be an important, but challenging, factor in developing products. REVV align-
ment was seen to affect the whole project life cycle, from the contact with the cus-
tomer and throughout software development. The interviewees stated clearly that
good alignment is essential to enable smooth and efficient software development.
It was also seen as an important contributing factor in producing software that
meets the needs and expectations of the customers. A software developer stated
that alignment is ‘very important in creating the right system’ (B1:271). One in-
terviewee described the customer’s view of a product developed with misaligned
requirements as: ‘There wasn’t a bug, but the behaviour of the functionality was
interpreted or implemented in such a way that it was hard to do what the customer
[originally] intended’ (A3:43). Another interviewee mentioned that alignment be-
tween requirements and verification builds customer trust in the end product since
good alignment allows the company to ‘look into the customer’s eyes and explain
what have we tested. . . on which requirements’ (D2:10).

In general, the interviewees expressed that weak and unaligned communication
of the requirements often cause inconsistencies that affect the verification effort. A
common view was that these inconsistencies, caused by requirements that are mis-
understood, incorrect or changed, or even un-communicated, leads to additional
work in updating and re-executing test cases. Improved alignment, on the other
hand, was seen to make ‘communication between different levels in the V-model a
lot easier’ (E3:93). One of the interviewed testers stated: ‘Alignment is necessary.
Without it we [testers] couldn’t do our job at all’ (C1:77).

Below, we present the results concerning the challenges of alignment (Ch1-
Ch10) and the practices (P1-P10) used, or suggested, by the case companies to
address REVV challenges. Table 3 provides an overview of the challenges found
for each company, while Figure 4 contains an overview of the practices. Figure 6
shows which challenges each practices is seen to address.

1Reference to source is given by interviewee code, see Table 2.

4 Results 63

Table 3: Alignment challenges mentioned for each company. Note: a blank cell
means that the challenge was not mentioned during the interviews, not that it is
not experienced.

4.1.1 Challenge 1: Aligning Goals and Perspectives within an Organisation (Ch1)

The alignment of goals throughout the organisation was mentioned by many interviewees as
vital in enabling cooperation among different organisational units (see challenge 2 in
Section 4.1.2). However, goals were often felt to be missing or unclearly defined, which
could result in ‘making it difficult to test [the goals]’ (B3:17). In several companies problems
with differing and unaligned goals were seen to affect the synchronisation between re-
quirements and testing, and cause organisational units to counteract each other in joint
development projects. For example, a product manager mentioned that at times, requirement
changes needed from a business perspective conflicted with the goals of the development
units; ‘They [business roles] have their own directives and … schedule target goals’ and
‘they can look back and see which product was late and which product was good’ (A3:74).
In other words, misaligned goals may have an impact on both time schedules and product
quality.

Many interviewees described how awareness and understanding of different perspectives
on the problem domain is connected to better communication and cooperation, both towards
the customers and external suppliers, and internally between competence areas and units.
When there is a lack of aligned perspectives, the customer and the supplier often do not have
the same understanding of the requirements. This may result in ‘errors in misunderstanding
the requirements’ (B3:70). Lack of insight into and awareness of different perspectives was
also seen to result in decisions (often made by other units) being questioned and require-
ments changed at a late stage in the development cycle with a subsequent increase in cost
and risk. For example, a systems architect described that in a project where there is a ‘higher
expectations on the product than we [systems architect] scoped into it’ (E1:20) a lot of issues

Table 3 Alignment challenges mentioned for each company. Note: a blank cell means that the challenge was
not mentioned during the interviews, not that it is not experienced

Id Challenge Company

A B C D E F

Ch1 Aligning goals and perspectives within an organisation X X X X X

Ch2 Cooperating successfully X X X X X

Req spec quality Ch3.1 Defining clear and verifiable requirements X X X X

Ch3.2 Defining complete requirements X X X X

Ch3.3 Keeping requirements documents updated X

VV quality Ch4.1 Full test coverage X X X X X

Ch4.2 Defining a good verification process X

Ch4.3 Verifying quality requirements X X X

Ch5 Maintaining alignment when requirements change X X X

Req’s abstract levels Ch6.1 Defining requirements at abstraction level well matched
to test cases

X X

Ch6.2 Coordinating requirements at different abstraction levels X X

Traceability Ch7.1 Tracing between requirements and test cases X X X X X

Ch7.2 Tracing between requirements abstraction levels X X X

Ch8 Time and resource availability X X X

Ch9 Managing a large document space X X X

Ch10 Outsourcing of components or testing X X

Empir Software Eng

Author's personal copy

4.1 Alignment Challenges

The alignment challenges identified through this study are summarised in Table 3.
Some items have been categorised together as one challenge, resulting in 10 main
challenges where some consist of several related challenges. For example, Ch3
Requirements specification quality consists of three challenges (Ch3.1-Ch3.3) con-
cerning different aspects of requirements quality. Each challenge including sub
items is described in the subsections that follow.

Challenge 1: Aligning Goals and Perspectives within an Organisation
(Ch1)

The alignment of goals throughout the organisation was mentioned by many inter-
viewees as vital in enabling cooperation among different organisational units (see
Ch2 in Section 4.1). However, goals were often felt to be missing or unclearly
defined, which could result in ‘making it difficult to test [the goals]’ (B3:17). In
several companies problems with differing and unaligned goals were seen to affect
the synchronisation between requirements and testing, and cause organisational
units to counteract each other in joint development projects. For example, a prod-
uct manager mentioned that at times, requirement changes needed from a business

64 Challenges and Practices in Aligning Requirements with Verification . . .

perspective conflicted with the goals of the development units; ‘They [business
roles] have their own directives and. . . schedule target goals’ and ‘they can look
back and see which product was late and which product was good’ (A3:74). In
other words, misaligned goals may have an impact on both time schedules and
product quality.

Many interviewees described how awareness and understanding of different
perspectives on the problem domain is connected to better communication and
cooperation, both towards the customers and external suppliers, and internally be-
tween competence areas and units. When there is a lack of aligned perspectives,
the customer and the supplier often do not have the same understanding of the
requirements. This may result in ‘errors in misunderstanding the requirements’
(B3:70). Lack of insight into and awareness of different perspectives was also
seen to result in decisions (often made by other units) being questioned and re-
quirements changed at a late stage in the development cycle with a subsequent
increase in cost and risk. For example, a systems architect described that in a
project where there is a ‘higher expectations on the product than we [systems ar-
chitect] scoped into it’ (E1:20) a lot of issues and change requests surface in the
late project phases. A software developer stated concerning the communication
between requirements engineers and developers that ‘if both have a common per-
spective [of technical possibilities], then it would be easier to understand what
[requirements] can be set and what cannot be set’ (F13:29). Or in other words,
with an increased common understanding technically infeasible requirements can
be avoided already at an early stage.

Weak alignment of goals and perspectives implies a weak coordination at
higher organisational levels and that strategies and processes are not synchronised.
As stated by a process manager, the involvement of many separate parts of an
organisation then leads to ‘misunderstandings and misconceptions and the use of
different vocabulary’ (F2:57). In addition, a test engineer at Company A men-
tioned that for the higher abstraction levels there were no attempts to synchronise,
for example, the testing strategy with the goals of development projects to agree
on important areas to focus on (A2:105). Low maturity of the organisation was
thought to contribute to this and result in the final product having a low degree of
correspondence to the high-level project goals. A test engineer said: ‘In the long
run, we would like to get to the point where this [product requirements level] is
aligned with this [testing activities]’ (A2:119).

Challenge 2: Cooperating Successfully (Ch2)

All of the companies included in our study described close cooperation between
roles and organisational units as vital for good alignment and coordination of both
people and artefacts. Weak cooperation is experienced to negatively affect the
alignment, in particular at the product level. A product manager stated that ‘an “us
and them” validation of product level requirements is a big problem’ (A3:58-59).

4 Results 65

Ensuring clear agreement and communication concerning which requirements to
support is an important collaboration aspect for the validation. At Company F
(F12:63) lack of cooperation in the early phases in validating requirements has
been experienced to result in late discovery of failures in meeting important prod-
uct requirements. The development project then say at a late stage: ‘We did not
approve these requirements, we can’t solve it’ (F12:63) with the consequence that
the requirements analysis has to be re-done. For Company B (consulting in dif-
ferent organisations) cooperation and communication was even described as being
prioritised above formal documentation and processes, expressed as: ‘We have
succeeded with mapping requirements to tests since our process is more of a dis-
cussion’ (B3:49). Several interviewees described that alignment at product and
system level, in particular, is affected by how well people cooperate (C2:17, E1:44,
48, E2:48, F4:66, F15:46). When testers have a good cooperation and frequently
communicate with both requirements-related and development-related roles, this
leads to increased alignment (E3:93).

Organisational boundaries were mentioned as further complicating and hinder-
ing cooperation between people for two of the companies, namely Companies E
and F. In these cases, separate organisational units exist for requirements (E2:29,
E3:94, F2:119), usability (F10:108) and testing (F3:184). As one interviewee said:
‘it is totally different organisations, which results in. . . misunderstandings and mis-
conceptions. . . we use different words’ (F2:57). Low awareness of the responsibil-
ities and tasks of different organisational units was also claimed to negatively af-
fect alignment (F2:264). This may result in increased lead times (E1:44, F15:33),
need for additional rework (E1:150, E1:152), and conflicts in resource allocation
between projects (F10:109, E1:34).

Challenge 3: Good Requirements Specification Quality (Ch3)

‘If we don’t have good requirements the tests will not be that good’ (D3:14). When
the requirement specification is lacking the testers need to guess and make up the
missing information since ‘the requirements are not enough for writing the soft-
ware and testing the software’ (D3:19). This both increases the effort required
for testing and the risk of misinterpretation and missing vital customer require-
ments. One process manager expressed that the testability of requirements can be
improved by involving testers and that ‘one main benefit [of alignment] is improv-
ing the requirements specifications’ (F2:62). A test leader at the same company
identified that a well aligned requirements specification (through clear agreement
between roles and tracing between artefacts) had positive effects such as ‘it was
very easy to report when we found defects, and there were not a lot of discus-
sions between testers and developers, because everyone knew what was expected’
(F9:11).

There are several aspects to good requirements that were found to relate to
alignment. In the study, practitioners mentioned good requirements as being veri-

66 Challenges and Practices in Aligning Requirements with Verification . . .

fiable, clear, complete, at the right level of abstraction, and up-to-date. Each aspect
is addressed below.

• Defining clear and verifiable requirements (Ch3.1) was mentioned as a
major challenge in enabling good alignment of requirements and testing,
both at product and at detailed level. This was mentioned for four of the six
companies covered by our study, see Table 3. Unclear and non-verifiable
requirements were seen as resulting in increased lead times and additional
work in later phases in clarifying and redoing work based on unclear re-
quirements (F2:64, D1:80). One test manager said that ‘in the beginning
the requirements are very fuzzy. So it takes time. And sometimes they are
not happy with our implementation, and we have to do it again and iterate
until it’s ready’ (F11:27, similar in E3:44). Failure to address this challenge
ultimately results in failure to meet the customer expectations with the final
product. A project manager from Company D expressed this by saying that
non-verifiable requirements is the reason ‘why so many companies, devel-
opers and teams have problems with developing customer-correct software’
(D1:36).

• Defining complete requirements (Ch3.2) was claimed to be required for
successful alignment by interviewees from four companies, namely Comp-
anies B, D, E and F. As expressed by a systems architect from Company D,
‘the problem for us right now is not [alignment] between requirements and
testing, but that the requirements are not correct and complete all the time’
(D3:118). Complete requirements support achieving full test coverage to
ensure that the full functionality and quality aspects are verified (F14:31).
When testers are required to work with incomplete requirements, additional
information is acquired from other sources, which requires additional time
and effort to locate (D3:19).

• Keeping requirements documentation updated (Ch3.3) Several intervie-
wees from Company F described how a high frequency of change leads to
the requirements documentation not being kept updated, and consequently
the documentation cannot be relied on (F14:44, F5:88). When a test for a re-
quirement then fails, the first reaction is not: ‘this is an error’, but rather ‘is
this really a relevant requirement or should we change it’ (F5:81). Men-
tioned consequences of this include additional work to locate and agree
to the correct version of requirements and rework (F3:168) when incor-
rect requirements have been used for testing. Two sources of requirements
changes were mentioned, namely requested changes that are formally ap-
proved (F14:50), but also changes that occur as the development process
progresses (during design, development etc.) that are not raised as formal
change requests (F5:82, F5:91, F11:38). When the requirements documen-
tation is not reliable, the projects depend on individuals for correct require-
ments information. As expressed by one requirements engineer: ‘when you

4 Results 67

lose the people who have been involved, it is tough. And, things then take
more time’ (F1:137).

Challenge 4: Validation and Verification Quality (Ch4)

Several issues with validation and verification were mentioned as alignment chal-
lenges that affect the efficiency and effectiveness of the testing effort. One process
manager with long experience as a tester said: ‘We can run 100,000 test cases but
only 9% of them are relevant’ (F15:152). Testing issues mentioned as affecting
alignment were: obtaining full test coverage, having a formally defined verifica-
tion process and the verification of quality requirements.

• Full test coverage (Ch4.1) Several interviewees described full test cov-
erage of the requirements as an important aspect of ensuring that the fi-
nal product fulfils the requirements and the expectations of the customers.
As one software developer said: ‘having full test coverage with unit tests
gives a better security... check that I have interpreted things correctly with
acceptance tests’ (B1:117). However, as a project manager from Com-
pany C said: ‘it is very hard to test everything, to think about all the com-
plexities’ (C3:15). Unclear (Ch3.2, C1:4) and non-verifiable requirements
(Ch3.1, A1:55, D1:78, E1:65) were mentioned as contributing to difficul-
ties in achieving full test coverage of requirements for Companies A, B,
D and E. For certain requirements that are expressed in a verifiable way a
project manager mentioned that they cannot be tested due to limitations in
the process, competence and test tools and environments (A1:56). To ensure
full test coverage of requirements the testers need knowledge of the full set
of requirements, which is impeded in the case of incomplete requirements
specifications (Ch3.3) where features and functionality are not described
(D3:16). This can also be the case for requirements defined at a higher ab-
straction level (F2:211, F14:56). Lack of traceability between requirements
and test cases was stated to making it harder to know when full test cov-
erage has been obtained (A1:42). For Company C, traceability was stated
as time consuming but necessary to ensure and demonstrate full test cov-
erage, which is mandatory when producing safety-critical software (C1:6,
C1:31). Furthermore, obtaining sufficient coverage of the requirements re-
quires analysis of both the requirement and the connected test cases (C1:52,
D3:84, F14:212). As one requirements engineer said, ‘a test case may cover
part of a requirement, but not test the whole requirement’ (F7:52). Late re-
quirements changes was mentioned as a factor contributing to the challenge
of full test coverage (C1:54, F7:51) due to the need to update the affected
test cases, which is hampered by failure to keep the requirements specifica-
tion updated after changes (Ch3.5, A2:72, F15:152).

68 Challenges and Practices in Aligning Requirements with Verification . . .

• Having a verification process (Ch4.2) was mentioned as directly connected
to good alignment between requirements and test. At Company F, the on-
going shift towards a more agile development process had resulted in the
verification unit operating without a formal process (F15:21). Instead each
department and project ‘tries to work their own way. . . that turns out to not
be so efficient’ (F15:23), especially so in this large organisation where many
different units and roles are involved from the initial requirements definition
to the final verification and launch. Furthermore, one interviewee who was
responsible for defining the new verification process (F15) said that ‘the
hardest thing [with defining a process] is that there are so many managers...
[that don’t] know what happens one level down’. In other words, a verifi-
cation process that supports requirements-test alignment needs to be agreed
with the whole organisation and at all levels.

• Verifying quality requirements (Ch4.3) was mentioned as a challenge for
Companies B, D and F. Company B has verification of quality in focus with
continuous monitoring of quality levels in combination with frequent re-
leases; ‘it is easy to prioritise performance optimisation in the next produc-
tion release’ (B1:52). However, they do not work pro-actively with quality
requirements. Even though they have (undocumented) high-level quality
goals the testers are not asked to use them (B1:57, B2:98); ‘when it’s not a
broken-down [quality] requirement, then it’s not a focus for us [test and de-
velopment]’ (B3:47). Company F does define formal quality requirements,
but these are often not fully agreed with development (F12:61). Instead,
when the specified quality levels are not reached, the requirements, rather
than the implementation, are changed to match the current behaviour, thus
resigning from improving quality levels in the software. As one test engi-
neer said: ‘We currently have 22 requirements, and they always fail, but we
can’t fix it’ (F12:61).

Furthermore, defining verifiable quality requirements and test cases was
mentioned as challenging, especially for usability requirements (D3:84, F10:119).
Verification is then faced with the challenge of subjectively judging if a re-
quirement is passed or failed (F2:46, F10:119). At Company F, the new
agile practices of detailing requirements at the development level together
with testers was believed to, at least partly, address this challenge (F12:65).
Furthermore, additional complication is that some quality requirements can
only be verified through analysis and not through functional tests (D3:84).

Challenge 5: Maintaining Alignment when Requirements Change (Ch5)

Most of the companies of our study face the challenge of maintaining alignment
between requirements and tests as requirements change. This entails ensuring that
both artefacts and tracing between them are updated in a consistent manner. Com-
pany B noted that the impact of changes is specifically challenging for test since

4 Results 69

test code is more sensitive to changes than requirements specifications. ‘That’s
clearly a challenge, because [the test code is] rigid, as you are exemplifying things
in more detail. If you change something fundamental, there are many tests and
requirements that need to be modified’ (B3:72).

Loss of traces from test cases to requirements over time was also mentioned
to cause problems. When test cases for which traces have been outdated or lost
are questioned, then ‘we have no validity to refer to... so we have to investigate’
(A2:53). In Company A, the connection between requirements and test cases are
set up for each project (A2:71): ‘This is a document that dies with the project’;
a practice found very inefficient. Other companies had varying ambitions of a
continuous maintenance of alignment and traces between the artefacts. A key
for maintaining alignment when requirements change is that the requirements are
actively used. When this is not the case there is a need for obtaining requirements
information from other sources. This imposes a risk that ‘a requirement may have
changed, but the software developers are not aware of it’ (D3:97).

Interviewees implicitly connected the traceability challenge to tools, although
admitting that ‘a tool does not solve everything... Somebody has to be responsible
for maintaining it and to check all the links... if the requirements change’ (C3:53).
With or without feasible tools, tracing also requires personal assistance. One test
engineer said, ‘I go and talk to him and he points me towards somebody’ (A2:195).

Furthermore, the frequency of changes greatly affects the extent of this chal-
lenge and is an issue when trying to establish a base-lined version of the require-
ments. Company C has good tool support and traceability links, but require defined
versions to relate changes to. In addition, they have a product line, which implies
that the changes must also be coordinated between the platform (product line) and
the applications (products) (C3:19, C3:39).

Challenge 6: Requirements Abstraction Levels (Ch6)

REVV alignment was described to be affected by the abstraction levels of the
requirements for Companies A, D and F. This includes the relationship to the ab-
straction levels of the test artefacts and ensuring consistency between requirements
at different abstraction levels.

• Defining requirements at abstraction levels well-matched to test cases
(Ch6.1) supports defining test cases in line with the requirements and with
a good coverage of them. This was mentioned for Companies D and F. A
specific case of this at Company D is when the testers ‘don’t want to test the
complete electronics and software system, but only one piece of the soft-
ware’ (D3:56). Since the requirements are specified at a higher abstraction
level than the individual components, the requirements for this level then
need to be identified elsewhere. Sources for information mentioned by the
interviewees include the design specification, asking people or making up
the missing requirements (D3:14). This is also an issue when retesting only

70 Challenges and Practices in Aligning Requirements with Verification . . .

parts of a system which are described by a high-level requirement to which
many other test cases are also traced (D3:56). Furthermore, synchronising
the abstraction levels between requirements and test artefacts was mentioned
to enhance coverage (F14:31).

• Coordinating requirements at different abstraction levels (Ch6.2) when
breaking down the high-level requirements (such as goals and product con-
cepts) into detailed requirements at system or component level was men-
tioned as a challenge by several companies. A product manager described
that failure to coordinate the detailed requirements with the overall concepts
could result in that ‘the intention that we wanted to fulfil is not solved even
though all the requirements are delivered’ (A3:39). On the other hand, inter-
viewees also described that the high-level requirements were often vague at
the beginning when ‘it is very difficult to see the whole picture’ (F12:144)
and that some features are ‘too complex to get everything right from the
beginning’ (A3:177).

Challenge 7: Tracing Between Artefacts (Ch7)

This challenge covers the difficulties involved in tracing requirements to test cases,
and vice versa, as well as, tracing between requirements at different abstraction
levels. Specific tracing practices identified through our study are described in Sec-
tion 4.2.

• Tracing between requirements and test cases (Ch7.1). The most basic
kind of traceability, referred to as ‘conceptual mapping’ in Company A
(A2:102), is having a line of thought (not necessarily documented) from the
requirements through to the defining and assessing of the test cases. This
cannot be taken for granted. Lack of this basic level of tracing is largely due
to weak awareness of the role requirements in the development process. As
a requirements process engineer in Company F says, ‘One challenge is to
get people to understand why requirements are important; to actually work
with requirements, and not just go off and develop and do test cases which
people usually like doing’ (F5:13).

Tracing by using matrices to map between requirements and test cases is a
major cost issue. A test architect at Company F states, that ‘we don’t want
to do that one to one mapping all the way because that takes a lot of time
and resources’ (F10:258). Companies with customer or market demands on
traceability, e.g. for safety critical systems (Companies C and D), have full
traceability in place though ‘there is a lot of administration in that, but it
has to be done’ (C1:6). However, for the other case companies in our study
(B3:18, D3:45; E2:83; F1:57), it is a challenge to implement and maintain
this support even though tracing is generally seen as supporting alignment.
Company A says ‘in reality we don’t have the connections’ (A2:102) and

4 Results 71

for Company F ‘in most cases there is no connection between test cases
and requirements’ (F1:157). Furthermore, introducing traceability may be
costly due to large legacies (F1:57) and maintaining traceability is costly.
However, there is also a cost for lack of traceability. This was stated by
a test engineer in Company F who commented on degrading traceability
practices with ‘it was harder to find a requirement. And if you can’t find
a requirement, sometimes we end up in a phase where we start guessing’
(F12:112).

Company E has previously had a tradition of ‘high requirements on the
traceability on the products backwards to the requirements’ (E2:83). How-
ever, this company foresees problems with the traceability when transition-
ing towards agile working practices, and using user stories instead of tradi-
tional requirements. A similar situation is described for Company F, where
they attempt to solve this issue by making the test cases and requirements
one; ‘in the new [agile] way of working we will have the test cases as the
requirements’ (F12:109).

Finally, traceability for quality (a.k.a. non-functional) requirements creates
certain challenges, ‘for instance, for reliability requirement you might. . . verify
it using analysis’ (D3:84) rather than testing. Consequently, there is no sin-
gle test case to trace such a quality requirement to, instead verification out-
come is provided through an analysis report. In addition, tracing between
requirements and test cases is more difficult ‘the higher you get’ (B3:20).
If the requirements are at a high abstraction level, it is a challenge to define
and trace test cases to cover the requirements.

• Tracing between requirements abstraction levels (Ch7.2). Another di-
mension of traceability is vertical tracing between requirements at different
abstraction levels. Company C operates with a detailed requirements spec-
ification, which for some parts consists of sub-system requirements specifi-
cations (C1:31). In this case, there are no special means for vertical trace-
ability, but pointers in the text. It is similar in Company D, where a system
architect states that ‘sometimes it’s not done on each individual requirement
but only on maybe a heading level or something like that’ (D3:45). Com-
pany F use a high-end requirements management tool, which according to
the requirements engineer ‘can trace the requirement from top level to the
lowest implementation level’ (F7:50).

Company E has requirements specifications for different target groups, and
hence different content; one market oriented, one product oriented, and
one with technical details (E1:104). The interviewee describes tracing as
a ‘synch activity’ without specifying in more detail. Similarly, Company F
has ‘roadmaps’ for the long term development strategy, and there is a loosely
coupled ‘connection between the roadmaps and the requirements’ to balance
the project scope against strategy and capacity (F11:50).

72 Challenges and Practices in Aligning Requirements with Verification . . .

Challenge 8: Time and Resource Availability (Ch8)

In addition to the time consuming task of defining and maintaining traces (Ch7)
further issues related to time and resources were brought forward in Companies
C, E and F. Without sufficient resources for validation and verification the amount
of testing that can be performed is not sufficient for the demands on functionality
and quality levels expected of the products. The challenge of planning for enough
test resources is related to the alignment between the proposed requirements and
the time and resources required to sufficiently test them. A requirements engineer
states that ‘I would not imagine that those who are writing the requirements in
anyway are considering the test implications or the test effort required to verify
them’ (F6:181). A test manager confirms this view (F14:188). It is not only a
matter of the amount of resources, but also in which time frame they are avail-
able (E1:18). Furthermore, availability of all the necessary competences and skills
within a team was also mentioned as an important aspect of ensuring alignment.
A software developer phrased it: ‘If we have this kind of people, we can set up
a team that can do that, and then the requirements would be produced properly
and hopefully 100% achievable’ (F13:149). In addition, experienced individuals
were stated to contribute to strengthening the alignment between requirements and
testing, by being ‘very good at knowing what needs to be tested and what has a
lower priority’ (C2:91), thereby increasing the test efficiency. In contrast, inexpe-
rienced testing teams were mentioned for Company C as contributing to weaker
alignment towards the overall set of requirements including goals and strategies
since they ‘verify only the customer requirements, but sometimes we have hazards
in the system which require the product to be tested in a better way’ (C2:32-33).

Challenge 9: Managing a Large Document Space (Ch9)

The main challenge regarding the information management problems lies in the
sheer numbers. A test engineer at Company F estimates that they have accu-
mulated 50,000 requirements in their database. In addition, they have ‘probably
hundreds of thousands of test cases’ (F2:34, F12:74). Another test engineer at the
same company points out that this leads to information being redundant (F11:125),
which consequently may lead to inconsistencies. A test engineer at Company D
identifies the constant change of information as a challenge; they have difficulties
to work against the same baseline (D2:16).

Another test engineer at Company F sees information management as a tool
issue. He states that ‘the requirements tool we have at the moment is not easy to
work with... Even, if they find the requirements they are not sure they found the
right version’ (F9:81). In contrast, a test engineer at Company C is satisfied with
the ability to find information in the same tool (C2). A main difference is that at
Company F, 20 times as many requirements are handled than at Company C.

The investment into introducing explicit links between a huge legacy of re-
quirements and test cases is also put forward as a major challenge for Companies

4 Results 73

A and F. In addition, connecting and integrating different tools was also mentioned
as challenging due to separate responsibilities and competences for the two areas
of requirements and testing (F5:95, F5:120).

Challenge 10: Outsourcing or Offshoring of Components or Testing
(Ch10)

Outsourcing and offshoring of component development and testing create chal-
lenges both in agreeing to which detailed requirements to implement and test, and
in tracing between artefacts produced by different parties. Company D stresses
that the timing of the outsourcing plays a role in the difficulties in tracing compo-
nent requirement specifications to the internal requirements at the higher level; ‘I
think that’s because these outsourcing deals often have to take place really early
in the development’ (D3:92). Company F also mentions the timing aspect for ac-
quisition of hardware components; ‘it is a rather formal structured process, with
well-defined deliverables that are slotted in time’ (F6:21).

When testing is outsourced, the specification of what to test is central and re-
lated to the type of testing. The set-up may vary depending on competence or
cultural differences etc. For example, Company F experienced that cultural as-
pects influence the required level of detail in the specification; ‘we [in Europe]
might have three steps in our test cases, while the same test case with the same
result, but produced in China, has eight steps at a more detailed level’ (F15:179).
A specification of what to test may be at a high level and based on a requirements
specification from which the in-sourced party derives tests and executes. An alter-
native approach is when a detailed test specification is requested to be executed by
the in-sourced party (F6:251-255).

4.2 Practices for Improved Alignment

This study has identified 27 different alignment practices, grouped into 10 cate-
gories. Most of the practices are applied at the case companies, though some are
suggestions made by the interviewees. These categories and the practices are pre-
sented below and discussed and summarised in Section 5. In Section 4.3 they are
mapped to the challenges that they are seen to address.

Requirements Engineering Practices

Requirements engineering practices are at the core of aligning requirements and
testing. This category of practices includes customer communication and involv-
ing development-near roles in the requirements process. The interviewees de-
scribed close cooperation and team work as a way to improve RE-practices (F12:146)
and thereby the coordination with developers and testers and avoid a situation
where product managers say “‘redo it” when they see the final product’ (F12:143).

74 Challenges and Practices in Aligning Requirements with Verification . . .

Table 4: Alignment practices and categories, and case companies for which they
were mentioned. Experienced practices are marked with X, while suggested prac-
tices are denoted with S.

and change requests surface in the late project phases. A software developer stated
concerning the communication between requirements engineers and developers that ‘if both
have a common perspective [of technical possibilities], then it would be easier to understand
what [requirements] can be set and what cannot be set’ (F13:29). Or in other words, with an
increased common understanding technically infeasible requirements can be avoided already
at an early stage.

Weak alignment of goals and perspectives implies a weak coordination at higher
organisational levels and that strategies and processes are not synchronised. As stated by a
process manager, the involvement of many separate parts of an organisation then leads to
‘misunderstandings and misconceptions and the use of different vocabulary’ (F2:57). In
addition, a test engineer at Company A mentioned that for the higher abstraction levels there
were no attempts to synchronise, for example, the testing strategy with the goals of

Table 4 Alignment practices and categories, and case companies for which they were mentioned. Experi-
enced practices are marked with X, while suggested practices are denoted with S

Company

Cat. Id Description A B C D E F

Requirements P1.1 Customer communication at all requirements levels and phases X X X X X

P1.2 Development involved in detailing requirements X X X

P1.3 Cross-role requirements reviews X X X X X

P1.4 Requirements review responsibilities defined X X

P1.5 Subsystem expert involved in requirements definition X X

P1.6 Documentation of requirement decision rationales S S

Validation P2.1 Test cases reviewed against requirements X

P2.2 Acceptance test cases defined by customer X

P2.3 Product manager reviews prototypes X X

P2.4 Management base launch decision on test report X

P2.5 User / Customer testing X X X X

Verification P3.1 Early verification start X X

P3.2 Independent testing X X X

P3.3 Testers re-use customer feedback from previous projects X X X

P3.4 Training off-shore testers X

Change P4.1 Process for requirements changes involving VV X X X X X

P4.2 Product-line requirements practices X X

P5 Process enforcement X S

Tracing P6.1 Document-level traces X

P6.2 Requirements-test case traces X

P6.3 Test cases as requirements X X

P6.4 Same abstraction levels for requirements and test spec X X

P7 Traceability responsibility role X X X

Tools P8.1 Tool support for requirements and testing X X X X X

P8.2 Tool support for requirements-test case tracing X X X X X

P9 Alignment metrics, e.g. test coverage X X X X

P10 Job rotation S S

A blank cell means that the practice was not mentioned during the interviews. It does not mean that it is not
applied at the company

Empir Software Eng

Author's personal copy

4 Results 75

• Customer communication at all levels and in all phases of development
(P1.1) was mentioned as an alignment practice for all but one of the case
companies. The communication may take the form of customer-supplier co-
location; interaction with the customer based on executable software used
for demonstrations or customer validation; or agreed acceptance criteria be-
tween customer and supplier. For the smaller companies, and especially
those with bespoke requirements (Companies B and C), this interaction is
directly with a physical customer. In larger companies (Companies E and
F), and especially within market driven development, a customer proxy may
be used instead of the real customer, since there is no assigned customer at
the time of development or there is a large organisational distance to the cus-
tomer. Company F assigns a person in each development team ‘responsible
for the feature scope. That person is to be available all through development
and to the validation of that feature’ (F2:109). Furthermore, early discus-
sions about product roadmaps from a 4 to 5 year perspective are held with
customers and key suppliers (F6:29) as an initial phase of the requirements
process.

• Involving developers and testers in detailing requirements (P1.2) is an-
other practice, especially mentioned by Companies A and F. A product
manager has established this as a deliberate strategy by conveying the vi-
sion of the product to the engineers rather than detailed requirements: ‘I’m
trying to be more conceptual in my ordering, trying to say what’s impor-
tant and the main behaviour’(A3:51). The responsibility for detailing the
specification then shifts to the development organisation. However, if there
is a weak awareness of the customer or market perspectives, this may be
a risky practice as ‘some people will not [understand this] either because
they [don’t] have the background or understanding of how customers or
end-users or system integrators think’ (A3:47). Testers may be involved
to ensure the testability of the requirements, or even specify requirements
in the form of test cases. Company F was in the process of transferring
from a requirements-driven organisation to a design-driven one. Splitting
up the (previous) centralised requirements department resulted in ‘require-
ments are vaguer now. So it’s more up to the developers and the testers to
make their own requirements’ (F12:17). Close cooperation around require-
ments when working in an agile fashion was mentioned as vital by a product
manager from Company E: ‘Working agile requires that they [requirements,
development, and test] are really involved [in requirements work] and not
only review’ (E2:83).

• Cross-role requirements reviews (P1.3) across requirements engineers and
testers is another practice applied to ensure that requirements are understood
and testable (A2:65, C3:69, F2:38, F7:7). The practical procedures for the
reviews, however, tend to vary. Company A has an early review of require-

76 Challenges and Practices in Aligning Requirements with Verification . . .

ments by testers while Companies C and D review the requirements while
creating the test cases. Different interviewees from Companies E and F men-
tioned one or the other of these approaches; the process seems to prescribe
cross-role reviews but process compliance varies. A test engineer said ‘[the
requirements are] usually reviewed by the testers. It is what the process says’
(F11:107). Most interviewees mention testers’ reviews of requirements as
a good practice that enhances both the communication and the quality of
the requirements, thereby resulting in better alignment of the testing effort.
Furthermore, this practice was described as enabling early identification of
problems with the test specification avoiding (more expensive) problems
later on (C2:62). A systems architect from Company F described that close
collaboration between requirements and testing around quality requirements
had resulted in ‘one area where we have the best alignment’ (F4:101).

• Defining a requirements review responsible (P1.4) was mentioned as a
practice that ensures that requirement reviews are performed (E2:18, F2:114).
In addition, for Company F this role was also mentioned as reviewing the
quality of the requirements specification (F2:114) and thereby directly ad-
dressing the alignment challenge of low quality of the requirements specifi-
cation (Ch3).

• Involving domain experts in the requirements definition (P1.5) was men-
tioned as a practice to achieve better synchronisation between the require-
ments and the system capabilities, and thereby support defining more realis-
tic requirements. The expert ‘will know if we understand [the requirement]
correctly or not’ (D3:38), said a system architect. Similar to the previous
RE practices, this practice was also mentioned as supporting alignment by
enhancing the quality of the requirements (Ch3) which are the basis for soft-
ware testing.

• Documentation of requirement decision rationales (P1.6), and not just
the current requirement version, was suggested as a practice that might fa-
cilitate alignment by interviewees from both of the larger companies in our
study, namely E and F. ‘Softly communicating how we [requirements roles]
were thinking’ (E3:90) could enhance the synchronisation between project
phases by better supporting hand-over between the different roles (F4:39).
In addition, the information could support testers in analysing customer de-
fect reports filed a long time after development was completed, and in iden-
tifying potential improvements (E3:90). However, the information needs to
be easily available and connected to the relevant requirements and test cases
for it to be practically useful to the testers (F1:120).

4 Results 77

Validation Practices

Practices for validating the system under development and ensuring that it is in-line
with customer expectations and that the right product is built (IEEE610, [235])
include test case reviews, automatic testing of acceptance test cases, and review of
prototypes.

• Test cases are reviewed against requirements (P2.1) at Company F (F14:62).
In their new (agile) development processes, the attributes of ISO9126 [241]
are used as a checklist to ensure that not only functional requirements are
addressed by the test cases, but also other quality attributes (F14:76).

• Acceptance test cases defined by customer (P2.2), or by the business unit,
is practiced at Company B. The communication with the customer proxy in
terms of acceptance criteria for (previously agreed) user scenarios acts as a
‘validation that we [software developers] have interpreted the requirements
correctly’ (B1:117). This practice in combination with full unit test coverage
of the code (B1:117) was experienced to address the challenge of achieving
full test coverage of the requirements (Ch4, see Section 4.1).

• Reviewing prototypes (P2.3) and GUI mock-ups was mentioned as an align-
ment practice applied at Company A. With this practice, the product man-
ager in the role as customer proxy validates that the developed product is
in-line with the original product intents (A3:153,163). Company partners
that develop tailor-made systems using their components may also be in-
volved in these reviews.

• Management base launch decisions on test reports (P2.4) was mentioned
as an important improvement in the agile way of working recently intro-
duced at Company F. Actively involving management in project decisions
and, specifically in deciding if product quality is sufficient for the intended
customers was seen as ensuring and strengthening the coordination between
customer and business requirements, and testing; ‘Management... have been
moved down and [made to] sit at a level where they see what really happens’
(F15:89).

• User/customer testing (P2.5) is a practice emphasised by Company B that
apply agile development practices. At regular intervals, executable code is
delivered, thus allowing the customer to test and validate the product and its
progress (B3:32, B3:99). This practice is also applied at Company E, but
with an organisational unit functioning as the user proxy (E3:22). For this
practice to be effective the customer testing needs to be performed early on.
This is illustrated by an example from Company F, namely ‘before the prod-
uct is launched the customer gets to test it more thoroughly. And they submit
a lot of feedback. Most are defects, but there are a number of changes com-
ing out of that. That’s very late in the process. . . a few weeks [...] before the

78 Challenges and Practices in Aligning Requirements with Verification . . .

product is supposed to be launched’ (F1:12). If the feedback came earlier, it
could be addressed, but not at this late stage.

Verification Practices

Verification ensures that a developed system is built according to the specifications
(IEEE610, [235]). Practices to verify that system properties are aligned to sys-
tem requirements include starting verification early to allow time for feedback and
change, using independent test teams, re-use of customer feedback obtained from
previous projects, and training testers at outsourced or off-shored locations.

• Early verification (P3.1) is put forward as an important practice especially
when specialised hardware development is involved, as for an embedded
product. Verification is then initially performed on prototype hardware (F15:114).
Since quality requirements mostly relate to complete system characteris-
tics, early verification of these requirements is harder, but also more impor-
tant. Company E states: ‘If we have performance issues or latency issues or
database issues then we usually end up in weeks of debugging and checking
and tuning’ (E3:28).

• Independent test teams (P3.2) are considered a good practice to reduce
bias in interpreting requirements by ensuring that testers are not influenced
by the developers’ interpretation of requirements. However, this practice
also increases the risk of misalignment when the requirements are insuf-
ficiently communicated since there is a narrower communication channel
for requirements-related information. This practice was emphasised espe-
cially for companies with safety requirements in the transportation domain
(Companies C and D); ‘due to the fact that this is a fail-safe system, we
need to have independency between testers and designers and implementers’
(C3:24, similar in C2:39, D2:80), ‘otherwise they [test team] might be mis-
led by the development team’ (D1:41). Similarly, Company F emphasises
alternative perspectives taken by an independent team. As a software devel-
oper said: ‘You must get another point of view of the software from someone
who does not know the technical things about the in-depth of the code, and
try to get an overview of how it works’ (F13:32).

• Testers re-use customer feedback from previous projects (P3.3) when
planning the verification effort for later projects (F14:94), thereby increas-
ing the test coverage. In addition to having knowledge of the market through
customer feedback, verification organisations often analyse and test com-
petitor products. With a stronger connection and coordination between the
verification and business/requirements units, this information could be util-
ised in defining more accurate roadmaps and product plans.

4 Results 79

• Training off-shore/outsourced testers (P3.4) in the company’s work prac-
tices and tools increases the competence and motivation of the outsourced
testers in the methods and techniques used by the outsourcing company.
This was mentioned by a project manager from Company C as improving
the quality of verification activities and the coordination of these activities
with requirement (C3:49, C3:64).

Change Management Practices

Practices to manage the (inevitable) changes in software development may miti-
gate the challenge of maintaining alignment (Ch5, see Section 4.1). We identified
practices related to the involvement of testing roles in the change management
process and also practices connected to product lines as a means to support REVV
alignment.

• Involving testing roles in change management (P4.1), in the decision
making and in the communication of changes, is a practice mentioned by all
companies, but one, as supporting alignment through increased communica-
tion and coordination of these changes with the test organisation. ‘[Testers]
had to show their impacts when we [product management] were deleting,
adding or changing requirements’ (E2:73) and ‘any change in requirement...
means involving developer, tester, project manager, requirements engineer;
sitting together when the change is agreed, so everybody is aware and should
be able to update accordingly’ (F8:25). In companies with formalised wa-
terfall processes, a change control board (CCB) is a common practice for
making decisions about changes. Company D has weekly meetings of the
‘change control board with the customer and we also have more internal
change control boards’ (D1:106). The transitioning to agile practices af-
fected the change management process at Companies E and F. At Company
F the change control board (CCB) was removed, thus enhancing local con-
trol at the expense of control of the whole development chain. As expressed
by a process manager in Company F: ‘I think it will be easy for developers
to change it [the requirements] into what they want it to be’ (F12:135). At
Company E centralised decisions were retained at the CCB (E2:73), result-
ing in a communication challenge; ‘sometimes they [test] don’t even know
that we [product management] have deleted requirements until they receive
them [as deleted from the updated specification]’ (E2:73).

• Product-line requirements practices (P4.2) are applied in order to re-
duce the impact of a requirements change. By sharing a common product
line (a.k.a. platform), these companies separate between the requirements
for the commonality and variability of their products. In order to reduce the
impact of larger requirements changes and the risks these entail for current
projects, Company A ‘develop it [the new functionality] separately, and then

80 Challenges and Practices in Aligning Requirements with Verification . . .

put that into a platform’ (A3:65). Company C use product lines to leverage
on invested test effort in many products. When changing the platform ver-
sion ‘we need to do the impact analysis for how things will be affected. And
then we do the regression test on a basic functionality to see that no new
faults have been introduced’ (C3:55).

Process Enforcement Practices (P5)

External requirements and regulations on certain practices affect the motivation
and incentive for enforcing processes and practices that support alignment. This
is especially clear in Company C, which develops safety critical systems. ‘Since
it is safety-critical systems, we have to show that we have covered all the require-
ments, that we have tested them’ (C1:6). It is admitted that traceability is costly,
but, non-negotiable in their case. ‘There is a lot of administration in that, in cre-
ating this matrix, but it has to be done. Since it is safety-critical systems, it is a
reason for all the documentation involved’ (C1:6). They also have an external as-
sessor to validate that the processes are in place and are adhered to. An alternative
enforcement practice was proposed by one interviewee from Company F (which
does not operate in a safety-critical domain) who suggested that alignment could
be achieved by enforcing traceability through integrating process enforcement in
the development tools (F14:161) though this had not been applied.

Tracing Between Artefacts

The tracing practices between requirements and test artefacts vary over a large
range of options from simple mappings between documents to extensive traces
between detailed requirements and test cases.

• Document-level traces (P6.1) where links are retained between related doc-
uments is the simplest tracing practice. This is applied at Company A: ‘we
have some mapping there, between the project test plan and the project re-
quirement specification. But this is a fragile link’ (A2:69).

• Requirement-test case traces (P6.2) is the most commonly mentioned trac-
ing practice where individual test cases are traced to individual require-
ments. This practice influences how test cases are specified: ‘It is about
keeping the test case a bit less complex and that tends to lead to keep them
to single requirements rather than to several requirements’ (F6:123).

• Using test cases as requirements (P6.3) where detailed requirements are
documented as test cases is another option where the tracing become im-
plicit at the detailed level when requirements and test cases are represented
by the same entity. This practice was being introduced at Company F. ‘At a
certain level you write requirements, but then if you go into even more de-
tail, what you are writing is probably very equivalent to a test case’ (F5:113).

4 Results 81

While this resolves the need for creating and maintaining traces at that level,
these test-case requirements need to be aligned to requirements and testing
information at higher abstraction levels. ‘There will be teams responsible
for mapping these test cases with the high-level requirements’ (F10:150).
Company A has this practice in place, though not pre-planned but due to
test cases being better maintained over time than requirements. ‘They know
that this test case was created for this requirement some time ago [...and] im-
plicitly [...] the database of test cases becomes a requirements specification’
(A2:51).

• Same abstraction levels used for requirements and test specifications
(P6.4) is an alignment practice related to the structure of information. First,
the requirements information is structured according to suitable categories.
The requirements are then detailed and documented within each category,
and the same categorisation used for the test specifications. Company C
has ‘different levels of requirements specifications and test specifications,
top level, sub-system, module level, and down to code’ (C3:67), and Com-
pany D presents similar on the test processes and artefacts (D3:53). It is
worth noting that both Company C and D develop safety-critical systems.
At Company F, a project leader described ‘the correlation between the dif-
ferent test [levels]’ and different requirement levels; at the most detailed
level ‘test cases that specify how the code should work’ and at the next level
‘scenario test cases’ (F8:16).

Practice of Traceability Responsible Role (P7)

For large projects, and for safety-critical projects, the task of creating and main-
taining the traces may be assigned to certain roles. In Company E, one of the
interviewees is responsible for consolidating the information from several projects
to the main product level. ‘This is what I do, but since the product is so big, the ac-
tual checking in the system is done by the technical coordinator for every project’
(E3:54). In one of the companies with safety-critical projects this role also exists;
‘a safety engineer [...] worked with the verification matrix and put in all the in-
formation [...] from the sub products tests in the tool and also we can have the
verification matrix on our level’ (C2:104).

Tool Support

Tool support is a popular topic on which everyone has an opinion when discussing
alignment. The tool practices used for requirements and test management vary
between companies, as does the tool support for tracing between these artefacts.

• Tool support for requirements and test management (P8.1) varies hugely
among the companies in this study, as summarised in Table 5. Company A

82 Challenges and Practices in Aligning Requirements with Verification . . .

Table 5: Tool usage for requirements and test cases, and for tracing between
them. For Company F the tool set-up prior to the major process change are also
given (marked with ‘Fp’).

Reqts. Tool Tracing tool Testing tool
Requirements C, D, E, Fp F
Traces C D, E, Fp F
Test cases C A, D, E, F, Fp

uses a test management tool, while requirements are stored as text. Comp-
anies D and E use a requirements management tool for requirements and a
test management tool for testing. This was the previous practice at Company
F too. Company C uses a requirements management tool for both require-
ments and test, while Company F aims to start using a test management tool
for both requirements and testing. Most of the companies use commercial
tools, though Company A has an in-house tool, which they describe as ‘a
version handling system for test cases’ (A2:208).

• Tool support for requirements-test case tracing (P8.2) is vital for support-
ing traceability between the requirements and test cases stored in the tools
used for requirements and test management. Depending on the tool usage,
tracing needs to be supported either within a tool, or two tools need to be
integrated to allow tracing between them. For some companies, only man-
ual tracing is supported. For example, at Company D a systems architect
describes that it is possible to ‘trace requirements between different tools
such as [requirements] modules and Word documents’ (D3:45). However,
a software manager at the same company mentions problems in connecting
the different tools and says ‘the tools are not connected. It’s a manual step,
so that’s not good, but it works’ (D1:111).

Tracing within tools is practiced at Company C where requirements and
test cases are both stored in a commercial requirements management tool:
‘when we have created all the test cases for a certain release, then we can
automatically make this matrix show the links between [system] require-
ments and test cases’ (C1:8). Company F has used the between-tools prac-
tice ‘The requirements are synchronised over to where the test cases are
stored’ (F5:19). However, there are issues related to this practice. Many-
to-many relationships are difficult to handle with the existing tool support
(F2:167). Furthermore, relationships at the same level of detail are easier to
handle than across different abstraction levels. One requirements engineer
asks for ‘a tool that connects everything; your requirement with design doc-
uments with test cases with your code maybe even your planning document’
(F5:17). In a large, complex system and its development organisation, there

4 Results 83

is a need for ‘mapping towards all kinds of directions-per function group,
per test cases, and from the requirement level’ (F11:139).

Many interviewees had complaints about their tools, and the integration be-
tween them. Merely having tool support in place is not sufficient, but it must
be efficient and usable. For example, Company E have tools for supporting
traceability between requirements and test state of connected test cases but
‘we don’t do it because the tool we have is simply not efficient enough’
(E3:57) to handle the test state for the huge amount of verified variants.
Similarly, at Company E the integration solution (involving a special mod-
ule for integrating different tools) is no longer in use and they have reverted
to manual tracing practices: ‘In some way we are doing it, but I think we are
doing it manually in Excel sheets’ (E2:49).

Finally, companies moving from waterfall processes towards agile practices
tend to find their tool suite too heavy weight for the new situation (E3:89).
Users of these tools not only include engineers, but also management, which
implies different demands. A test manager states: ‘Things are easy to do if
you have a lot of hands on experience with the tools but what you really
need is something that the [higher level] managers can use’ (F10:249).

Alignment Metrics (P9)

Measurements can be used to gain control of the alignment between requirements
and testing. The most commonly mentioned metrics concern test case coverage of
requirements. For example, Company C ‘measure[s] how many requirements are
already covered with test cases and how many are not’ (C1:64). These metrics are
derived from the combined requirements and test management tool. Companies
E and F have a similar approach, although with two different tools. They both
point out that, in addition to the metrics, it is a matter of judgement to assess
full requirements coverage. ‘If you have one requirement, that requirement may
need 16 test cases to be fully compliant. But you implement only 14 out of those.
And we don’t have any system to see that these 2 are missing’ (E3:81). And,
‘just because there are 10 test cases, we don’t know if [the requirement] is fully
covered’ (F11:34).

Furthermore, there is a versioning issue to be taken into account when assess-
ing the requirements coverage for verification. ‘It is hard to say if it [coverage]
should be on the latest software [version] before delivery or...?’ (F10:224) The re-
verse relationship of requirements coverage of all test cases is not always in place
or measured. ‘Sometimes we have test cases testing functionality not specified in
the requirements database’ (F11:133). Other alignment metrics were mentioned,
for example, missing links between requirements and tests, number of require-
ments at different levels (F5:112), test costs for changed requirements (F14:205),
and requirements review status (F14:205). Not all of these practices were prac-

84 Challenges and Practices in Aligning Requirements with Verification . . .

ticed at the studied companies even though some mentioned that such measures
would be useful (F14:219).

Job Rotation Practices (P10)

Job rotation was suggested in interviews at Companies D and F as a way to im-
prove alignment by extending contact networks and experiences across depart-
ments and roles, and thereby supporting spreading and sharing perspectives within
an organisation. In general, the interviews revealed that alignment is very depen-
dent on individuals, their experience, competence and their ability to communicate
and align with others. The practice of job rotation was mentioned as a proposal for
the future and not currently implemented at any of the included companies.

4.3 Practices that Address the Challenges

This section provides an overview of the relationships between the alignment chal-
lenges and practices identified in this study (and reported in Sections 4.1 and 4.2).
The mapping is intended as an initial guide for practitioners in identifying prac-
tices to consider in addressing the most pressing alignment challenges in their
organisations. The connections have been derived through analysis of the parts
of the interview transcripts connected to each challenge and practice, summarised
in Figure 6 and elaborated next. The mapping clearly shows that there are many-
to-many relations between challenges and practices. There is no single practice
that solves each challenge. Consequently, the mapping is aimed at a strategic level
of improvement processes within a company, rather than a lower level of practi-
cal implementation. After having assessed the challenges and practices of REVV
alignment within a company, the provided mapping can support strategic decisions
concerning which areas to improve. Thereafter, relevant practices can be tailored
for use within the specific context. Below we discuss our findings, challenge by
challenge.

The practices observed to address the challenge of having common goals
within an organisation (Ch1) mainly concern increasing the synchronisation and
communication between different units and roles. This can be achieved through in-
volving customers and development-near roles in the requirements process (P1.1,
P1.2, P1.3, P1.5); documenting requirement decision rationale (P1.6); validat-
ing requirements through test case reviews (P2.1) and product managers review-
ing prototypes (P2.3); and involving testing roles in change management (P4.1).
Goal alignment is also increased by the practice of basing launch decisions made
by management on test reports (P2.4) produced by testers. Furthermore, trac-
ing between artefacts (P6.1-6.4) provides a technical basis for supporting efficient
communication of requirements. Job rotation (P10) is mentioned as a long-term
practice for sharing goals and synchronising perspectives across the organisation.
In the mid-term perspective, customer feedback received by testers for previous

4 Results 85

Table 6: Mapping of practices to the challenges they are found to address. An S
represents a suggested, but not implemented practice.

T
ab

le
6

M
ap
pi
ng

of
pr
ac
tic
es

to
th
e
ch
al
le
ng
es

th
ey

ar
e
fo
un
d
to

ad
dr
es
s.
A
n
S
re
pr
es
en
ts
a
su
gg
es
te
d,

bu
t
no
t
im

pl
em

en
te
d
pr
ac
tic
e

P
1
R
E

pr
ac
tic
es

P
2
V
al
id
at
io
n

pr
ac
tic
es

P
3
V
er
if
ic
at
io
n

pr
ac
tic
es

P
4
C
ha
ng

e
m
an
ag
em

en
t

P
5
P
ro
ce
ss

en
fo
rc
em

en
t

P
6
T
ra
ci
ng

be
tw
ee
n

ar
te
fa
ct
s

P
7
T
ra
ce
ab
ili
ty

re
sp
on

si
bi
lit
y

ro
le

P
8
To

ol
pr
ac
tic
es

P
9
A
lig

nm
en
t

m
et
ri
cs

P
10

Jo
b

ro
ta
tio

n

C
h1

A
lig

ni
ng

go
al
s
an
d

pe
rs
pe
ct
iv
es

w
ith

in
or
ga
ni
sa
tio

n

P
1.
1–
1.
3,

1.
5–
1.
6

P
2.
1,

2.
3–
2.
4

P
3.
3

P
4.
1

P
6.
1–
6.
4

P
10

(S
)

C
h2

C
oo

pe
ra
tin

g
su
cc
es
sf
ul
ly

P
1.
2–
1.
3,

1.
5–
1.
6

P
2.
1,

2.
3,

2.
4

P
3.
1

P
4.
1

P
10

(S
)

C
h3

R
eq
ui
re
m
en
ts

sp
ec
if
ic
at
io
n
qu
al
ity

P
1.
1–
1.
5

P
2.
1,

2.
5

P
4.
1

P
5

P
6.
2–
6.
3

P
9

C
h4

V
V

qu
al
ity

P
1.
1–
1.
5

P
2.
1–
2.
3,

2.
5

P
3.
1–
3.
3

P
5

P
6.
1–
6.
4

P
9

C
h5

M
ai
nt
ai
ni
ng

al
ig
nm

en
t

w
he
n
re
qu
ir
em

en
ts
ch
an
ge

P
2.
2,

P
2.
5

P
4.
1–

4.
2

P
5

P
6.
1–
6.
4

P
7

P
9

C
h6

R
eq
ui
re
m
en
ts
ab
st
ra
ct
io
n

le
ve
ls

P
1.
1,

1.
6

P
6.
4

C
h7

T
ra
ce
ab
ili
ty

P
2.
1

P
5

P
6.
1–
6.
4

P
7

P
8.
1–
8.
2

P
9

C
h8

T
im

e
an
d
re
so
ur
ce

av
ai
la
bi
lit
y

P
4.
1

P
5

C
h9

M
an
ag
in
g
a
la
rg
e
do

cu
m
en
t

sp
ac
e

P
6.
1–
6.
4

P
7

P
8.
1–
8.
2

P
9

C
h1

0
O
ut
so
ur
ci
ng

of
co
m
po

ne
nt
s

or
te
st
in
g

P
1.
1–
1.
5

P
2.
1–
2.
3

P
3.
4

P
6.
4

A
bl
an
k
ce
ll
in
di
ca
te
s
th
at

no
co
nn
ec
tio

n
w
as

m
en
tio

ne
d
du
ri
ng

th
e
in
te
rv
ie
w
s

Empir Software Eng

Author's personal copy

86 Challenges and Practices in Aligning Requirements with Verification . . .

projects (P3.3) can be reused as input when defining roadmaps and products plans
thereby further coordinating the testers with the requirements engineers responsi-
ble for the future requirements.

The challenge of cooperating successfully (Ch2) is closely related to the first
challenge (Ch1) as being a means to foster common goals. Practices to achieve
close cooperation across roles and organisational borders hence include cross-
functional involvement (P1.2, P1.5, P2.4) and reviews (P1.3, P2.1, P2.3), feedback
through early and continuous test activities (P3.1), as well as, joint decisions about
changes in change control boards (P4.1) and documenting requirement decision ra-
tionales (P1.6). The former are practices are embraced in agile processes, while
the latter practices of change control boards and documentation of rationales were
removed for the studied cases when agile processes were introduced. Job rotation
(P10), with its general contribution to building networks, is expected to facilitate
closer cooperation across organisational units and between roles.

The challenge of achieving good requirements specification quality (Ch3) is
primarily addressed by the practices for requirements engineering (P1.1-1.5), val-
idation (P2.1, P2.5) and managing requirement changes (P4.1). Some of the trace-
ability practices (P6.2, P6.3) also address the quality of requirements in terms of
being well structured and defined at the right level of detail. Furthermore, aware-
ness of the importance of alignment and full requirements coverage may induce
and enable organisations in producing better requirements specifications. This
awareness can be encouraged with the use of alignment metrics (P9) or enforced
(P5) through regulations for safety-critical software and/or by integrating process
adherence in development tools.

The challenge of achieving good validation and verification quality (Ch4)
is addressed by practices to ensure clear and agreed requirements, such as cross-
functional reviews (P1.3, P2.1), involving development roles in detailing require-
ments (P1.2) and customers in defining acceptance criteria (P2.2). Validation is
supported by product managers reviewing prototypes (P2.3) and by user/customer
testing (P2.5). Verification is improved by early verification activities (P3.1) and
through independent testing (P3.2) where testers are not influenced by other engi-
neers’ interpretation of the requirements. Complete and up-to-date requirements
information is a prerequisite for full test coverage, which can be addressed by re-
quirements engineering practices (P1.1-1.5), testers re-using customer feedback
(P3.3) (rather than incorrect requirements specification) and indirectly by trace-
ability practices (P6.1-6.4). The external enforcement (P5) of the full test cover-
age and alignment metrics (P9) are practices that provide incentives for full test
coverage including quality requirements.

Maintaining alignment when requirements change (Ch5) is a challenge that
clearly connects to change and traceability practices (P4.1-4.2, P6.1-6.4 and P7).
However, also the validation practices of having acceptance tests based on user
scenarios (P2.2) and user/customer testing (P2.5) address this challenge by pro-
viding feedback on incorrectly updated requirements, test cases and/or software.

4 Results 87

Furthermore, having alignment metrics in place (P9) and external regulations on
documentation and traceability (P5) is an incentive to maintain alignment as re-
quirements change.

The challenge of managing requirements abstraction levels (Ch6) is ad-
dressed by the requirements practice of including the customer in requirements
work throughout a project (P1.1) and the tracing practices of matching abstrac-
tions levels for requirements and test artefacts (P6.4). Both of these practices exer-
cise the different requirements levels and thereby support identifying mismatches.
This challenge is also supported by documentation of requirement decision ratio-
nales (P1.6) by providing additional requirements information to the roles at the
different abstraction level.

Traceability (Ch7) in itself is identified as a challenge in the study, and in-
terviewees identified practices on the information items to be traced (P6.1-6.4),
as well as, tools (P8.1-8.2) to enable tracing. In addition, the practice of review-
ing test cases against requirements (P2.1) may also support identifying sufficient
and/or missing traces. Furthermore, requirements coverage metrics (P9) are pro-
posed as a means to monitor and support traceability. However, as noticed by
Companies E and F, simple coverage metrics are not sufficient to ensure ample
alignment. Process enforcement practices (P5) and assigning specific roles respon-
sible for traceability (P7) are identified as key practices in creating and maintaining
traces between artefacts.

The practical aspects of the challenge on availability of time and resources
(Ch8) are mainly a matter of project management practices, and hence not directly
linked to the alignment practices. However, the practice of involving testing roles
in the change management process (P4.1) may partly mitigate this challenge by
supporting an increased awareness of the verification cost and impact of changes.
Furthermore, in companies for which alignment practices are externally enforced
(P5) there is an awareness of the importance of alignment of software develop-
ment, but also an increased willingness to take the cost of alignment including
tracing.

The large document space (Ch9) is a challenge that can be partly addressed
with good tool support (P8.1-8.2) and tracing (P6.1-6.4, P7) practices. The study
specifically identifies that a tool that fits a medium-sized project may be very
hard to use in a large one. One way of getting a synthesised view of the level
of alignment between large sets of information is to characterise it, using quan-
titative alignment measurements (P9). It does not solve the large-scale problem,
but may help assess the current status and direct management attention to problem
areas.

Outsourcing (Ch10) is a challenge that is related to timing, which is a project
management issue, and to communication of the requirements, which are to be de-
veloped or tested by an external team. The primary practice to apply to outsourcing
is customer communication (P1.1). Frequent and good communication can ensure
a common perspective and direction, in particular in the early project phases. In

88 Challenges and Practices in Aligning Requirements with Verification . . .

addition, other practices for improved cooperation (P1.2-1.5, P2.1-2.3) are even
more important when working in different organisational units, times zones, and
cultural contexts. Furthermore, in an outsourcing situation the requirements spec-
ification is a key channel of communication, often also in contractual form. Thus,
having requirements and tests specified at the same level of abstraction (P6.4),
feasible for the purpose, is a practice to facilitate the outsourcing. Finally, train-
ing the outsourced or off-shored team (P3.4) in company practices and tools also
addresses this challenge.

In summary, the interviewees brought forward practices, which address some
of the identified challenges in aligning requirements and testing. The practices
are no quick-fix solutions, but the mapping should be seen as a guideline to rec-
ommend areas for long-term improvement, based on empirical observations of
industry practice.

5 Discussion
Alignment between requirements and test ranges not only the life-cycle of a soft-
ware development project, but also company goals and strategy, and affects a vari-
ety of issues, from human communication to tools and their usage. Practices differ
largely between companies of varying size and maturity, domain and product type,
etc. One-size alignment practices clearly do not fit all.

A wide collection of alignment challenges and practices have been identified
based on the large amount of experiences represented by our 30 interviewees from
six different companies, covering multiple roles, domains and situations. Through
analysing this data and deriving results from it, the following general observations
have been made by the researchers:

1. The human and organisational sides of software development are at the core
of industrial alignment practices.

2. The requirements are the frame of reference for the software to be built, and
hence the quality of the requirements is critical for alignment with testing
activities.

3. The large difference in size (factor 20) between the companies, in combina-
tion with variations in domain and product type, affects the characteristics
of the alignment challenges and applicable practices.

4. The incentives for investing in good alignment practices vary between do-
mains.

Organisational and human issues are related to several of the identified chal-
lenges (Ch1, Ch2, Ch8, and Ch10). Successful cooperation and collaboration
(Ch2) is a human issue. Having common goals and perspectives for a develop-
ment project is initially a matter of clear communication of company strategies

5 Discussion 89

and goals, and ultimately dependant on human-to-human communication (Ch1).
Failures to meet customer requirements and expectations are often related to mis-
understanding and misconception; a human failure although technical limitations,
tools, equipment, specifications and so on, also play a role. It does not mean that
the human factor should be blamed in every case and for each failure. However,
this factor should be taken into account when shaping the work conditions for
software engineers. These issues become even more pressing when outsourcing
testing. Jones et al. [252] found that failure to align outsourced testing activities
with in-house development resulted in wasted effort, mainly due to weak commu-
nication of requirements and changes of them.

Several of the identified alignment practices involve the human and organisa-
tional side of software engineering. Examples include communication practices
with customers, cross-role and cross-functional meetings in requirements elici-
tation and reviews, communication of changes, as well as, a proposed job rota-
tion practice to improve human-to-human communication. This confirms previous
research that alignment can be improved by increasing the interaction between
testers and requirements engineers. For example, including testers early on and,
in particular, when defining the requirements, can lead to improved requirements
quality [458]. However, Uusitalo et al. also found that cross collaboration can be
hard to realise due to unavailability of requirements owners and testers on account
of other assignments and distributed development [458]. In general, processes
and roles that support and enforce the necessary communication paths may en-
hance alignment. For example, Paci et al. [365] report on a process for handling
requirements changes through clearly defined communication interfaces. This pro-
cess relies on roles propagating change information within their area, rather than
relying on more general communication and competence [365]. This also con-
firms the findings of Uusitalo et al. that increased cross communication reduces
the amount of assumptions made by testers on requirements interpretation, and
results in an increased reliability of test results and subsequent products [458].
Similarly, Fogelström and Gorschek [184] found that involving testers as review-
ers through test-case driven inspections of requirements increases the interaction
with requirements-related roles and can improve the overall quality of the require-
ments, thereby supporting alignment. Furthermore, even technical practices, such
as tool support for requirements and test management, clearly have a human side
concerning degree of usability and usefulness for different groups of stakeholders
in an organisation.

Defining requirements of good quality (Ch3) is central to enabling good
alignment and coordination with other development activities, including valida-
tion and verification. This challenge is not primarily related to the style of require-
ments, whether scenario based, plain textual, or formal. But, rather the quality
characteristics of the requirements are important, i.e. being verifiable, clear, com-
plete, at a suitable level of abstraction and up-to-date. This relates to results from
an empirical study by Ferguson and Lami [181] that found that unclear require-

90 Challenges and Practices in Aligning Requirements with Verification . . .

ments have a higher risk of resulting in test failures. A similar reverse relationship
is reported by Graham [205], that clearer and verifiable requirements enable testers
to define test cases that match the intended requirements. In addition, Uusitalo et
al. [458] found that poor quality of requirements was a hindrance to maintain-
ing traces from test cases. Sikora et al. [431] found that requirements reviews is
the dominant practice applied to address quality assurance of the requirements for
embedded systems and that industry need additional and improved techniques for
achieving good requirements quality. Furthermore, requirements quality is related
to involving, not only requirements engineers in the requirements engineering, but
also VV roles in early stages. This can be achieved by involving non-RE roles in
reviews and in detailing requirements. This also contributes to cross-organisational
communication and learning, and supports producing requirements that are both
useful and used. Uusitalo et al. [458] found that testers have a different viewpoint
that makes them well suited to identifying deficiencies in the requirements includ-
ing unverifiability and omissions. Martin and Melnik [330] take this approach one
step further by suggesting that the requirements themselves be specified as accep-
tance test cases, which are then used to verify the behaviour of the software. This
approach was evaluated through an experiment by Ricca et al. [396] who found
that this helped to clarify and increase the joint understanding of requirements
with substantially the same amount of effort. Furthermore, our findings that RE
practices play a vital role in supporting REVV alignment confirm previous con-
clusions that the requirements process is an important enabler for testing activities
and that RE improvements can support alignment with testing [458].

Company size varies largely between the six companies in this study. Simi-
larly, the challenges and practices also vary between the companies. While smaller
project groups of 5-10 persons can handle alignment through a combination of in-
formal and formal project meetings. Large-scale projects require more powerful
process and tool support to ensure coordination and navigation of the (larger) in-
formation space between different phases and hierarchies in the organisation. This
was illustrated by different views on the same state-of-the-art requirements man-
agement tool. The tool supported alignment well in one medium-sized project
(Company C), but was frequently mentioned by the interviewees for the largest
company (Company F) as a huge alignment challenge.

In some cases (e.g. Company F), agile practices are introduced to manage large
projects by creating several smaller, self-governing and less dependent units. Our
study shows that this supports control and alignment at the local level, but, at the
expense of global control and alignment (Company E). The size-related alignment
challenges then re-appear in a new shape, at another level in the organisation.
For example, granting development teams mandate to define and change detailed
requirements increases speed and efficiency at the team level, but increases the
challenge of communicating and coordinating these changes wider within a large
organisation.

The incentives for applying alignment practices, specifically tracing be-

5 Discussion 91

tween requirements and test artefacts, vary across the studied companies. Ap-
plying alignment practices seems to be connected to the incentives for enforcing
certain practices, such as tracing and extensive documentation. The companies re-
porting the most rigid and continuously maintained alignment practices are those
working in domains where customers or regulatory bodies require such practices.
Both of these companies (C and D) have enforced alignment practices in their de-
velopment including tracing between requirements and tests. Interestingly these
are also the companies in our study which apply a traditional and rigorous devel-
opment model. It is our interpretation that the companies with the most agile, and
least rigorous, development processes (A and B) are also the companies which rely
heavily on people-based alignment and tracing, rather than on investing in more
structured practices. These are also the two companies that do not have tracing
between artefacts in place, even partially. While for the remaining companies (E
and F) which apply agile-inspired processes, but with structured elements (e.g.
eRUP), traceability is in place partly or locally. Our interpretation of the relation-
ship between the included companies concerning incentives and degree of rigour
in applying structured alignment practices is illustrated in Figure 4 together with
the relative size of their software development. The observed connection between
degree of rigour and incentives for alignment are similar to other findings con-
cerning safety-critical development. Namely, that alignment is enabled by more
rigorous practices such as concurrently designed processes [286] or model-based
testing [214, 356]. Furthermore, companies in safety-critical domains have been
found to apply more rigorous processes and testing practices [411]. In contrast,
neglect of quality requirements, including safety aspects has been found to one of
the challenges of agile RE [94].

Interestingly, several alignment challenges (e.g. tracing, communicating re-
quirements changes) were experienced also for the companies developing safety-
critical software (C and D) despite having tracing in place and applying practices
to mitigate alignment challenges (e.g. frequent customer communication, tracing
responsible role, change management process involving testers etc.) This might be
explained by a greater awareness of the issues at hand, but also that the increased
demands posed by the higher levels of quality demands requires additional align-
ment practice beyond those needed for non-critical software.

When the documentation and tracing practices are directly enforced from out-
side the organisation, they cannot be negotiated and the cost has to be taken [468].
In organisations without these external requirements the business case for investing
in these practices needs to be defined, which does not seem to be the case for the
studied organisations. Despite the existence of frustration and rework due to bad
alignment, the corresponding costs are seldom quantified at any level. Improving
alignment involves short term investments in tools, work to recapture traces be-
tween large legacies of artefacts, and/or in changed working practices. The returns
on these investments are gained mainly in the longer term. This makes it hard to
put focus and priority on alignment practices in a short-sighted financial and man-

92 Challenges and Practices in Aligning Requirements with Verification . . .

Figure 4: Rough overview of the relationship between the variation factors size,
rigour in applying alignment practices and incentive for alignment practices for
the studied companies. Number of people in software development is reflected by
the relative size of the circle.

6 Conclusions 93

agement culture. Finally, requirements volatility increases the importance and cost
to achieve REVV alignment. This need to manage a rate of requirements changes
often drives the introduction of agile practices. These practices are strong in team
cooperation, but weak in documentation and traceability between artefacts. The
companies (C and D) with lower requirements volatility and where development
is mainly plan-driven and bespoken, have the most elaborated documentation and
traceability practices. In both cases, the practices are enforced by regulatory re-
quirements. However, in our study, it is not possible to distinguish between the
effects of different rates of change and the effects of operating in a safety-critical
domain with regulations on documentation and traceability.

In summary, challenges and practices for REVV alignment span the whole de-
velopment life cycle. Alignment involves the human and organisational side of
software engineering and requires the requirements to be of good quality. In addi-
tion, the incentives for alignment greatly vary between companies of different size
and application domain. Future research and practice should consider these vari-
ations in identifying suitable practices for REVV alignment, tailored to different
domains and organisations.

6 Conclusions

Successful and efficient software development, in particular on the large scale,
requires coordination of the people, activities and artefacts involved [133, 134,
283]. This includes alignment of the areas of requirements and test [133,286,414,
458]. Methods and techniques for linking artefacts abound including tracing and
use of model-based engineering. However, companies experience challenges in
achieving alignment including full traceability. These challenges are faced also
by companies with strong incentives for investing in REVV alignment such as
for safety critical software where documentation and tracing is regulated. This
indicates that the underlying issues lie elsewhere and require aligning of not only
the artefacts, but also of other factors. In order to gain a deeper understanding
of the industrial challenges and practices for aligning RE with VV, we launched
a case study covering six companies of varying size, domain, and history. This
paper reports the outcome of that study and provides a description of the industrial
state of practice in six companies. We provide categorised lists of (RQ1) industrial
alignment challenges and (RQ2) industrial practices for improving alignment, and
(RQ3) a mapping between challenges and practices. Our results, based on 30
interviews with different roles in the six companies, add extensive empirical input
to the existing scarce knowledge of industrial practice in this field [414, 458]. In
addition, this paper presents new insights into factors that explain needs and define
solutions for overcoming REVV alignment challenges.

We conclude with four high-level observations on the alignment between re-
quirements and testing. Firstly, as in many other branches of software engineering,

94 Challenges and Practices in Aligning Requirements with Verification . . .

the human side is central, and communication and coordination between people is
vital, so also between requirements engineers and testers, as one interviewee said:
‘start talking to each other!’ (F7:88) Further, the quality and accuracy of the re-
quirements is a crucial starting point for testing the produced software in-line with
the defined and agreed requirements. Additionally, the size of the development
organisation and its projects is a key variation factor for both challenges and prac-
tices of alignment. Tools and practices may not be scalable, but rather need to
be selected and tailored to suit the specific company, size and domain. Finally,
alignment practices such as good requirements documentation and tracing seem to
be applied for safety-critical development through external enforcement. In con-
trast, for non-safety critical cases only internal motivation exists for the alignment
practices even though these companies report facing large challenges caused by
misalignment such as incorrectly implemented requirements, delays and wasted
effort. For these cases, support for assessing the cost and benefits of REVV align-
ment could provide a means for organisations to increase the awareness of the
importance of alignment and also tailor their processes to a certain level of align-
ment, suitable and cost effective for their specific situation and domain.

In summary, our study reports on the current practice in several industrial do-
mains. Practical means are provided for recognising challenges and problems in
this field and matching them with potential improvement practices. Furthermore,
the identified challenges pose a wide assortment of issues for researchers to ad-
dress in order to improve REVV alignment practice, and ultimately the software
engineering practices.

Acknowledgement
We want to thank Børje Haugset for acting as interviewer in three of the interviews.
We would also like to thank all the participating companies and anonymous inter-
viewees for their contribution to this project. The research was funded by EASE
Industrial Excellence Center for Embedded Applications Software Engineering
(http://ease.cs.lth.se).

CHAPTER II

RECOVERING FROM A
DECADE: A SYSTEMATIC
REVIEW OF INFORMATION

RETRIEVAL APPROACHES TO
SOFTWARE TRACEABILITY

Abstract

Context: Engineers in large-scale software development have to manage large
amounts of information, spread across many artifacts. Several researchers have
proposed expressing retrieval of trace links among artifacts, i.e. trace recovery, as
an Information Retrieval (IR) problem. Objective: The objective of this study is to
produce a map of work on IR-based trace recovery, with a particular focus on pre-
vious evaluations and strength of evidence. Method: We conducted a systematic
mapping of IR-based trace recovery. Results: Of the 79 publications classified, a
majority applied algebraic IR models. While a set of studies on students indicate
that IR-based trace recovery tools support certain work tasks, most previous stud-
ies do not go beyond reporting precision and recall of candidate trace links from
evaluations using datasets containing less than 500 artifacts. Conclusions: Our
review identified a need of industrial case studies. Furthermore, we conclude that
the overall quality of reporting should be improved regarding both context and tool
details, measures reported, and use of IR terminology. Finally, based on our em-
pirical findings, we present suggestions on how to advance research on IR-based
trace recovery.

Markus Borg, Per Runeson, and Anders Ardö, Empirical Software Engineering,
19(6), pp. 1565-1616, 2014

96 Recovering from a Decade: A Systematic Review of Information . . .

1 Introduction

The successful evolution of software systems involves concise and quick access to
information. However, information overload plagues software engineers, as large
amounts of formal and informal information is continuously produced and modi-
fied [111, 362]. Inevitably, especially in large-scale projects, this leads to a chal-
lenging information landscape, that includes, apart from the source code itself,
requirements specifications of various abstraction levels, test case descriptions,
defect reports, manuals, and the like. The state-of-practice approach to structure
such information is to organize artifacts in databases, e.g. document management
systems, requirements databases, and code repositories, and to manually main-
tain trace links [204, 231]. With access to trace information, engineers can more
efficiently perform work tasks such as impact analysis, identification of reusable
artifacts, and requirements validation [18, 473]. Furthermore, research has identi-
fied lack of traceability to be a major contributing factor in project overruns and
failures [111, 160, 204]. Moreover, as traceability plays a role in software verifi-
cation, safety standards such as ISO 26262 [242] for the automotive industry, and
IEC 61511 [238] for the process industry, mandate maintenance of traceability
information [264], as does the CMMI process improvement model [97]. How-
ever, manually maintaining trace links is an approach that does not scale [216].
In addition, the dynamics of software development makes it tedious and error-
prone [160, 175, 231].

As a consequence, engineers would benefit from additional means of dealing
with information seeking and retrieval, to navigate effectively the heterogeneous
information landscape of software development projects. Several researchers have
claimed it feasible to treat traceability as an information retrieval (IR) problem [18,
141,231,315,326]. Also, other studies have reported that the use of semi-automated
trace recovery reduces human effort when performing requirements tracing [139,
144, 148, 231, 355]. The IR approach builds upon the assumption that if engineers
refer to the same aspects of the system, similar language is used across different
software artifacts. Thus, tools suggest trace links based on Natural Language (NL)
content. During the first decade of the millennium, substantial research effort has
been spent on tailoring, applying, and evaluating IR techniques to software en-
gineering, but we found that a comprehensive overview of the field is missing.
Such a secondary analysis would provide an evidence based foundation for future
research, and advise industry practice [273]. As such, the gathered empirical evi-
dence could be used to validate, and possibly intensify, the recent calls for future
research by the traceability research community [202], organized by the Center
of Excellence for Software Traceability (CoEST)1. Furthermore, it could assess
the recent claims that applying more advanced IR models does not improve re-
sults [175, 360].

1www.coest.org

2 Background 97

We have conducted a Systematic Mapping (SM) study [272, 373] that clusters
publications on IR-based trace recovery. SMs and Systematic Literature Reviews
(SLR) are primarily distinguished by their driving Research Questions (RQ) [272],
i.e. an SM identifies research gaps and clusters evidence to direct future research,
while an SLR synthesizes empirical evidence on a specific RQ. The rigor of the
methodologies is a key asset in ensuring a comprehensive collection of published
evidence. We define our overall goals of this SM in three RQs:

RQ1 Which IR models and enhancement strategies have been most frequently
applied to perform trace recovery among NL software artifacts?

RQ2 Which types of NL software artifacts have been most frequently linked in
IR-based trace recovery studies?

RQ3 How strong is the evidence, wrt. degree of realism in the evaluations, of
IR-based trace recovery?

This paper is organized as follows. Section 2 contains a thorough definition of
the IR terminology we refer to throughout this paper, and a description of how IR
tools can be used in a trace recovery process. Section 3 presents related work, i.e.
the history of IR-based trace recovery, and related secondary and methodological
studies. Section 4 describes how the SM was conducted. Section 5 shows the
results from the study. Section 6 discusses our research questions based on the
results. Finally, Section 7 presents a summary of our contributions and suggests
directions for future research.

2 Background
This section presents fundamentals of IR, and how tools implementing IR models
can be used in a trace recovery process.

2.1 IR Background and Terminology
As the study identified variations in use of terminology, this section defines the
terminology used in this study (summarized in Table 1), which is aligned with
recently redefined terms [113]. We use the following IR definition: “information
retrieval is finding material (usually documents) of an unstructured nature (usu-
ally text) that satisfies an information need from within large collections (usually
stored on computers)” [325]. If a retrieved document satisfies such a need, we
consider it relevant. We solely consider text retrieval in the study, yet we follow
convention and refer to it as IR. In our interpretation, the starting point is that any
approach that retrieves documents relevant to a query qualifies as IR. The terms
Natural Language Processing (NLP) and Linguistic Engineering (LE) are used in
a subset of the mapped publications of this study, even if they refer to the same

98 Recovering from a Decade: A Systematic Review of Information . . .

IR techniques. We consider NLP and LE to be equivalent and borrow two defini-
tions from Liddy [306]: “NL text is text written in a language used by humans to
communicate to one another”, and “NLP is a range of computational techniques
for analyzing and representing NL text”. As a result, IR (referring to a process
solving a problem) and NLP (referring to a set of techniques) are overlapping. In
contrast to the decision by Falessi et al. [175] to consistently apply the term NLP,
we choose to use IR in this study, as we prefer to focus on the process rather than
the techniques. While trace recovery truly deals with solutions targeting NL text,
we prefer to primarily consider it as a problem of satisfying an information need.

Furthermore, a “software artifact is any piece of information, a final or inter-
mediate work product, which is produced and maintained during software devel-
opment” [284], e.g. requirements, design documents, source code, test specifica-
tions, manuals, and defect reports. To improve readability, we refer to such pieces
of information only as ‘artifacts’. Regarding traceability, we use two recent def-
initions: “traceability is the potential for traces to be established and used” and
“trace recovery is an approach to create trace links after the artifacts that they
associate have been generated or manipulated” [113]. In the literature, the trace
recovery process is referred to in heterogeneous ways including traceability link
recovery, inter-document correlation, document dependency/similarity detection,
and document consolidation. We refer to all such approaches as trace recovery,
and also use the term links without differentiating between dependencies, relations
and similarities between artifacts.

In line with previous research, we use the term dataset to refer to the set of
artifacts that is used as input in evaluations and preprocessing to refer to all pro-
cessing of NL text before the IR models (discussed next) are applied [36], e.g. stop
word removal, stemming and identifier (ID) splitting names expressed in Camel-
Case (i.e. identifiers named according to the coding convention to capitalize the
first character in every word) or identifiers named according to the under_score
convention. Feature selection is the process of selecting a subset of terms to repre-
sent a document, in an attempt to decrease the size of the effective vocabulary and
to remove noise [325].

To support trace recovery, several IR models have been applied. Since we
identified contradicting interpretations of what is considered a model, weighting
scheme, and similarity measure, we briefly present our understanding of the IR
field. IR models often apply the Bag-of-Words (BoW) model, a simplifying as-
sumption that represents a document as an unordered collection of words, disre-
garding word order [325]. Most existing IR models can be classified as either
algebraic or probabilistic, depending on how relevance between queries and docu-
ments is measured. In algebraic IR models, relevance is assumed to be correlated
with similarity [490]. The most well-known algebraic model is the commonly ap-
plied Vector Space Model (VSM) [417], which due to its many variation points acts
as a framework for retrieval. Common to all variations of VSM is that both doc-
uments and queries are represented as vectors in a high-dimensional space (every

2 Background 99

term, after preprocessing, in the document collection constitutes a dimension) and
that similarities are calculated between vectors using some distance function. In-
dividual terms are not equally meaningful in characterizing documents, thus they
are weighted accordingly. Term weights can be both binary (i.e. existing or non-
existing) and raw (i.e. based on term frequency) but usually some variant of Term
Frequency-Inverse Document Frequency (TF-IDF) weighting is applied. TF-IDF
is used to weight a term based on the length of the document and the frequency of
the term, both in the document and in the entire document collection [433]. Re-
garding similarity measures, the cosine similarity (calculated as the cosine of the
angle between vectors) is dominating in IR-based trace recovery using algebraic
models, but also Dice’s coefficient and the Jaccard index [325] have been applied.
In an attempt to reduce the noise of NL (such as synonymy and polysemy), La-
tent Semantic Indexing (LSI) was introduced [150]. LSI reduces the dimensions
of the vector space, finding semi-dimensions using singular value decomposition.
The new dimensions are no longer individual terms, but concepts represented as
combinations of terms. In the VSM, relevance feedback (i.e. improving the query
based on human judgement of partial search results, followed by re-executing an
improved search query) is typically achieved by updating the query vector [490].
In IR-based trace recovery, this is commonly implemented using the Standard Roc-
chio method [408]. The method adjusts the query vector toward the centroid vector
of the relevant documents, and away from the centroid vector of the non-relevant
documents.

In probabilistic retrieval, relevance between a query and a document is es-
timated by probabilistic models. The IR is expressed as a classification problem,
documents being either relevant or non-relevant [433]. Documents are then ranked
according to their probability of being relevant [329], referred to as the probabilis-
tic ranking principle [397]. In trace recovery, the Binary Independence Retrieval
model (BIM) [398] was first applied to establish links. BIM naïvely assumes that
terms are independently distributed, and essentially applies the Naïve Bayes classi-
fier for document ranking [300]. Different weighting schemes have been explored
to improve results, and currently the BM25 weighting used in the non-binary Okapi
system [400] constitutes state-of-the-art.

Another category of probabilistic retrieval is based on the model of an infer-
ence process in a Probabilistic Inference Network (PIN) [455]. In an inference net-
work, relevance is modeled by the uncertainty associated with inferring the query
from the document [490]. Inference networks can embed most other IR models,
which simplifies the combining of approaches. In its simplest implementation, a
document instantiates every term with a certain strength and multiple terms accu-
mulate to a numerical score for a document given each specific query. Relevance
feedback is possible also for BIM and PIN retrieval [490], but we have not identi-
fied any such attempts within the trace recovery research.

In the last years, another subset of probabilistic IR models has been applied
to trace recovery. Statistical Language Models (LM) estimate an LM for each

100 Recovering from a Decade: A Systematic Review of Information . . .

document, then documents are ranked based on the probability that the LM of a
document would generate the terms of the query [378]. A refinement of simple
LMs, topic models, describes documents as a mixture over topics. Each individual
topic is then characterized by an LM [491]. In trace recovery research, studies ap-
plying the four topic models Probabilistic Latent Semantic Indexing (PLSI) [221],
Latent Dirichlet Allocation (LDA) [65], Correlated Topic Model (CTM) [64] and
Relational Topic Model (RTM) [101] have been conducted. To measure the dis-
tance between LMs, where documents and queries are represented as stochastic
variables, several different measures of distributional similarity exist, such as the
Jensen-Shannon divergence (JS). To the best of our knowledge, the only imple-
mentation of relevance feedback in LM-based trace recovery was based on the
Mixture Model method [492].

Several attempts are made to improve an IR model, in this paper referred to as
enhancement strategies. Apart from the already described relevance feedback, one
of the most common approaches in IR is to introduce a thesaurus. A thesaurus is a
tool for vocabulary control, typically defined for a specific subject area, such as art
or biology, formally organized so that a priori relationships between concepts are
made explicit [7]. Standard usage of a thesaurus is to provide an IR system with
preferred and non-preferred terms, restricted vocabularies of terms that the IR sys-
tem is allowed to, or not allowed to, use for indexing and searching, and semantic
relations, relations between terms such as synonymy and hyponymy. Another en-
hancement strategy in IR is phrasing, an approach to exceed indexing according to
the BoW model [122]. A phrase is a sequence of two or more words, expected to
be more accurate in representing document content than independent words. De-
tecting phrases for indexing can be done using either a statistical analysis of term
frequency and co-occurrence, or by a syntactical approach, i.e. analyzing gram-
matical structure using a parts-of-speech tagger. Yet another enhancement strategy
is clustering, based on the hypothesis that “documents relevant to a query tend to
be more similar to each other than to irrelevant documents and hence are likely
to be clustered together” [102]. Clustering can be used for different purposes,
e.g. presenting additional search results or to structure the presentation of search
results.

Finally, a number of measures used to evaluate IR tools have been defined. Ac-
curacy of a set of search results is primarily measured by the standard IR-measures
precision (the fraction of retrieved instances that are relevant), recall (the fraction
of relevant instances that are retrieved) and F-measure (harmonic mean of pre-
cision and recall, possibly weighted to favour one over another) [36]. Precision
and recall values (P-R values) are typically reported pairwise or as precision and
recall curves (P-R curves). Two other set-based measures, originating from the
traceability community, are Recovery Effort Index (REI) [18] and Selectivity [443].
Secondary measures aim to go further than comparing sets of search results, and
also consider their internal ranking. Two standard IR measures are Mean Average
Precision (MAP) of precision scores for a query [325], and Discounted Cumulative

2 Background 101

Table 1: A summary of fundamental IR terms applied in trace recovery. Note that
only the vertical organization carries a meaning.

Retrieval Models Misc.
Algebraic Probabilistic Statistical Weighting Similarity Enhance-

models models language schemes measures / ment
models distance strategies

functions
Vector Binary Language Binary Cosine Relevance
Space Independence Model similarity feedback
Model Model (LM)
(VSM) (BIM)
Latent Probabilistic Probabilistic Raw Dice’s Thesaurus

Semantic Inference Latent coefficient
Indexing Network Semantic

(LSI) (PIN) Indexing
(PLSI)

Best Match 25 Latent Term Frequency Jaccard Phrasing
(BM25)a Dirichlet Inverse Document index

Allocation Frequency
(LDA) (TFIDF)

Correlated Best Match 25 Jensen- Clustering
Topics (BM25)a Shannon
Model divergence
(CTM) (JS)

Relational
Topics
Model
(RTM)

a Okapi BM25 is used to refer both to a non-binary probabilistic model, and its weighting scheme.

Gain (DCG) [246] (a graded relevance scale based on the position of a document
among search results). To address this matter in the specific application of trace
recovery, Sundaram et al. [443] proposed DiffAR, DiffMR, and Lag to assess the
quality of retrieved candidate links.

2.2 IR-based Support in a Trace Recovery Process
As the candidate trace links generated by state-of-the-art IR-based trace recovery
typically are too inaccurate, the current tools are proposed to be used in a semi-
automatic process. De Lucia et al. describe this process as a sequence of four key
steps, where the fourth step requires human judgement [145]. Although steps 2
and 3 mainly apply to algebraic IR models, also other IR models can be described
by a similar sequential process flow. The four steps are:

1. document parsing, extraction, and preprocessing

2. corpus indexing with an IR method

3. ranked list generation

102 Recovering from a Decade: A Systematic Review of Information . . .

4. analysis of candidate links

In the first step, the artifacts in the targeted information space are processed
and represented as a set of documents at a given granularity level, e.g. sections,
class files or individual requirements. In the second step, for algebraic IR models,
features from the set of documents are extracted and weighted to create an index.
When also the query has been indexed in the same way, the output from step 2
is used to calculate similarities between artifacts to rank candidate trace links ac-
cordingly. In the final step, these candidate trace links are provided to an engineer
for examination. Typically, the engineer then reviews the candidate source and tar-
get artifacts of every candidate trace link, and determines whether the link should
be confirmed or not. Consequently, the final outcome of the process of IR-based
trace recovery is based on human judgment. Concrete examples, put in work task
contexts, are presented in Section 3.4.

A number of publications propose advice for engineers working with candi-
date trace links. De Lucia et al. have suggested that an engineer should iteratively
decrease the similarity threshold, and stop considering candidate trace links when
the fraction of incorrect links get too high [146,147]. Based on an experiment with
student subjects, they concluded that an incremental approach in general both im-
proves the accuracy and reduces the effort involved in a tracing task supported
by IR-based trace recovery. Furthermore, they report that the subjects preferred
working in an incremental manner. Working incrementally with candidate trace
links can to some subjects also be an intuitive approach. In a previous experi-
ment by Borg and Pfahl [72], several subjects described such an approach to deal
with tool output, even without explicit instructions. Coverage analysis is another
strategy proposed by De Lucia et al. [149], intended to follow up on the step of
iteratively decreasing the similarity threshold. By analyzing the confirmed candi-
date trace links, i.e. conducting a coverage analysis, De Lucia et al. suggest that
engineers should focus on tracing artifacts that have few trace links. Also, in an
experiment with students, they demonstrated that an engineer working according
to this strategy recovers more correct trace links.

3 Related Work
This section presents a chronological overview of IR-based trace recovery, previ-
ous overviews of the field, and related work on advancing empirical evaluations of
IR-based trace recovery.

3.1 A Brief History of IR-based Trace Recovery
Tool support for the linking process of NL artifacts has been explored by re-
searchers since at least the early 1990s. Pioneering work was done in the LESD
project (Linguistic Engineering for Software Design) by Borillo et al. [81], in

3 Related Work 103

which a tool suite analyzing NL requirements was developed. The tool suite parsed
NL requirements to build semantic representations, and used artificial intelligence
approaches to help engineers establish trace links between individual require-
ments [83]. Apart from analyzing relations between artifacts, the tools evaluated
consistency, completeness, verifiability and modifiability [99]. In 1998, a study
by Fiutem and Antoniol presented a recovery process to bridge the gap between
design and code, based on edit distances between artifacts [183]. They coined the
term “traceability recovery”, and Antoniol et al. published several papers on the
topic. Also, they were the first to clearly express identification of trace links as
an IR problem [16]. Their milestone work from 2002 compared two standard IR
models, probabilistic retrieval using the BIM and the VSM [18]. Simultaneously,
in the late 1990s, Park et al. worked on tracing dependencies between artifacts
using a sliding window combined with syntactic parsing. Similarities between
sentences were calculated using cosine similarities [369].

During the first decade of the new millennium, several research groups ad-
vanced IR-based trace recovery. Natt och Dag et al. did research on requirement
dependencies in the dynamic environment of market-driven requirements engi-
neering [354]. They developed the tool ReqSimile, implementing trace recovery
based on the VSM, and later evaluated it in a controlled experiment [355]. A
publication by Marcus et al. [326], the second most cited article in the field, con-
stitutes a technical milestone in IR-based trace recovery. They introduced Latent
Semantic Indexing (LSI) to recover trace links between source code and NL docu-
mentation, a technique that has been used by multiple researchers since. Huffman
Hayes et al. enhanced VSM retrieval with relevance feedback and introduced sec-
ondary performance metrics [233] . From early on, their research had a human-
oriented perspective, aimed at supporting V&V activities at NASA using their tool
RETRO [232].

De Lucia et al. have conducted work focused on empirically evaluating LSI-
based trace recovery in their document management system ADAMS [142]. They
have advanced the empirical foundation by conducting a series of controlled ex-
periments and case studies with student subjects [143, 144, 148]. Cleland-Huang
and colleagues have published several studies on IR-based trace recovery. They
introduced probabilistic trace recovery using a PIN-based retrieval model, imple-
mented in their tool Poirot [307]. Much of their work has focused on improving
the accuracy of their tool by enhancements such as: applying a thesaurus to deal
with synonymy [425], extraction of key phrases [500], and using a project glossary
to weight the most important terms higher [500].

Recent work on IR-based trace recovery has, with various results, gone be-
yond the traditional models for information retrieval. In particular, trace recovery
supported by probabilistic topic models has been explored by several researchers.
Dekhtyar et al.combined several IR models using a voting scheme [155] , includ-
ing the probabilistic topic model Latent Dirachlet Allocation (LDA). Parvathy et
al. proposed using the Correlated Topic Model (CTM) [370], and Gethers et al.

104 Recovering from a Decade: A Systematic Review of Information . . .

suggested using Relational Topic Model (RTM) [194]. Abadi et al. proposed
using Probabilistic Latent Semantic Indexing (PLSI) and utilizing two concepts
based on information theory [1], Sufficient Dimensionality Reduction (SDR) and
Jensen-Shannon Divergence (JS). Capobianco et al. proposed representing NL ar-
tifacts as B-splines and calculating similarities as distances between them on the
Cartesian plane [96]. Sultanov and Huffman Hayes implemented trace recovery
using a swarm technique [442], an approach in which a non-centralized group of
non-intelligent self-organized agents perform work that, when combined, enables
conclusions to be drawn.

3.2 Previous Overviews on IR-based Trace Recovery

In the beginning of 2012, a textbook on software traceability edited by Cleland-
Huang et al. was published [113]. Presenting software traceability from several
perspectives, the book contains a chapter authored by De Lucia et al., specifically
dedicated to IR-based trace recovery [145]. In the chapter, the authors thoroughly
present an overview of the field including references to the most important work.
Also, the chapter constitutes a good introduction for readers new to the approach,
as it describes the basics of IR models. Consequently, the book chapter by De
Lucia et al. is closely related to our work. However, our work has different char-
acteristics. First, De Lucia et al.’s work has more the character of a textbook,
including enough background material on IR, as well as examples of applications
in context, to introduce readers to the field as a stand-alone piece of work. Our
systematic mapping on the other hand, is not intended as an introduction to the
field of IR-based trace recovery, but requires extensive pre-understanding. Sec-
ond, while De Lucia et al. report a large set of references to previous work, the
method used to identify previous publications is not reported. Our work instead
follows the established guidelines for SMs [273], and reports from every phase of
the study in a detailed protocol.

Furthermore, basically every publication on IR-based trace recovery contains
some information on previous research in the field. Another good example of a
summary of the field was provided by De Lucia et al. [148]. Even though the
summary was not the primary contribution of the publication, they chronologi-
cally described the development, presented 15 trace recovery methods and five
tool implementations. They compared underlying IR models, enhancing strate-
gies, evaluation methodologies and types of recovered links. However, regarding
both methodological rigor and depth of the analysis, it is not a complete SM. De
ucia et al. have also surveyed proposed approaches to traceability management
for impact analysis [140]. They discussed previous work based on a conceptual
framework by Bianchi et al. [56], consisting of the three traceability dimensions:
type of links, source of information to derive links, and their internal representa-
tion. Apart from IR-based methods, the survey by De Lucia et al. contains both
rule-based and data mining-based trace recovery. Also Binkley and Lawrie have

3 Related Work 105

presented a survey of IR-based trace recovery as part of an overview of applica-
tions of IR in software engineering [59]. They concluded that the main focus of
the research has been to improve the accuracy of candidate links wrt. P-R values,
and that LSI has been the most popular IR model. However, they also report that
no IR model has been reported as superior for trace recovery. While our work is
similar to previous work, our review is more structured and goes deeper with a
more narrow scope.

Another set of publications has presented taxonomies on IR techniques in soft-
ware engineering. In an attempt to harmonize the terminology of the IR appli-
cations, Canfora and Cerulo presented a taxonomy of IR models [92]. However,
their surveyed IR applications are not explicitly focusing on software engineering.
Furthermore, their proposed taxonomy does not cover recent IR models identi-
fied in our study, and the subdivision into ‘representation’ and ‘reasoning’ poorly
serves our intentions. Falessi et al. recently published a comprehensive taxon-
omy of IR techniques available to identify equivalent requirements [175]. They
adopted the term variation point from Software Product Line Engineering [377],
to stress the fact that an IR solution is a combination of different, often orthog-
onal, design choices. They consider an IR solution to consist of a combination
of algebraic model, term extraction, weighting scheme and similarity metric. Fi-
nally, they conducted an empirical study of various combinations and concluded
that simple approaches yielded the most accurate results on their dataset. We share
their view on variation points, but fail to apply it since our mapping study is limited
by what previous publications report on IR-based trace recovery. Also, their pro-
posed taxonomy only covers algebraic IR models, excluding other models (most
importantly, the entire family of probabilistic retrieval).

Concept location (a.k.a. feature location) is a research topic that overlaps trace
recovery. It can be seen as the first step of a change impact analysis process [328].
Given a concept (or feature) that is to be modified, the initial information need of
a developer is to locate the part of the source code where it is embedded. Clearly,
this information need could be fulfilled by utilizing IR. However, we distinguish
the topics by considering concept location to be more query-oriented [191]. Fur-
thermore, whereas trace recovery typically is evaluated by linking n artifacts to m
other artifacts, evaluations of concept location tend to focus on n queries targeting
a document set of m source code artifacts (where n << m), as for example in
the study by Torchiano and Ricca [448]. Also, while it is often argued that trace
recovery should retrieve trace links with a high recall, the goal of concept location
is mainly to retrieve one single location in the code with high precision. Dit et al.
recently published a literature review on feature location [159].

106 Recovering from a Decade: A Systematic Review of Information . . .

3.3 Related Contributions to the Empirical Study of IR-
based Trace Recovery

A number of previous publications have aimed at structuring or advancing the re-
search on IR-based trace recovery, and are thus closely related to our study. An
early attempt to advance reporting and conducting of empirical experiments was
published by Huffman Hayes and Dekhtyar [229]. Their experimental framework
describes the four phases: definition, planning, realization and interpretation. In
addition, they used their framework to characterize previous publications. Un-
fortunately, the framework has not been applied frequently and the quality of the
reporting of empirical evaluations varies greatly [79]. Huffman Hayes et al. also
presented the distinction between studies of methods (are the tools capable of pro-
viding accurate results fast?) and studies of human analysts (how do humans use
the tool output?) [231]. Furthermore, they proposed assessing the accuracy of tool
output according to quality intervals named ‘acceptable’, ‘good’, and ‘excellent’,
based on Huffman Hayes’ industrial experience of working with traceability ma-
trices of various qualities. Huffman Hayes et al.’s quality levels were defined to
represent the effort that would be required by an engineer to vet an entire candidate
traceability matrix.

Considering empirical evaluations, we extend the classifications proposed by
Huffman Hayes et al. [231] by an adapted version of the Integrated Cognitive Re-
search Framework by Ingwersen and Järvelin [237]. Their work aimed at extend-
ing the de-facto standard of IR evaluation, the Laboratory Model of IR Evaluation,
developed in the Cranfield tests in the 60s [120], challenged for its unrealistic lack
of user involvement [267]. Ingwersen and Järvelin argued that IR is always evalu-
ated in a context, referred to the innermost context as “the cave of IR evaluation”,
and proposed a framework consisting of four integrated contexts (see Fig. 1). We
have adapted their framework to a four-level context taxonomy, tailored for IR-
based trace recovery, to classify in which contexts previous evaluations have been
conducted, see Table 2. Also, we add a dimension of study environments (uni-
versity, proprietary, and open source environment), as presented in Figure 12 in
Section 5. For more information on the context taxonomy, we refer to our original
publication [77].

In the field of IR-based trace recovery, the empirical evaluations are termed
very differently by different authors. Some call them ‘experiments’, others ‘case
studies’, and yet others only ‘studies’. We use the following definitions, which are
established in the field of software engineering.

Case study in software engineering is an empirical enquiry that draws on mul-
tiple sources of evidence to investigate one instance (or a small number of
instances) of a contemporary software engineering phenomenon within its
real-life context, especially when the boundary between phenomenon and
context cannot be clearly specified. [413]

3 Related Work 107

Figure 1: The Integrated Cognitive Research Framework by Ingwersen and
Järvelin [237], a framework for IR evaluations in context.

Experiment (or controlled experiment) in software engineering is an empirical
enquiry that manipulates one factor or variable of the studied setting. Based
in randomization, different treatments are applied to or by different sub-
jects, while keeping other variables constant, and measuring the effects on
outcome variables. In human-oriented experiments, humans apply different
treatments to objects, while in technology-oriented experiments, different
technical treatments are applied to different objects. [477]

Empirical evaluations of IR-based trace recovery may be classified as case
studies, if they evaluate the use of, e.g. IR-based trace recovery tools in a com-
plex software engineering environment, where it is not clear whether the tool is
the main factor or other factors are at play. These are typically level 4 studies in
our taxonomy, see Table 2. Human-oriented controlled experiments may evaluate
human performance when using two different IR-tools in an artificial (in vitro) or
well-controlled real (in vivo) environment, typically at level 3 of the taxonomy.
The stochastical variation is here primarily assumed to be in the human behav-
ior, although there of course are interactions between the human behavior, the
artifacts and the tools. Technology-oriented controlled experiments evaluate tool
performance on different artifacts, without human intervention, corresponding to
levels 1 and 2 in our taxonomy. The variation factor is here the artifacts, and hence
the technology-oriented experiment may be seen as benchmarking studies, where
one technique is compared to another technique, using the same artifacts, or the
performance of one technique is compared for multiple different artifacts.

The validity of the datasets used as input in evaluations in IR-based trace re-
covery is frequently discussed in the literature. Also, two recent publications pri-
marily address this issue. Ali et al. present a literature review on characteristics
of artifacts reported to impact trace recovery evaluations [10], e.g. ambiguous and
vague requirements, and the quality of source code identifiers. Ali et al. extracted
P-R values from eight previous trace recovery evaluations, not limited to IR-based
trace recovery, and show that the same techniques generate candidate trace links
of very different accuracy across datasets. They conclude that research targeting

108 Recovering from a Decade: A Systematic Review of Information . . .

Table 2: A context taxonomy of IR-based trace recovery evaluations. Level 1 is
technology-oriented, and level 3 and 4 are human-oriented. Level 2 typically has
a mixed focus.

Level 1: The most simplified context, referred to Precision, recall, Experiments on
Retrieval as “the cave of IR evaluation”. F-measure benchmarks,
context A strict retrieval context, performance possibly with

is evaluated wrt. the accuracy of a set simulated
of search results. Quantitative studies feedback
dominate.

Level 2: A first step towards realistic applications Secondary measures. Experiments on
Seeking of the tool, “drifting outside the cave’. General IR: benchmarks,
context A seeking context with a focus on how MAP, DCG. possibly with

the human finds relevant information Traceability specific: simulated
in what was retrieved by the system. Lag, DiffAR, DiffMR. feedback
Quantitative studies dominate.

Level 3: Humans complete real tasks, but in an Time spent on Controlled
Work task in-vitro setting. Goal of evaluation is task and quality experiments

context to assess the casual effect of an IR tool of work. with human
when completing a task. A mix of subjects.
quantitative and qualitative studies.

Level 4: Evaluations in a social-organizational User satisfaction, Case studies
Project context. The IR tool is studied when tool usage
context used by engineers within the full

complexity of an in-vivo setting.
Qualitative studies dominate.

only recovery methods in isolation is not expected to lead to any major break-
throughs, instead they suggest that factors impacting the input artifacts should be
better controlled. Borg et al. recently highlighted that a majority of previous eval-
uations of IR-based trace recovery have been conducted using artifacts developed
by students [79]. The authors explored this potential validity threat in a survey
of the traceability community. Their results indicate that while most authors con-
sider artifacts originating from student projects to be only partly representative to
industrial artifacts, few respondents explicitly validated them before using them as
experimental input.

3.4 Precision and Recall Evaluation Styles for Technology-
oriented Trace Recovery

In the primary publications, two principally different styles to report output from
technology-oriented experiments have been used, i.e. presentation of P-R val-
ues from evaluations in the retrieval and seeking contexts. A number of publica-
tions, including the pioneering work by Antoniol et al. [18], used the traditional
style from the ad hoc retrieval task organized by the Text REtrieval Conference
(TREC) [465], driving large-scale evaluations of IR. In this style, a number of
queries are executed on a document set, and each query results in a ranked list of

3 Related Work 109

Figure 2: Query-based evaluation vs. matrix-based evaluation of IR-based trace
recovery.

search results (cf. (a) in Fig. 2). The accuracy of the IR system is then calcu-
lated as an average of the precision and recall over the queries. For example, in
Antoniol et al.’s evaluation, source code files were used as queries and the doc-
ument set consisted of individual manual pages. We refer to this reporting style
as query-based evaluation. This setup evaluates the IR problem: “given this trace
artifact, to which other trace artifacts should trace links be established?” The IR
problem is reformulated for each trace artifact used as a query, and the results can
be presented as a P-R curve displaying the average accuracy of candidate trace
links over n queries. This reporting style shows how accurately an IR-based trace
recovery tool supports a work task that requires single on-demand tracing efforts
(a.k.a. reactive tracing or just-in-time tracing), e.g. establishing traces as part of
an impact analysis work task [18, 72, 304].

In the other type of reporting style used in the primary publications, documents
of different types are compared to each other, and the result from the similarity- or
probability-based retrieval is reported as one single ranked list of candidate trace
links. This can be interpreted as the IR problem: “among all these possible trace
links, which trace links should be established?” Thus, the outcome is a candidate
traceability matrix. We refer to this reporting style as matrix-based evaluation. The
candidate traceability matrix can be compared to a gold standard, and the accuracy
(i.e. overlap between the matrices) can be presented as a P-R curve, as shown in b)
in Figure 2. This evaluation setup has been used in several primary publications to
assess the accuracy of candidate traceability matrices generated by IR-based trace
recovery tools. Also, Huffman Hayes et al. defined the quality intervals described
in Section 3.3 to support this evaluation style [231].

Apart from the principally different meaning of reported P-R values, the pri-

110 Recovering from a Decade: A Systematic Review of Information . . .

mary publications also differ by which sets of P-R values are reported. Precision
and recall are set-based measures, and the accuracy of a set of candidate trace links
(or candidate trace matrix) depends on which links are considered the tool output.
Apart from the traditional way of reporting precision at fixed levels of recall, fur-
ther described in Section 4.3, different strategies for selecting subsets of candidate
trace links have been proposed. Such heuristics can be used by engineers working
with IR-based trace recovery tools, and several primary publications report corre-
sponding P-R values. We refer to these different approaches to consider subsets
of ranked candidate trace links as cut-off strategies. Example cut-off strategies in-
clude: Constant cut point, a fixed number of the top-ranked trace links are selected,
e.g. 5, 10, or 50. Variable cut point, a fixed percentage of the total number of can-
didate trace links is selected, e.g. 5% or 10%. Constant threshold, all candidate
trace links representing similarities (or probabilities) above a specified threshold is
selected, e.g. above a cosine similarity of 0.7. Variable threshold, a new similarity
interval is defined by the minimum and maximum similarities (i.e. similarities are
normalized against the highest and lowest similarities), and either a percentage of
the candidate trace links are selected or a new constant threshold is introduced.

The choice of what subset of candidate trace links to represent by P-R values
reflects the cut-off strategy an imagined engineer could use when working with the
tool output. However, which strategy results in the most accurate subset of trace
links depends on the specific case evaluated. Moreover, in reality it is possible that
engineers would not be consistent in how they work with candidate trace links.
As a consequence of the many possibly ways to report P-R values, the primary
publications view output from IR-based trace recovery tools from rather different
perspectives. For work tasks supported by a separate list of candidate trace links
per source artifact, there are indications that human subjects seldom consider more
than 10 candidate trace links [72], in line with what is commonplace to present as
a ‘pages-worth’ output of major search engines such as Google, Bing and Yahoo.
On the other hand, when an IR-based trace recovery tool is used to generate a
candidate traceability matrix over an entire information space, considering only
the first 10 candidate links would obviously be insufficient, as there would likely
be thousands of correct trace links to recover. However, regardless of reporting
style, the number of candidate trace links a P-R value represents is important in
any evaluation of IR-based trace recovery tools, since a human is intended to vet
the output.

The two inherently different use cases of an IR-based trace recovery tool, re-
flected by the split into matrix-based and query-based evaluations, also call for
different evaluations regarding cut-off strategies. The first main use case of an IR-
based trace recovery tool is when one or more candidate trace links from a specific
artifact are requested by an engineer. For example, as part of a formal change im-
pact analysis, a software engineer might need to specify which test cases to execute
to verify that a defect report has been properly resolved. This example is close to
the general definition of IR, “to find documents that satisfy an information need

4 Method 111

from within large collections”. If the database of test cases contains overlapping
test cases, it is possible that the engineer needs to report just one suitable test case.
In this case precision is more important than recall, and it is fundamental that the
tool presents few false positives among the top candidate trace links. Evaluating
the performance of the IR-based trace recovery tool using constant cut points is
suitable.

The second main use case of an IR-based trace recovery tool is to generate an
entire set of trace links, i.e. a candidate traceability matrix. For instance, a trace-
ability matrix needs to be established between n functional requirements and m
test case descriptions during software evolution of a legacy system. If the number
of artifacts is n + m, the number of possible trace links (i.e. the number of pair-
wise comparisons needed) to consider is n ∗ m, a number that quickly becomes
infeasible for manual work. An engineer can in such cases use the output from an
IR-based trace recovery tool as a starting point. The generation of a traceability
matrix corresponds to running multiple simultaneous queries in a general IR sys-
tem, and typically recall is favored over precision. There is no natural equivalent
to this use case in the general IR domain. Furthermore, when generating an en-
tire traceability matrix, it is improbable that the total number of correct trace links
is known a priori, and consequently constant cut-points are less meaningful. A
naïve cut-off strategy is to instead simply use a constant similarity threshold such
as the cosine similarity 0.7. More promising cut-off strategies are based on vari-
able thresholds or incremental approaches, as described in Section 2.2. Typically,
the accuracies of traceability matrices generated by IR-based trace recovery tools
are evaluated a posteriori, by analyzing how precision varies for different levels of
recall.

4 Method
The overall goal of this study was to form a comprehensive overview of the ex-
isting research on IR-based trace recovery. To achieve this objective, we system-
atically collected empirical evidence to answer research questions characteristic
for an SM [273, 373]. The study was conducted in the following distinct steps,
(i) development of the review protocol, (ii) selection of publications, (iii) data ex-
traction and mapping of publications, which were partly iterated and each of them
was validated.

4.1 Protocol Development
Following the established guidelines for secondary studies in software engineer-
ing [273], we iteratively developed a review protocol in consensus meetings be-
tween the authors. The protocol defined the research questions (stated in Sec-
tion 1), the search strategy (described in Section 4.2), the inclusion/exclusion crite-
ria (presented in Table 3), and the classification scheme used for the data extraction

112 Recovering from a Decade: A Systematic Review of Information . . .

Table 3: Inclusion/exclusion criteria applied in our study. The rightmost column
motivates our decisions.

Inclusion criteria Rationale/comments
I1 Publication available in English in full

text
We assumed that all relevant publications would be available
in English.

I2 Publication is a peer-reviewed piece of
software engineering work

As a quality assurance, we did not include technical reports,
master theses etc.

I3 Publication contains empirical results
(case study, experiment, survey etc.) of
IR-based trace recovery where natural
language artifacts are either source or
target

Defined our main scope based on our RQs. Publication
should clearly link artifacts, thus we excluded tools support-
ing a broader sense of program understanding such as CO-
CONUT [138]. Also, the approach should treat the linking
as an IR problem. However, we excluded solutions exclu-
sively extracting specific character sequences in NL text, such
as work on Mozilla defect reports [33].

Exclusion criteria Rationale/comments
E1 Answer is no to I1, I2 or I3
E2 Publication proposes one of the follow-

ing approaches to recover trace links,
rather than IR:

We included only publications that are deployable in an
industrial setting with limited effort. Thus, we limited our
study to techniques that require nothing but unstructured NL
text as input. Other approaches could arguably be applied to
perform IR, but are too different to fit our scope. Excluded
approaches include: rules [168, 437], ontologies [29],
supervised machine learning [436], semantic networks [310],
and dynamic analysis [169].

a) rule-based extraction
b) ontology-based extraction
c) machine learning approaches
that require supervised learning
d) dynamic/execution analysis

E3 Article explicitly targets one of the fol-
lowing topics, instead of trace recovery:

We excluded both concept location and duplicate detection
since it deals with different problems, even if some studies
apply IR models. Excluded publications include: duplicate
detection of defects [410], detection of equivalent
requirements [175], and concept location [328]. We explicitly
added the topics code clustering, class cohesion, and cross
cutting concerns to clarify our scope.

a) concept/feature location
b) duplicate/clone detection
c) code clustering
d) class cohesion
e) cross cutting concerns/aspect mining

(described in Section 4.3). The extracted data were organized in a tabular format
to support comparison across studies. Evidence was summarized per category,
and commonalities and differences between studies were investigated. Also, the
review protocol specified the use of Zotero2 as the reference management system,
to simplify general tasks such as sorting, searching and removal of duplicates.
An important deviation from the terminology used in the guidelines is that we
distinguish between primary publications (i.e. included units of publication) and
primary studies (i.e. included pieces of empirical evidence), since a number of
publications report multiple studies.

Table 3 states our inclusion/exclusion criteria, along with rationales and exam-
ples. A number of general decisions accompanied the criteria:

• Empirical results presented in several articles, we only included from the
most extensive publication. Examples of excluded publications include pi-

2www.zotero.org

4 Method 113

oneering work later extended to journal publications, the most notable be-
ing work by Antoniol et al. [16] and Marcus and Maletic [326]. However,
we included publications describing all independent replications (deliberate
variations of one or more major aspects), and dependent replications (same
or very similar experimental setups) by other researchers [429].

• Our study included publications that apply techniques in E2 a–d in Table 3,
but use an IR model as benchmark. In such cases, we included the IR bench-
mark, and noted possible complementary approaches as enhancements. An
example is work using probabilistic retrieval enhanced by machine learning
from existing trace links [157].

• We included approaches that use structured NL as input, i.e. source code or
tabular data, but treat the information as unstructured. Instead, we consid-
ered any attempts to utilize document structure as enhancements.

• Our study only included linking between software artifacts, i.e. artifacts that
are produced and maintained during development [284]. Thus, we excluded
linking approaches to entities such as e-mails [35] and tacit knowledge [228,
439].

• We excluded studies evaluating trace recovery in which neither the source
nor the target artifacts dominantly represent information as NL text. Ex-
cluded publications comprise linking source code to test code [461], and
work linking source code to text expressed in specific modelling notation [20,
117].

4.2 Selection of Publications
The systematic identification of publications consisted of two main phases: (i) de-
velopment of a gold standard of primary publications, and (ii) a search string that
retrieves them, and a systematic search for publications, as shown in Figure 3. In
the first phase, a set of publications was identified through exploratory searching,
mainly by snowball sampling from a subset of an informal literature review. The
most frequently recurring publication fora were then scanned for additional pub-
lications. This activity resulted in 59 publications, which was deemed our gold
standard3. The first phase led to an understanding of the terminology used in the
field, and made it possible to develop valid search terms.

The second step of the first phase consisted of iterative development of the
search string. Together with a librarian at the department, we repeatedly evaluated
our search string using combined searches in the Inspec/Compendex databases.
Fifty-five papers in the gold standard were available in those databases. We con-
sidered the search string good enough when it resulted in 224 unique hits with

3The gold standard was not considered the end goal of our study, but was the target during the
iterative development of the search string described next.

114 Recovering from a Decade: A Systematic Review of Information . . .

Figure 3: Overview of the publication selection phase. Smileys show the number
of people involved in a step, while double frames represent a validation. Numbers
refer to number of publications.

80% recall and 20% precision when searching for the gold standard, i.e. 44 of the
55 primary publications plus 176 additional publications were retrieved.

The final search string was composed of four parts connected with ANDs,
specifying the activity, objects, domain, and approach respectively.

(traceability OR "requirements tracing" OR "requirements trace" OR
"trace retrieval")

AND
(requirement* OR specification* OR document OR documents OR
design OR code OR test OR tests OR defect* OR artefact* OR
artifact* OR link OR links)

AND
(software OR program OR source OR analyst)
AND
("information retrieval" OR IR OR linguistic OR lexical OR
semantic OR NLP OR recovery OR retrieval)

The search string was first applied to the four databases supporting export of
search results to BibTeX format, as presented in Table 4. The resulting 581 papers
were merged in Zotero. After manual removal of duplicates, 281 unique publica-
tions remained. This result equals 91% recall and 18% precision compared to the
gold standard. The publications were filtered by our inclusion/exclusion criteria,
as shown in Table 3, and specified in Section 4.1. Borderline articles were dis-
cussed in a joint session of the first two authors. Our inclusion/exclusion criteria

4 Method 115

Table 4: Search options used in databases, and the number of search results.
Primary Databases Search options #Search results
Inspec Title+abstract, no auto-stem 194
Compendex Title+abstract, no auto-stem 143
IEEE Explore All fields 136
Web of Science Title+abstract+keywords 108
Secondary Databases Search options #Search results
ACM Digital Library All fields, auto-stem 1038
SciVerse Hub Beta Science Direct+SCOPUS 203

were validated by having the last two authors compare 10% of the 581 papers re-
trieved from the primary databases. The comparison resulted in a free-marginal
multi-rater kappa of 0.85 [387], which constitutes a substantial inter-rater agree-
ment.

As the next step, we applied the search string to two databases without Bib-
TeX export support. One of them, ACM Digital Library, automatically stemmed
the search terms, resulting in more than 1000 search results. The inclusion/exclu-
sion criteria were then applied to the total 1241 publications. This step extended
our primary studies by 13 publications, after duplicate removal, and application
of inclusion/exclusion criteria, 10 identified in ACM Digital Library and 3 from
SciVerse.

As the last step of our publication selection phase, we again conducted ex-
ploratory searching. Based on our new understanding of the domain, we scanned
the top publication fora and the most published scholars for missed publications.
As a last complement, we searched for publications using Google Scholar. In total,
this last phase identified 8 additional publications. Thus, the systematic database
search generated 89% of the total number of primary publications, which is in
accordance with expectations from the validation of the search string.

As a final validation step, we visualized the selection of the 70 primary pub-
lications using REVIS, a tool developed to support SLRs based on visual text
mining [180]. REVIS takes a set of primary publications in an extended BibTeX
format and, as presented in Figure 4, visualizes the set as a document map (a),
edge bundles (b), and a citation network for the document set (c). While REVIS
was developed to support the entire mapping process, we solely used the tool as a
means to visually validate our selection of publications.

In Figure 4, every node represents a publication, and a black outline distin-
guishes primary publications (in c), not only primary publications are visualized).
In a), the document map, similarity of the language used in title and abstract is
presented, calculated using the VSM and cosine similarities. In the clustering,
only absolute distances between publications carry a meaning. The arrows point
out Antoniol et al.’s publication from 2002 [18], the most cited publication on IR-

116 Recovering from a Decade: A Systematic Review of Information . . .

based trace recovery. The closest publications in a) are also authored by Antoniol
et al. [17,19]. An analysis of a) showed that publications sharing many co-authors
tend to congregate. As an example, all primary publications authored by De Lucia
et al. [141–144, 146–149], Capobianco et al. [95, 96], and Oliveto et al. [360] are
found within the rectangle. No single outlier stands out, indicating that none of
the primary publications uses a very different language.

In b), the internal reference structure of the primary studies is shown, dis-
played by edges connecting primary publications in the outer circle. Analyzing
the citations between the primary publications shows one outlier, just below the
arrow. The publication by Park et al. [369], describing work conducted concur-
rently with Antoniol et al. [18], has not been cited by any primary publications.
This questioned the inclusion of the work by Park et al., but as it meets our inclu-
sion/exclusion criteria described in Section 4.1, we decided to keep it.

Finally, in c), the total citation network of the primary studies is presented.
Regarding common citations in total, again Park et al. is an outlier [369], shown
as I in c). The two other salient data points, II and III, are both authored by Natt
och Dag et al. [352, 355]. However, according to our inclusion/exclusion criteria,
there is no doubt that they should be among the primary publications. Thus, in
December 2011, we concluded the set of 70 primary publications.

However, as IR-based trace recovery is an active research field, several new
studies were published while this publication was in submission. To catch up
with the latest research, we re-executed the search string in the databases listed in
Table 4 in June 2012, to catch up with publications from the second half of 2011.
This step resulted in 9 additional publications, increasing the number of primary
publications to 79. In the rest of this paper, we refer to the original 70 publications
as the “core primary publications”, and the 79 publications as just the “primary
publications”.

4.3 Data Extraction and Mapping

During the stage of the study, data was extracted from the primary publications
according to the pre-defined extraction form of the review protocol. We extracted
general information (title, authors, affiliation, publication forum, citations), de-
tails about the applied IR approach (IR model applied, selection and weighting of
features, enhancements) and information about the empirical evaluation (types of
artifacts linked, size and origin of dataset, research methodology, context of IR
evaluation, results of evaluation).

The extraction process was validated by the second and third authors, work-
ing on a 30% sample of the core primary publications. Half the sample, 15% of
the core primary publications, was used to validate extraction of IR details. The
other half was used by the other author to validate empirical details. As expected,
the validation process showed that the data extraction activity, and the qualitative
analysis inherent in that work, inevitably leads to some deviating interpretations.

4 Method 117

Figure 4: Visualization of core primary publications. a) document map, shows
similarities in language among the core primary publications. b) edge bundle,
displays citations among the core primary publications. c) citation network, shows
shared citations among the core primary publications.

118 Recovering from a Decade: A Systematic Review of Information . . .

Classifying according to the four levels of IR contexts, which was validated for
the entire 30% sample, showed the least consensus. This divergence, and other
minor discrepancies detected, were discussed until an agreement was found and
followed for the rest of the primary publications. Regarding the IR contexts in
particular, we adopted an inclusive strategy, typically selecting the higher levels
for borderline publications.

4.4 Threats to Validity

Threats to the validity of the mapping study are analyzed with respect to construct
validity, reliability, internal validity and external validity [413]. Particularly, we
report deviations from the study guidelines [273].

Construct validity concerns the relation between measures used in the study
and the theories in which the research questions are grounded. In this study, this
concerns the identification of papers, which is inherently qualitative and dependent
on the coherence of the terminology in the field. To mitigate this threat, we took
the following actions. The search string we used was validated using a golden set
of publications, and we executed it in six different publication databases. Further-
more, our subsequent exploratory search further improved our publication cover-
age. A single researcher applied the inclusion/exclusion criteria, although, as a
validation proposed by Kitchenham and Charters [273], another researcher justi-
fied 10% of the search results from the primary databases. There is a risk that the
specific terms of the search string related to ‘activity’ (e.g. “requirements tracing”)
and ‘objects’ cause a bias toward both requirements research and publications with
technical focus. However, the golden set of publications was established by a
broad scanning of related work, using both searching and browsing, and was not
restricted to specific search terms.

An important threat to reliability concerns whether other researchers would
come to the same conclusions based on the publications we selected. The ma-
jor threat is the extraction of data, as mainly qualitative synthesis was applied, a
method that involves interpretation. A single researcher extracted data from the
primary publications, and the other two researchers reviewed the process, as sug-
gested by Brereton et al. [86]. As a validation, both the reviewers individually
repeated the data extraction on a 15% sample of the core primary publications.
Another reliability threat is that we present qualitative results with quantitative
figures. Thus, the conclusions we draw might depend on the data we decided
to visualize; however, the primary studies are publicly available, allowing oth-
ers to validate our conclusions. Furthermore, as our study contains no formal
meta-analysis, no sensitivity analysis was conducted, neither was publication bias
explored explicitly.

External validity refers to generalization from this study. In general, the exter-
nal validity of a SM is strong, as the key idea is to aggregate as much as possible
of the available literature. Also, our research scope is tight (cf. the inclusion/ex-

5 Results 119

Figure 5: IR-based trace recovery publication trend. The curve shows the number
of publications, while the bars display empirical studies in these publications.

clusion criteria in Table 3), and we do not claim that our map applies to other
applications of IR in software engineering. Thus, the threats to external validity
are minor. Furthermore, as the review protocol is presented in detail in Section 4,
other researchers can judge the trustworthiness of the results in relation to the
search strategy, inclusion/exclusion criteria, and the applied data extraction. Fi-
nally, internal validity concerns confounding factors that can affect the causal re-
lationship between the treatment and the outcome. However, as our mapping study
does not investigate casual relationships, and only relies on descriptive statistics,
this threat is minimal.

5 Results

Following the method defined in Section 4.2, we identified 79 primary publica-
tions. Most of the publications were published in conferences or workshops (67
of 79, 85%), while twelve (15%) were published in scientific journals. Table 5
presents the top publication channels for IR-based trace recovery, showing that it
spans several research topics. Figure 5 depicts the number of primary publications
per year, starting from Antoniol et al.’s pioneering work from 1999. Almost 150
authors have contributed to the 79 primary publications, on average writing 2.2
of the articles. The top five authors have on average authored 14 of the primary
publications, and are in total included as authors in 53% of the articles. Thus,
a wide variety of researchers have been involved in IR-based trace recovery, but
there is a group of a few well-published authors. More details and statistics about
the primary publications are available in Appendix I.

Several publications report empirical results from multiple evaluations. Con-
sequently, our mapping includes 132 unique empirical contributions, i.e. the map-
ping comprises results from 132 unique combinations of an applied IR model and

120 Recovering from a Decade: A Systematic Review of Information . . .

Table 5: Top publication channels for IR-based trace recovery.
Publication forum #Publications
International Requirements Engineering 9
Conference
International Conference on Automated 7
Software Engineering
International Conference on Program 6
Comprehension
International Workshop on Traceability in 6
Emerging Forms of Software Engineering
Working Conference on Reverse 5
Engineering
Empirical Software Engineering 4

International Conference on Software 4
Engineering
International Conference on Software 4
Maintenance

Other publication fora 34
(two or fewer publications)

its corresponding evaluation on a dataset. As described in Section 4.1, we denote
such a unit of empirical evidence a ‘study’, to distinguish from ‘publications’.

5.1 IR Models Applied to Trace Recovery (RQ1)

In Figure 6, reported studies in the primary publications are mapped according
to the (one or several) IR models applied, as defined in Section 2. The most fre-
quently reported IR models are the algebraic models, VSM and LSI. For LSI, the
dimensionality reductions applied in previous studies is reported in Appendix I.
Various probabilistic models have been applied in 29 of the 132 evaluations, in-
cluding 14 applications of statistical LMs. Five of the applied approaches do not
fit in the taxonomy; examples include utilizing swarm techniques [442] and B-
splines [96]. As shown in Figure 6, VSM is the most applied model 2008-2011,
however repeatedly as a benchmark to compare new IR models against. An appar-
ent trend is that trace recovery based on LMs has received an increasing research
interest during the last years.

Only 47 (72%) of the 65 primary publications with technical foci report which
preprocessing operations were applied to NL text. Also, in several publications
one might suspect that the complete preprocessing was not reported (e.g. [105]
and [282]), possibly due to page restriction. As a result, a reliable report of feature
selection for IR-based trace recovery is not possible. Furthermore, several pa-
pers do not report any differences regarding preprocessing of NL text and source
code (on the other hand some papers make a clear distinction, e.g. [467]). Among
the publications reporting preprocessing, 32 report conducting stop word removal

5 Results 121

Figure 6: Taxonomy of IR models in trace recovery. The numbers show in how
many of the primary publications a specific model has been applied, the numbers
in parentheses show IR models applied since 2008.

and stemming, making it the most common combination. The remaining publica-
tions report other combinations of stop word removal, stemming and ID splitting.
Also, two publications report applying Google Translate as a preprocessing step
to translate NL text to English [234, 304]. Figure 7 presents in how many primary
publications different preprocessing steps are explicitly mentioned, both for NL
text and source code.

Regarding NL text, most primary publications select all terms that remain af-
ter preprocessing as features. However, two publications select only nouns and
verbs [494, 496], and one selects only nouns [96]. Also, Capobianco et al. have
explicitly explored the semantic role of nouns [95]. For the purposes of the map-
ping of primary publications dealing with source code, a majority unfortunately
does not clearly report about the feature selection (i.e. selecting which subset of
terms to extract to represent the artifact). Seven publications report that only IDs
were selected, while four publications selected both IDs and comments. Three
other publications report more advanced feature selection, including function ar-
guments, return types and commit comments [1, 9, 92].

Among the primary publications, the weighting scheme applied to selected fea-
tures is reported in 58 articles. Although arguably more tangible for algebraic re-
trieval models, feature weighting is also important in probabilistic retrieval. More-
over, most weighing schemes are actually families of configuration variants [416],
but since this level of detail often is omitted in publications on IR-based trace re-
covery, as also noted by Oliveto [359], we were not able to investigate this further.

122 Recovering from a Decade: A Systematic Review of Information . . .

Figure 7: Preprocessing operations used in IR-based trace recovery. The figure
shows the number of times a specific operation has been reported in the primary
publications. Black bars refer to preprocessing of NL text, gray bars show prepro-
cessing of text extracted from source code.

Figure 8 shows how many times, in the primary publications, various types of fea-
ture weighting schemes have been applied. Furthermore, one publication reports
upweighting of verbs in the TFIDF weighting scheme, motivated by verbs’ nature
of describing the functionality of software [321].

Several enhancement strategies to improve the performance of IR-based trace
recovery tools are proposed, as presented in Figure 9. The figure shows how many
times different enhancement strategies have been applied in the primary publica-
tions. Most enhancements aim at improving the precision and recall of the tool
output, however also a computation performance enhancement is reported [249].
The most frequently applied enhancement strategy is relevance feedback, applied
by e.g. De Lucia et al. [146] and Huffman Hayes et al. [232], giving the hu-
man a chance to judge partial search results, followed by re-executing an im-
proved search query. The following most frequently applied strategies, further
described in Section 2.1, are applying a thesaurus to deal with synonyms, (e.g.
proposed by Huffman Hayes et al. [231] and Leuser and Ott [298]), clustering
results based on for instance document structure to improve presentation or rank-
ing of recovered trace links, (explored by e.g. Duan and Cleland-Huang [163]
and Zhou and Yu [496]), and phrasing, i.e., going beyond the BoW model by
considering sequences of words, e.g. as described by Zou et al. [498] and Chen
and Grundy [106]. Other enhancement strategies repeatedly applied include: up-
weighting terms considered important by applying a project glossary, e.g. [499],
machine learning approaches to improve results based on for example the existing
trace link structure, e.g. [157], and combining the results from different retrieval
models in voting systems, e.g. [194]. Yet another set of enhancements have only
been proposed in single primary publications, such as query expansion [197], anal-
yses of call graphs [494], regular expressions [106], and smoothing filters [137].

5 Results 123

Figure 8: Feature weighting schemes in IR-based trace recovery. Bars depict how
many times a specific weighting scheme has been reported in the primary publica-
tions. Black color shows reported weighting in publications applying algebraic IR
models.

Figure 9: Enhancement strategies in IR-based trace recovery. Bars depict how
many times a specific strategy has been reported in the primary publications. Black
color represents enhancements reported in publications using algebraic IR models.

124 Recovering from a Decade: A Systematic Review of Information . . .

5.2 Types of Software Artifacts Linked (RQ2)

Figure 10 maps onto the classical software development V-model the various soft-
ware artifact types that are used in IR-based trace recovery evaluations. Require-
ments, the left part of the model, include all artifacts that specify expectations
on a system, e.g. market requirements, system requirements, functional require-
ments, use cases, and design specifications. The distinction between these are not
always possible to derive from the publications, and hence we have grouped them
together under the broad label ‘requirements’. The right part of the model repre-
sents all artifacts related to verification activities, e.g. test case descriptions and
test scripts. Source code artifacts constitute the bottom part of the model. Note
however, that our inclusion/exclusion criteria, excluding duplication analyses and
studies where neither source nor target artifacts are dominated by NL text, results
in fewer links between requirements-requirements, code-code, code-test, test-test
and defect-defect than would have been the case if we had studied the entire field
of IR applications within software engineering.

The most common type of links that has been studied was found to be be-
tween requirements (37 evaluations), either of the same type or of different levels
of abstraction. The second most studied artifact linking is between requirements
and source code (32 evaluations). Then, in decreasing order, mixed links in an
information space of requirements, source code and tests (10 evaluations), links
between requirements and tests (9 evaluations) and links between source code and
manuals (6 evaluations). Less frequently studied trace links include links between
source code and defects/change requests (e.g. [193]) and links between tests [316].
In three primary publications, the types of artifacts traced are unclear, either not
specified at all or merely described as ‘documents’ (e.g. [107]).

5.3 Strength of Evidence (RQ3)

An overview of the datasets used for evaluations in the primary publications is
shown in Figure 11. In total we identified 132 evaluations; in 42 (32%) cases
proprietary artifacts were studied, either originating from development projects
in private companies or the US agency NASA. Nineteen (14%) evaluations using
artifacts collected from open source projects have been published and 65 (49%)
employing artifacts originating from a university environment. Among the datasets
from university environments, 34 consist of artifacts developed by students. In six
primary publications, the origin of the artifacts is mixed or unclear (e.g., [304,369,
370]. Figure 11 also depicts the sizes of the datasets used in the evaluations, wrt.
the number of artifacts. The majority of the evaluations in the primary publications
were conducted using an information space of less than 500 artifacts. In 38 of the
evaluations, less than 100 artifacts were used as input. The primary publications
with the by far highest number of artifacts, evaluated links between 3,779 business
requirements and 8,334 market requirements at Baan [352] (now owned by Infor

5 Results 125

Figure 10: Types of links recovered in IR-based trace recovery. The table shows
the number of times a specific type of link is the recovery target in the primary
publications, also represented by the weight of the edges in the figure.

Global Solutions), and trace links between 9 defect reports and 13,380 test cases
at Research in Motion [265].

Table 6 presents the six datasets that have been most frequently used in evalua-
tions of IR-based trace recovery, sorted by the number of primary studies in which
they were used. CM-1, MODIS, and EasyClinic are publicly available from the
CoEST web page4. Note that most publicly available datasets except EasyClinic
are bipartite, i.e., the dataset contains only links between two disjunct subsets of
artifacts.

All primary publications report some form of empirical evaluations, a majority
(80%) conducting “studies of methods” [231]. Fourteen publications (18%) report
results regarding the human analyst, two primary publications study both methods
and human analysts [18, 143]. Figure 12 shows the primary publications mapped
to the four levels of the context taxonomy described in Section 3.3. Note that a
number of publications cover more than one environment, due to either mixed ar-
tifacts or multiple studies. Also, two publications did not report the environment,
and could not be mapped. A majority of the publications (50), exclusively con-
ducted evaluations taking place in the innermost retrieval context, the so-called
“cave of IR evaluation” [237]. As mentioned in Section 2, evaluations in the cave
display an inconsistent use of terminology. Nineteen (38%) of the primary publi-
cations refer to their evaluations in the retrieval context as experiments, 22 (44%)
call them case studies, and in nine (18%) publications they are merely referred to

4www.coest.org

126 Recovering from a Decade: A Systematic Review of Information . . .

1592 Empir Software Eng (2014) 19:1565–1616

The most common type of links that has been studied was found to be between
requirements (37 evaluations), either of the same type or of different levels of
abstraction. The second most studied artifact linking is between requirements and
source code (32 evaluations). Then, in decreasing order, mixed links in an informa-
tion space of requirements, source code and tests (ten evaluations), links between
requirements and tests (nine evaluations) and links between source code and man-
uals (six evaluations). Less frequently studied trace links include links between
source code and defects/change requests (e.g. Gethers et al. 2011) and links between
tests (Lormans et al. 2008*). In three primary publications, the types of artifacts
traced are unclear, either not specified at all or merely described as ‘documents’
(e.g. Chen et al. 2011*).

5.3 Strength of Evidence (RQ3)

An overview of the datasets used for evaluations in the primary publications is
shown in Fig. 11. In total we identified 132 evaluations; in 42 (32 %) cases propri-
etary artifacts were studied, either originating from development projects in private
companies or the US agency NASA. Nineteen (14 %) evaluations using artifacts
collected from open source projects have been published and 65 (49 %) employing
artifacts originating from a university environment. Among the datasets from uni-
versity environments, 34 consist of artifacts developed by students. In six primary
publications, the origin of the artifacts is mixed or unclear (e.g. Park et al. 2000*; Li
et al. 2008*; Parvathy et al. 2008*). Figure 11 also depicts the sizes of the datasets used
in the evaluations, wrt. the number of artifacts. The majority of the evaluations in the
primary publications were conducted using an information space of less than 500 arti-
facts. In 38 of the evaluations, less than 100 artifacts were used as input. The primary
publications with the by far highest number of artifacts, evaluated links between
3,779 business requirements and 8,334 market requirements at Baan (Natt och Dag
et al. 2004*) (now owned by Infor Global Solutions), and trace links between nine
defect reports and 13,380 test cases at Research in Motion (Kaushik et al. 2011*).

Fig. 11 Datasets used in studies on IR-based trace recovery. Bars show number and origin of
artifacts

Author's personal copy

Figure 11: Datasets used in studies on IR-based trace recovery. Bars show num-
ber and origin of artifacts.

Table 6: Summary of the datasets most frequently used for evaluations.
Dataset Artifacts Links Origin Development

characteristics
Sizea Lang.

17 CM-1 Requirements
specifying
system re-
quirements
and detailed
design

Bipartite
dataset,
many-
to-many
links

NASA Embedded
software de-
velopment in
governmental
agency

455 English

16 EasyClinic Use cases,
sequence dia-
grams, source
code, test case
descriptions

Many-
to-many
links

Univ. of
Salerno

Student project 150 Italian

8 MODIS Requirements
specifying
system re-
quirements
and detailed
design

Bipartite
dataset,
many-
to-many
links.

NASA Embedded
software de-
velopment in
governmental
agency

68 English

7 Ice-
Breaker
System
(IBS)

Functional
requirements
and source
code

Not publicly
available in
full detail

Robertson
and Robert-
son [399]

Textbook on re-
quirements engi-
neering

185 English

6 LEDA Source code
and user doc-
umentation

Bipartite
dataset,
many-to-
one links

Max Planck
Inst. for
Informatics
Saarbrücken

Scientific com-
puting

296 English

5 Event-
Based
Trace-
ability
(EBT)

Functional
requirements
and source
code

Not publicly
available

DePaul Univ. Tool from re-
search project

138 English

a Size is presented as the total number of artifacts.

6 Discussion 127

Figure 12: Contexts of evaluations of IR-based trace recovery, along with study
environments. Numbers show the number of primary publications that target each
combination.

as studies.
Since secondary measures were applied, fourteen publications (18%) are con-

sidered to have been conducted in the seeking context. Eleven primary publica-
tions conducted evaluations in the work context, mostly through controlled exper-
iments with student subjects. Only three evaluations are reported in the outermost
context of IR evaluation, the project context, i.e. evaluating the usefulness of trace
recovery in an actual end user environment. Among these, only a single publica-
tion reports an evaluation from a non-student development project [304].

6 Discussion

This section discusses the results reported in the previous section and concludes
on the research questions. Along with the discussions, we conclude every question
with concrete suggestions on how to advance research on IR-based trace recovery.
Finally, in Section 6.4, we map our recommendations to the traceability challenges
articulated by CoEST [202].

6.1 IR Models Applied to Trace Recovery (RQ1)

During the last decade, a wide variety of IR models have been applied to recover
trace links between artifacts. Our study shows that the most frequently applied
models have been algebraic, i.e. Salton’s classic VSM from the 60s [417] and
LSI, the extension developed by Deerswester in the 90s [150]. Also, we show that
VSM has been implemented more frequently than LSI, in contrast to what was

128 Recovering from a Decade: A Systematic Review of Information . . .

reported by Binkley and Lawrie [59]. The interest in algebraic models might have
been caused by the straightforwardness of the techniques; they have concrete geo-
metrical interpretations, and are rather easy to understand also for non-IR experts.
Moreover, several open source implementations are available. Consequently, the
algebraic models are highly applicable to trace recovery studies, and they consti-
tute feasible benchmarks when developing new methods. However, in line with
the development in the general IR field [490], LMs [378] have been getting more
attention in the last years. Regarding enhancements strategies, relevance feed-
back, introduction of a thesaurus and clustering of results are the most frequently
applied.

While implementing an IR model, the developers inevitably have to make a
variety of design decisions. Consequently, this applies also to IR-based trace re-
covery tools. As a result, tools implementing the same IR model can produce
rather different output [77]. Thus, omitting details in the reporting obstructs repli-
cations and the possibility to advance the field of trace recovery through secondary
studies and evidence-based software engineering techniques [247]. Unfortunately,
even fundamental information about the implementation of IR is commonly left
out in trace recovery publications. Concrete examples include feature selection
and weighting (particularly neglected for publications indexing source code) and
the number of dimensions of the LSI subspace. Furthermore, the heterogeneous
use of terminology is an unnecessary difficulty in IR-based trace recovery publica-
tions. Concerning general traceability terminology, improvements can be expected
as Cleland-Huang et al. [113] dedicated an entire chapter of their recent book to
this issue. However, we hope that Section 2.1 of this paper is a step toward align-
ing also the IR terminology in the community.

To support future replications and secondary studies on IR-based trace recovery,
we suggest that:

• Studies on IR-based trace recovery should use IR terminology consistently,
e.g. as presented in Table 1 and Figure 6, and use general traceability termi-
nology as proposed by Cleland-Huang et al. [113].

• Authors of articles on IR-based trace recovery should carefully report the
implemented IR model, including the features considered, to enable aggre-
gating empirical evidence.

• Technology-oriented experiments on IR-based trace recovery should adhere
to rigorous methodologies such as the evaluation framework by Huffman
Hayes and Dekhtyar [229].

6.2 Types of Software Artifacts Linked (RQ2)
Most published evaluations on IR-based trace recovery aim at establishing trace
links between requirements in a wide sense, or between requirements and source

6 Discussion 129

code. Apparently, the artifacts of the V&V side of the V-model are not as fre-
quently in focus of researchers working on IR-based trace recovery. One can think
of several reasons for this unbalance. First, researchers might consider that the
structure of the document subspace of the requirement side of the V-model is more
important to study, as it is considered the “starting point” of development. Second,
the early public availability of a few datasets containing requirements of various
kinds, might have paved the way for a series of studies by various researchers.
Third, publicly available artifacts from the open source community might con-
tain more requirements artifacts than V&V artifacts. Nevertheless, research on
trace recovery would benefit from studies on a more diverse mix of artifacts. For
instance, the gap between requirements artifacts and V&V artifacts is an impor-
tant industrial challenge [414]. Hence, exploring whether IR-based trace recovery
could be a way to align “the two ends of software development” is worth an effort.

Apart from the finding that requirement-centric studies on IR-based trace re-
covery are over-represented, we found that too few studies go beyond trace re-
covery in bipartite traceability graphs. Such simplified datasets hardly represent
the diverse information landscapes of large-scale software development projects.
Exceptions include studies by De Lucia et al., who repeatedly have evaluated IR-
based trace recovery among use cases, functional requirements, source code and
test cases [137, 141, 143, 146–149], however originating from student projects,
which reduces the industrial relevance.

To further advance the research of IR-based trace recovery, we suggest that:

• Studies should be conducted on diverse datasets containing a higher number
of artifacts, to explore recovery of different types of trace links.

• Studies should go beyond bipartite datasets to better represent the heteroge-
neous information landscape of software engineering, thus enabling studies
on several types of links within the same datasets.

6.3 Strength of Evidence (RQ3)
Most evaluations on IR-based trace recovery were conducted on bipartite datasets
containing fewer than 500 artifacts. Obviously, as pointed out by several re-
searchers, any software development project involves much larger information
landscapes, that also consist of heterogeneous artifacts. A majority of the eval-
uations of datasets containing more than 1,000 artifacts were conducted using
open source artifacts, an environment in which fewer types of artifacts are typi-
cally maintained [92, 419], thus links to or from source code are more likely to
be studied. Even though small datasets might be reasonable to study, only two
primary publications report from evaluations containing more than 10,000 arti-
facts [265, 352]. As a result, the question of whether the state-of-the-art IR-based
trace recovery scales to larger document spaces or not remains unanswered. In the

130 Recovering from a Decade: A Systematic Review of Information . . .

empirical NLP community, Banko and Brill [37] showed that some conclusions
(related to machine learning techniques for NL disambiguation) drawn on small
datasets may not carry over to very large datasets. Researchers on IR-based trace
recovery appear to be aware of the scalability issue however, as it is commonly
mentioned as a threat to external validity and suggested as future work in the pri-
mary publications [144, 197, 233, 297, 322, 467]. On the other hand, one reason
for the many studies on small datasets is the challenge involved in obtaining the
complete set of correct trace links, i.e. a gold standard or ground truth, required for
evaluations. In certain domains, e.g. development of safety-critical systems, such
information might already be available. If such information is missing however,
a traceability researcher first needs to establish the gold standard, which requires
much work for a large dataset.

Regarding the validity of datasets used in evaluations, a majority used artifacts
originating from university environments as input. Furthermore, most studies on
proprietary artifacts used only the CM-1 or MODIS datasets collected from NASA
projects, resulting in their roles as de-facto benchmarks from an industrial con-
text. Clearly, again the external validity of state-of-the-art trace recovery must be
questioned. On one hand, benchmarking can be a way to advance IR tool devel-
opment, as TREC have demonstrated in the general IR research [434], but on the
other hand it can also lead the research community to over-engineering tools on
specific datasets [77]. Thus, the community needs to consider the risk of opti-
mization against those specific benchmarks, which may make the final result less
suitable in the general case, if the benchmarks are not representative enough. The
benchmark discussion has been very active in the traceability community the last
years [47, 112, 152, 153, 202].

A related problem, in particular for proprietary datasets that cannot be dis-
closed, is that datasets often are poorly described [79]. In some particular publica-
tions, NL artifacts in datasets are only described as ‘documents’. Thus, as already
discussed related to RQ1 in Section 6.1, inadequate reporting obstructs replica-
tions and secondary studies. Moreover, providing information about the datasets
and their contexts is also important for interpreting results and their validity, in
line with previous work by Ali et al. [10] and Borg et al. [79]. For example, re-
searchers should report as much of the industrial context from which the dataset
arose as encouraged by Kitchenham and Charters [275]. As a starting point, re-
searchers could use the preliminary framework for describing industrial context by
Petersen and Wohlin [374].

As discussed in Section 3.4, P-R values can be reported from IR-based trace
recovery evaluations in different ways. Unfortunately, the reported values are not
always properly explained in the primary publications. In the evaluation report, it
is central to state whether a query-based or matrix-based evaluation style has been
used, as well as which cut-off strategies were applied. Furthermore, for query-
based evaluations (closer resembling traditional IR), we agree with the opinion of
Spärck Jones et al. [438], that reporting only precision at standard recall levels is

6 Discussion 131

opaque. The figures obscure the actual numbers of retrieved documents needed to
get beyond low recall, and should be complemented by P-R values from a constant
cut-point cut-off strategy. Moreover, regarding both query-based and matrix-based
evaluation styles, reporting also secondary measures (such as MAP and DCG) is a
step toward more mature evaluations.

Most empirical evaluations of IR-based trace recovery were conducted in the
innermost of IR contexts, i.e. a clear majority of the research was conducted “in
the cave” or just outside [237]. For some datasets, the output accuracy of IR mod-
els has been well-studied during the last decade. However, more studies on how
humans interact with the tools are required; similar to what has been explored by
Huffman Hayes et al. [128, 154, 230, 233] and De Lucia et al. [146–148]. Thus,
more evaluations in a work task context or a project context are needed. Regard-
ing the outermost IR context, only one industrial in-vivo evaluation [304] and three
evaluations in student projects [142–144] have been reported. Finally, regarding
the innermost IR contexts, the discrepancy of methodological terminology should
be harmonized in future studies.

To further advance evaluations of IR-based trace recovery, we suggest that:

• The community should continue its struggle to acquire a set of more repre-
sentative benchmarks.

• Researchers should better characterize both the context and the datasets used
in evaluations, in particular when they cannot be disclosed for confidential-
ity reasons.

• P-R values should be complemented by secondary measures such as MAP
and DCG, and it should be made clear whether a query-based or matrix-
based evaluation style was used.

• Focus on tool enhancements “in the cave” should be shifted towards evalu-
ations in the work task or project context.

6.4 In the Light of the CoEST Research Agenda
Gotel et al. [202] recently published a framework of challenges in traceability re-
search, a CoEST community effort based on a draft from 2006 [116]. The intention
of the framework is to provide a structure to direct future research on traceability.
CoEST defines eight research themes, addressing challenges that are envisioned to
be solved in 2035, as presented in Table 7. Our work mainly contributes to three
of the research themes, purposed traceability, trusted traceability, and scalable
traceability. Below, we discuss the three research themes in relation to IR-based
trace recovery, based on our empirical findings.

The research theme purposed traceability charts the development of a classi-
fication scheme for traceability contexts, and a collection of possible stakeholder

132 Recovering from a Decade: A Systematic Review of Information . . .

Table 7: Traceability research themes defined by CoEST [202]. Ubiquitous trace-
ability is referred to as “the grand challenge of traceability”, since it requires sig-
nificant progress in the other research themes

.

Research theme Goal to reach by 2035
Purposed traceability to define and instrument prototypical traceability profiles

and patterns
Cost-effective traceability to perform systematic quality assessment and assurance of

the traceability
Configurable traceability to provide for levels of abstraction and granularity in

traceability techniques, methods and tools, facilitated
by improved trace visualizations, to handle very large
datasets and the longevity of these data

Trusted traceability to develop cost-benefit models for analyzing stakeholder
requirements for traceability and associated solution
options at a fine-grained level of detail

Scalable traceability to use dynamic, heterogeneous and semantically rich
traceability information models to guide the definition
and provision of traceability

Portable traceability to agree upon universal policies, standards, and a unified
representation or language for expressing traceability
concepts

Valued traceability to raise awareness of the value of traceability, to gain
buy-in to education and training, and to get commitment
to implementation

Ubiquitous traceability to provide automation such that traceability is
encompassed within broader software and systems
engineering processes, and is integral to all tool support

7 Summary and Future Work 133

requirements on traceability. Also, a “Traceability Book of Knowledge” is planned,
including terminology, methods, practices and the like. Furthermore, the research
agenda calls for additional empirical studies. Our contribution intensifies CoEST’s
call for additional industrial case studies, by showing that a majority of IR-based
trace recovery studies have been conducted in the “cave of IR evaluation”. To
guide future empirical studies, we propose an adapted version of the model of IR
evaluation contexts by Ingwersen and Järvelin [237], tailored for IR-based trace
recovery. Also, we confirm the need for a “Traceability Book of Knowledge” and
an aligned terminology in the traceability community, as our secondary study was
obstructed by language discrepancies.

Trusted traceability comprises research to gain improvements in the quality
of creation and maintenance of automatic trace links. Also, the research theme
calls for empirical evidence as to the quality of traceability methods and tools with
respect to the quality of the trace links. Our work, founded in evidence-based
software engineering approaches, aggregated the empirical evidence of IR-based
trace recovery until December 2011. Based on this, we provide several advice on
how to advance future evaluations.

Finally, the research theme scalable traceability calls for the traceability com-
munity to obtain and publish large industrial datasets from various domains to
enable researchers to investigate scalability of traceability methods. Also this call
for research is intensified by our work, as we empirically show that alarmingly few
evaluations of IR-based trace recovery have been conducted on industrial datasets
of representative sizes.

7 Summary and Future Work

Our review of IR-based trace recovery compares 79 publications containing 132
empirical studies, systematically derived according to established procedures [273].
Our study constitutes the most extensive summary of publications of IR-based
trace recovery yet published.

More than ten IR models have been applied to trace recovery (RQ1). More
studies have evaluated algebraic IR models (i.e. VSM and LSI) than probabilistic
models (e.g. BIM, PIN, LM, LDA). A visible trend is, in line with development in
the general field of IR, that the probabilistic subset of statistical language models
have received increased attention in recent years. While extracting data from the
primary publications, it became clear that the inconsistent use of IR terminology
is an issue in the field. In an attempt to homogenize the language, we present
structure in the form of a hierarchy of IR models (Fig. 6) and a collection of IR
terminology (Table 1).

In the 132 mapped empirical studies, artifacts from the entire development
process have been linked (RQ2). The dominant artifact type is requirements at
various levels of abstraction, followed by source code. Substantially fewer studies

134 Recovering from a Decade: A Systematic Review of Information . . .

have been conducted on test artifacts, and only single publications have targeted
user manuals and defect reports. Furthermore, a majority of the evaluations of
IR-based trace recovery have been made on bipartite datasets, i.e. only trace links
between two disjoint sets of artifacts were recovered.

Among the 79 primary publications mapped in our study, we conclude that the
heterogeneity of reporting detail obstructs the aggregation of empirical evidence
(RQ3). Also, most evaluations have been conducted on small bipartite datasets
containing fewer than 500 artifacts, which is a severe threat to external valid-
ity. Furthermore, a majority of evaluations have been using artifacts originating
from a university environment, or a dataset of proprietary artifacts from NASA.
As a result, the two small datasets EasyClinic and CM-1 constitute the de-facto
benchmark in IR-based trace recovery. Another validity threat to the applicability
of IR-based trace recovery is that a clear majority of the evaluations have been
conducted in “the cave of IR evaluation” as reported in Figure 12. Instead, the
strongest empirical evidence in favor of IR-based trace recovery tools comes from
a set of controlled experiments on student subjects, reporting that tool-supported
subjects outperform manual control groups. Thus, we argue that industrial in-vivo
evaluations are needed to motivate the feasibility of the approach and further stud-
ies on the topic, in which IR-based trace recovery should be studied within the full
complexity of an industrial setting. As such, our empirical findings intensify the
recent call for additional empirical studies by CoEST [202].

In several primary publications it is not made clear whether a query-based or
matrix-based evaluation style has been used. Also, the different reporting styles of
P-R values make secondary studies on candidate trace link accuracies challenging.
We argue that both the standard measures precision at fixed recall levels and P-R
at specific document cut-offs should be reported when applicable, complemented
by secondary measures such as MAP and DCG.

As a continuation of this literature study, we intend to publish the extracted
data to allow for collaborative editing5, and for interested readers to review the de-
tails. A possible future study would be to conduct a deeper analysis of the enhance-
ment strategies that have been reported as successful in the primary publications,
to investigate patterns concerning in which contexts they have been successfully
applied. Another option for the future is to aggregate results from the innermost
evaluation context, as P-R values repeatedly have been reported in the primary
studies. However, such a secondary study must be carefully designed to allow a
valid synthesis across different studies. Finally, future work could include other
mapping dimensions, such as categorizing the primary publications according to
other frameworks, e.g positioning them related to the CoEST research themes.

5Made available online since the original paper was printed: http://sites.google.com/site/tracerepo/

7 Summary and Future Work 135

Acknowledgement
This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering6. Thanks go to our librarian Mats Berglund
for working on the search strings, and Lorand Dali for excellent comments on IR
details.

6http://ease.cs.lth.se

136 Recovering from a Decade: A Systematic Review of Information . . .

Appendix I: Classification of Primary Publications

Tables 8-12 present our classification of the primary publications, sorted by num-
ber of citations according to Google Scholar (July 1, 2012). Note that the well-
cited works by Marcus and Maletic [326] (354 citations) and Antoniol et al. [16]
(85 citations) are not listed. Applied IR models are reported in the fourth col-
umn. For LSI, the number of dimensions (k) in the reduced term-document space
is reported in parenthesis, divided per dataset when possible. The number of di-
mensions is reported either as a fixed number of dimensions, an interval of di-
mensions, a dimensionality reduction in percent, or ‘N/A’ when the information
is not available. A bold number represents the best choice, as concluded by the
original authors. Regarding LDA, the number of topics (t) is reported. Datasets
are classified according to origin: proprietary (Ind), open source (OS), university
(Univ), student (Stud), not clearly reported (Unclear), and mixed origin (Mixed).
Numbers in parentheses show the number of artifacts studied, i.e. the total number
of artifacts in the dataset, ‘N/A’ is used when it is not reported. Unless the full
dataset name is presented, the following abbreviations are used: IBS (Ice Breaker
System), EBT (Event-Based Traceability), LC (Light Control system), TM (Tran-
sient Meter). Evaluation, the rightmost column, maps primary publications to the
context taxonomy described in Section 3 (Level 1-4 = retrieval context, seeking
context, work task context, project context). Finally, Table 13 shows the distinctly
most productive authors and affiliations, based upon our primary publications.

Table 8: Classification of primary publications, part I.
Cit. Title Authors IR mod. Dataset Evaluation
486 Recovering Traceability Links Antoniol, Canfora, BIM, Univ: LEDA (296), Level 1,

between Code and Documentation De Lucia, Merlo VSM Stud: Albergate (116) Level 3
(8 subj.)

205 Advancing Candidate Link Tracing: Huffman Hayes, VSM, LSI Ind: MODIS (68), Level 2
Generation for Requirements Dekhtyar, Sundaram (k=10 (MODIS), CM-1 (455)
The Study of Methods 100 (CM-1))

169 Improving Requirements Tracing via Huffman Hayes, VSM Ind: MODIS (68) Level 1
Information Retrieval Dekhtyar, Osborne

140 Recovering Traceability Links in De Lucia, Fasano, LSI Stud: (Multiple Level 4
Software Artifact Management Oliveto, Tortora (k=30-100%) projects) (150 subj.)
Systems Using Information Retrieval
Methods

99 Utilizing Supporting Evidence to Cleland-Huang, PIN Univ: IBS (252), Level 1
Improve Dynamic Requirements Settimi, Duan, Zou EBT (114), LC (61)
Traceability

79 Best Practices for Automated Cleland-Huang, PIN Ind: Siemens Logistics Level 1
Traceability Berenbach, Clark, and Automation (N/A),

Settimi, Romanova Univ: IBT (255),
EBT (114)

74 Helping Analysts Trace Huffman Hayes, VSM Ind: MODIS (68) Level 2
Requirements: An Objective Look Dekhtyar, Sundaram,

Howard
70 Can LSI help Reconstructing Lormans, van LSI Ind: Philips (359), Level 1

Requirements Traceability in Design Deursen (k=20%) Stud: PacMan (46),
and Test? Callisto (N/A)

68 Supporting Software Evolution Settimi, Cleland- VSM Univ: EBT (138) Level 1
through Dynamically Retrieving Huang, BenKhadra,
Traces to UML Artifacts Mody, Lukasik,

DePalma
64 Enhancing an Artefact Management De Lucia, Fasano, LSI Stud: EasyClinic (150) Level 1

System with Traceability Recovery Oliveto, Tortora (k=10-50%)
Features

7 Summary and Future Work 137

Table 9: Classification of primary publications, part II.
Cit. Title Authors IR mod. Dataset Evaluation
58 Recovery of Traceability Links Marcus, Maletic, LSI (N/A) Univ: LEDA (228- Level 1

Between Software Documentation Sergeyev 803), Stud:
and Source Code Albergate (73)

44 Recovering Code to Documentation Antoniol, Canfora, BIM Univ: LEDA (296) Level 1
Links in OO Systems De Lucia, Marlo

40 Fine grained indexing of software Canfora, Cerulo BM25 OS: Gedit (233), Level 1
repositories to support impact ArgoUML (2208),
analysis Firefox (680)

38 ADAMS Re-Trace: A Traceability De Lucia, Fasano, LSI (N/A) Stud: (48, 50, 54, Level 4
Recovery Tool Oliveto, Tortora 55, 73, 74, 111) (7 proj.)

36 On the Equivalence of Information Oliveto, Gethers, VSM, LSI (N/A), Stud: EasyClinic (77), Level 1
Retrieval Methods for Automated Poshyvanyk, LM, eTour (174)
Traceability Link Recovery De Lucia LDA (t=50-300)

33 Incremental Approach and User De Lucia, Oliveto, VSM, LSI (k=10, Ind: MODIS (68), Level 1
Feedbacks: a Silver Bullet for Sgueglia 19, (MODIS), Stud: EasyClinic (150)
Traceability Recovery 60 (EasyClinic))

30 A machine learning approach for Cleland-Huang, PIN Mixed: (254) Level 2
tracing regulatory codes to product Czauderna, Gibiec,
specific requirements Emenecker

30 Assessing IR-based traceability De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3
recovery tools through controlled Tortora (20, 12 subj.)
experiments

29 A Traceability Technique for Abadi, Nisenson, VSM, LSI OS: SCA (1311), Level 2
Specifications Simionovici (k=5-100, CORBA (3340)

16 (SCA),
96 (CORBA)),
PLSI (k=5-128),
SDR (k=5-128),
LM

29 Can Information Retrieval De Lucia, Fasano, LSI (k=20%) Stud: EasyClinic (150), Level 1,
Techniques Effectively Support Oliveto, Tortora Univ: ADAMS (309), Level 4
Traceability Link Recovery? LEDA (803) (150 subj.)

29 Software traceability with topic Asuncion, Asuncion, LSI (k=10), Univ: ArchStudio (N/A), Level 1
modeling Taylor LDA (t=10, Stud: EasyClinic (160)

20,30) Stud: EasyClinic (160)
29 Speeding up Requirements to Natt och Dag, VSM Ind: Baan Level 2

Management in a Product Software Gervasi, (12083)
Company: Linking Customer Wishes Brinkkemper,
Product Requirements through Regnell
Linguistic Engineering

29 Tracing Object-Oriented Code into Antoniol, Canfora, BIM Stud: Level 1
Functional Requirements De Lucia, Casazza, Albergate (76)

Merlo
28 Clustering support for automated Duan, PIN Univ: IBS (185) Level 1

tracing Cleland-Huang
27 Text mining for software Huffman Hayes, N/A Ind: MODIS (68) Level 3

engineering: how analyst feedback Dekhtyar, Sundaram (3 subj.)
impacts final results

26 A feasibility study of automated Natt och Dag, VSM Ind: Telelogic Level 1
natural language requirements Regnell, Carlshamre, (1891, 1089)
analysis in market-driven Andersson, Karlsson
development

26 Implementation of an Efficient Park, Kim, Sliding Ind: Unclear (33) Level 1
Requirements Analysis Supporting Ko, Seo window,
System Using Similarity Measure syntactic
Techniques parser

25 Traceability Recovery in RAD Di Penta, Gradara, BIM Univ: TM (49) Level 1
Software Systems Antoniol

23 REquirements TRacing On target Huffman Hayes, VSM Ind: CM-1 (74) Level 3
(RETRO): improving software Dekhtyar, Sundaram, (30 subj.)
maintenance through traceability Holbrook,
recovery Vadlamudi, April

22 Phrasing in Dynamic Requirements Zou, Settimi, PIN Univ: IBS (235), Level 1
Trace Retrieval Cleland-Huang LC (59), EBT (93)

138 Recovering from a Decade: A Systematic Review of Information . . .

Table 10: Classification of primary publications, part III.
Cit. Title Authors IR mod. Dataset Evaluation
21 Combining Textual and Structural McMillan, LSI (k=15, 25, Univ: Level 1

Analysis of Software Artifacts for Poshyvanyk, 50, 75) CoffeeMaker (143)
Traceability Link Recovery Revelle

20 Tracing requirements to defect Yadla, Huffman VSM Ind: CM-1 (68,118) Level 2
reports: an application of Hayes, Dekhtyar
information retrieval techniques

18 Automated Requirements Cuddeback, VSM OS: BlueJ Level 3
Traceability: the Study of Human Dekhtyar, Huffman Plugin (49) (26 subj.)
Analysts Hayes

18 Incremental Latent Semantic Jiang, Nguyen, LSI (k=10%) Univ: LEDA (634) Level 1
Indexing for Automatic Traceability Chen, Jaygarl,
Link Evolution Management Chang

18 Understanding how the Zhao, Zhang, VSM OS: Desktop Level 1
requirements are implemented in Liu, Juo, Sun Calculator (123)
source code

17 Improving Automated Zou, Settimi, PIN Ind: CM-1 (455), Level 2
Requirements Trace Retrieval: A Cleland-Huang Univ: IBS (235),
Study of Term-Based Enhancement EBT (93), LC (89),
Methods Stud: SE450 (521)

17 IR-Based Traceability Recovery De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3
Processes: An Empirical Comparison Tortora (30 subj.)
of "One-Shot" and Incremental
Processes

17 Make the Most of Your Time: How Dekhtyar, Huffman VSM Ind: CM-1 (455) Level 2
Should the Analyst Work with Hayes, Larsen
Automated Traceability Tools?

16 Baselines in requirements tracing Sundaram, Huffman VSM, LSI Ind: CM-1 (455), Level 2
Hayes, Dekhtyar (k=10,19,29 MODIS (68)

(MODIS),
100,200 (CM-1))

11 Challenges for semi-automatic trace Leuser VSM, Ind: Daimler AG Level 1
recovery in the automotive domain LSI (N/A) (1500)

11 Monitoring Requirements Coverage Lormans, Gross, LSI (N/A) Ind: LogicaCMG (219) Level 1
Using Reconstructed Views: An van Deursen,
Industrial Case Study Stehouwer,

van Solingen
11 On the role of the nouns in IR-based Capobianco, De LSI (N/A), Stud: EasyClinic (150) Level 1

traceability recovery Lucia, Oliveto, LM
Panichella,
Panichella

10 An experiment on linguistic tool Natt och Dag, VSM Stud: PUSS (299) Level 3
support for consolidation of Thelin, Regnell (23 subj.)
requirements from multiple
sources in market-driven
product development

9 An Industrial Case Study in Lormans, LSI (k=40%) Ind: LogicaCMG (293) Level 1
Reconstructing Requirements van Deursen,
Views Gross

9 Towards Mining Replacement Gibiec, Czauderna, VSM Mixed: (254) Level 2
Queries for Hard-to-Retrieve Traces Cleland-Huang

8 Recovering Relationships between Wang, Lai, LSI (N/A), Univ: LEDA (597), Level 1
Documentation and Source Code Liu BIM Univ: IBS (270)
based on the Charecteristics of
Software Engineering

8 Trace retrieval for evolving artifacts Winkler LSI (k=15%) Ind: Robert Bosch Level 1
GmbH (500),
MODIS (68)

8 Traceability Recovery using Capobianco, VSM, LSI (N/A), Stud: EasyClinic (150) Level 1
Numerical Analysis De Lucia, Oliveto, LM,

Panichella, B-splines
Panichella

7 Assessing Traceability of Software Sundaram, Huffman VSM, LSI (k=10,25, Ind: MODIS (68), Level 2
Engineering Artifacts Hayes, Dekhtyar, 30,40,60 (MODIS), CM-1 (455),

Holbrook 10,25,100,200, Stud: 22* Waterloo
400 (CM-1), (65)
5,10,15,25,40
(Waterloo)

7 Requirement-centric traceability Li, Li, VSM Unclear: Requirements Level 4
for change impact analysis: Yang, Li Management System (5 subj.)
A case study (501)

7 Summary and Future Work 139

Table 11: Classification of primary publications, part IV.
Cit. Title Authors IR mod. Dataset Evaluation

6 How do we trace requirements: an Kong, Huffman N/A OS: BlueJ Level 3
initial study of analyst behavior in Hayes, Dekhtyar, plugin (49) (13 subj.)
trace validation tasks Holden

6 Technique Integration for Dekhtyar, Huffman VSM, LSI Ind: CM-1 (455) Level 1
Requirements Assesment Hayes, Sundaram, (N/A), BIM

Holbrook, Dekhtyar LDA (N/A),
Chi2 key extr.

4 Application of Swarm Techniques Sultanov, VSM, Ind: CM-1 (455), Level 1
for Requirements Engineering: Huffman Hayes Swarm Univ: PINE (182)
Requirements Tracing

4 On Integrating Orthogonal Gethers, Oliveto, VSM, LM, Stud: eAnsi (194), Level 1
Information Retrieval Methods Posyvanyk, RTM eAnsi (67), EasyClinic (57)
to Improve Traceability Recovery De Lucia EasyClinic (100),

eTour (232), SMOS (167)
3 A clustering-based approach for Zhou, Yu VSM Univ: Resource Level 1

tracing object-oriented design to Management Software
requirement (33)

3 Evaluating the Use of Project Zou, Settimi, PIN Ind: CM-1 (455), Level 1
Glossaries in Automated Trace Cleland-Huang Univ: IBS (235),
Retrieval Stud: SE450 (61)

3 On Human Analyst Performance Dekhtyar, Dekhtyar, VSM OS: BlueJ (49) Level 3
in Assisted Requirements Holden, Huffman (84 subj.)
Tracing: Statistical Analysis Hayes, Cuddeback,

Kong
3 Tackling Semi-automatic Trace Leuser, Ott VSM Ind: Daimler Level 1

Recovery for Large Specifications (2095, 944)

2 Extraction and visualization of Chen Unclear OS: JDK1.5 (N/A), Level 1
traceability relationships between uDig 1.1.1 (N/A)
documents and source code

2 Source code indexing for Mahmoud, VSM Stud: eTour (174), Level 1
automated tracing Niu iTrust (264)

2 Traceability challenge 2011: using Czauderna, Gibiec, VSM Ind: CM-1 (75), Level 2
tracelab to evaluate the impact of Leach, Li, Shin, WV-CCHIT (1180)
local versus global idf on trace Keenan, Cleland-
retrieval Huang

2 Trust-Based Requirements Ali, Guéhéneuc, VSM OS: Pooka (388), Level 1
Traceability Antoniol SIP (1853)

1 An Adaptive Approach to Gethers, Kagdi, LSI (N/A) OS: ArgoUML Level 2
Impact Analysis from Change Dit, Poshyvanyk (qualitative analysis)
Requests to Source Code

1 Do Better IR Tools Improve Borg, Pfahl VSM Ind: CM-1 (455) Level 3
the Accuracy of Engineers’ (8 subj.)
Traceability Recovery?

1 Experiences with text mining large Port, Nikora, Hihn, LSI (N/A) Unclear Level 3
collections of unstructured systems Huang
development artifacts at JPL

1 Improving Automated Chen, Grundy VSM OS: JDK (431) Level 1
Documentation to Code Traceability
by Combining Retrieval Techniques

1 Improving IR-based Traceability De Lucia, Di Penta, VSM, Univ: PINE (131), Level 1
Recovery Using Smoothing Filters Oliveto, Panichella, LSI (N/A) Stud: EasyClinic (150)

Panichella
1 Using semantics-enabled Mahmoud, VSM Ind: CM-1 (455) Level 1

information retrieval in Niu
requirements tracing: An ongoing
experimental investigation

1 Traceclipse: an eclipse plug-in for Klock, Gethers, Dit, Unclear Ind: CM-1 (455), Level 1
traceability link recovery and Poshyvanyk Stud: EasyClinic (150)
management

0 A combination approach for Chen, Hosking, VSM OS: JDK 1.5 (N/A) Level 1
enhancing automated traceability: Grundy
(NIER track)

140 Recovering from a Decade: A Systematic Review of Information . . .

Table 12: Classification of primary publications, part V.
Cit. Title Authors IR mod. Dataset Evaluation

0 A Comparative Study of Document Parvathy, VSM, LSI Unclear: (43), (261) Level 1
Correlation Techniques for Vasudevan, (k=10),
Traceability Analysis Balakrishnan LDA (t=21),

CTM
0 A requirement traceability Kong, Li, Li, VSM, Ind: Web Level 1

refinement method based on Yang, Wang LM app (511)
relevance feedback

0 An Improving Approach for Di, Zhang BIM Ind: CM-1 (455), Level 1
Recovering Requirements-to- MODIS (68)
Design Traceability Links

0 Proximity-based traceability: Kong, Huffman VSM Ind: CM-1 (75), Level 2
An empirical validation using Hayes OS: Pine (182),
ranked retrieval and set-based Univ: StyleChecker (49),
measures Stud: EasyClinic (77)

0 Reconstructing Traceability Kaushik, Tahvildari, LSI Ind: RIM (13389) Level 1
between Bugs and Test Cases: Moore (k=50-500,
An Experimental Study 150-200)

0 Requirements Traceability for Ali, Guéhéneuc, VSM OS: Pooka (388), Level 1
Object Oriented Systems by Antoniol SIP (1853),
Partitioning Source Code Univ: iTrust (526)

0 Software verification and validation Huffman Hayes, VSM Stud: EasyClinic (150), Level 2
research laboratory (SVVRL) of the Sultanov, Kong, Li eTour (174)
University of Kentucky: traceability
challenge 2011: language translation

0 The role of the coverage analysis De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3
during IR-based traceability Tortora (30 subj.)
recovery: A controlled experiment

0 Towards a Benchmark Ben Charrada, VSM Univ: AquaLush (793) Level 1
for Traceability Casper, Jeanneret,

Glinz

Table 13: Most productive authors and affiliations. For authors, the first number
is the total number of primary publications, while the number in parenthesis is
first-authored primary publications. For affiliations, the numbers show the number
of primary publications first-authored by an affiliated researcher.

Author Publications
Andrea De Lucia 16 (9)
Jane Huffman Hayes 16 (6)
Alexander Dekhtyar 15 (3)
Rocco Oliveto 13 (1)
Jane Cleland-Huang 10 (3)
Affiliation Publications
University of Kentucky, United States 13
University of Salerno, Italy 11
DePaul University, United States 10
University of Sannio, Italy 5

PART II: THE SOLUTION
PHASE

CHAPTER III

AUTOMATED BUG
ASSIGNMENT:

ENSEMBLE-BASED MACHINE
LEARNING IN LARGE SCALE

INDUSTRIAL CONTEXTS

Abstract

Context: Bug report assignment is an important part of software maintenance. In
particular, incorrect assignments of bug reports to development teams can be very
expensive in large software development projects. Several studies propose au-
tomating bug assignment techniques using machine learning in open source soft-
ware contexts, but no study exists for large-scale proprietary projects in industry.
Objective: The goal of this study is to evaluate automated bug assignment tech-
niques that are based on machine learning classification. In particular, we study
the state-of-the-art ensemble learner Stacked Generalization (SG) that combines
several classifiers. Method: We collect more than 50,000 bug reports from five
development projects from two companies in different domains. We implement
automated bug assignment and evaluate the performance in a set of controlled ex-
periments. Results: We show that SG scales to large scale industrial application
and that it outperforms the use of individual classifiers for bug assignment, reach-
ing prediction accuracies from 50% to 90% when large training sets are used. In
addition, we show how old training data can decrease the prediction accuracy of
bug assignment. Conclusions: We advice industry to use SG for bug assign-
ment in proprietary contexts, using at least 2,000 bug reports for training. Finally,
we highlight the importance of not solely relying on results from cross-validation
when evaluating automated bug assignment.

144 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid Eldh, and Per
Runeson Under Revision in Empirical Software Engineering

1 Introduction

In large projects, the continuous inflow of bug reports1 challenges the developers’
abilities to overview the content of the Bug Tracking System (BTS) [53, 257]. As
a first step toward correcting a bug, the corresponding bug report must be assigned
to a development team or an individual developer. This task, referred to as bug as-
signment, is normally done manually. However, several studies report that manual
bug assignment is labor-intensive and error-prone [44, 55, 248], resulting in “bug
tossing” (i.e., reassigning bug reports to another developer) and delayed bug cor-
rections. Previous work report that bug tossing is frequent in large projects; 25%
of bug reports are reassigned in the Eclipse Platform project [24] and over 90% of
the fixed bugs in both the Eclipse Platform project and in projects in the Mozilla
foundation have been reassigned at least once [55]. Moreover, we have previously
highlighted the same phenomenon in large-scale maintenance at Ericsson [255].

Several researchers have proposed improving the situation by automating bug
assignment. The most common automation approach is based on classification
using supervised Machine Learning (ML) [8, 23, 248] (see Section 2 for a discus-
sion about machine learning and classification). By training a classifier, incom-
ing bug reports can automatically be assigned to developers. A wide variety of
classifiers have been suggested, and previous studies report promising prediction
accuracies ranging from 40% to 60% [6, 23, 248, 308]. Previous work has focused
on Open Source Software (OSS) development projects, especially the Eclipse and
Mozilla projects. Only a few studies on bug assignment in proprietary develop-
ment projects are available, and they target small organizations [217, 308]. Al-
though OSS development is a relevant context to study, it differs from proprietary
development in aspects such as development processes, team structure, and devel-
oper incentives. Consequently, whether previous research on automated bug as-
signment applies to large proprietary development organizations remains an open
question.

Researchers have evaluated several different ML techniques for classifying bug
reports. The two most popular classifiers in bug assignment are Naïve Bayes (NB)
and Support Vector Machines (SVM), applied in pioneering work by Čubranić et
al. [125] and Anvik et al. [23], respectively. Previous work on bug assignment
has also evaluated several other classifiers, and compared the prediction accuracy
(i.e., the proportion of bug reports assigned to the correct developer) with varying
results [6, 23, 24, 55, 217]. To improve the accuracy, some authors have presented
customized solutions for bug assignment, tailored for their specific project con-

1Other common names for bug report include issues, tickets, fault reports, trouble reports, defect
reports, anomaly reports, maintenance requests, and incidents.

1 Introduction 145

texts (e.g., Xie et al. [484] and Xia et al. [482]). While such approaches have the
potential to outperform general purpose classifiers, we instead focus on a solution
that can be deployed as a plug-in to an industrial BTS with limited customization.
On the other hand, our solution still provides a novel technical contribution in
relation to previous work on ML-based bug assignment by combining individual
classifiers.

Studies in other domains report that ensemble learners, an approach to com-
bine classifiers, can outperform individual techniques when there is diversity among
the individual classifiers [287]. In recent years, combining classifiers has been
used also for applications in software engineering. Examples include effort esti-
mation [303], fault localization [446], and fault classification [482]. In this article,
we propose using Stacked Generalization (SG) [478] as the ensemble learner for
improving prediction accuracy in automated bug assignment. SG is a state-of-the-
art method to combine output from multiple classifiers, used in a wide variety of
applications. One prominent example was developed by the winning team of the
Netflix Prize, where a solution involving SG outperformed the competition in pre-
dicting movie ratings, and won the $1 million prize [432]. In the field of software
engineering, applications of SG include predicting the numbers of remaining de-
fects in black-box testing [302], and malware detection in smartphones [13]. In
a previous pilot study, we initially evaluated using SG for bug assignment with
promising results [255]. Building on our previous work, this paper constitutes a
deeper study using bug reports from different proprietary contexts. We analyze
how the prediction accuracy depends on the choice of individual classifiers used in
SG. Furthermore, we study learning curves for different systems, that is, how the
amount of training data impacts the overall prediction accuracy.

We evaluate our approach of automated bug assignment on bug reports from
five large proprietary development projects. Four of the datasets originate from
product development projects at a telecom company, totaling more than 35,000 bug
reports. To strengthen the external validity of our results, we also study a dataset
of 15,000 bug reports, collected from a company developing industrial automation
systems. Both development contexts constitute large-scale proprietary software
development, involving hundreds of engineers, working with complex embedded
systems. As such, we focus on software engineering much different from the OSS
application development that has been the target of most previous work. Moreover,
while previous work address bug assignment to individual developers, we instead
evaluate bug assignment to different development teams, as our industrial partners
report this task to be more important. In large scale industrial development it
makes sense to assign bugs to a team and let the developers involved distribute
the work internally. Individual developers might be unavailable for a number of
reasons, e.g., temporary peaks of workload, sickness, or employee turnover, thus
team assignment is regarded as more important by our industry partners.

146 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

The overall goal of our research is to support bug assignment in large propri-
etary development projects using state-of-the-art ML. We further refine this goal
into four Research Questions (RQ):

RQ1 Does stacked generalization outperform individual classifiers?

RQ2 How does the ensemble selection in SG affect the prediction accuracy?

RQ3 How consistent learning curves does SG display across projects?

RQ4 How does the time locality of training data affect the prediction accuracy?

To be more specific, our contributions are as follows:

• We synthesize results from previous studies on automated bug assignment
and present a comprehensive overview (Section 3).

• We present the first empirical studies of automated bug assignment with
data originating from large proprietary development contexts, where bug
assignments are made at team level (Section 4).

• We conduct a series of experiments to answer the above specified research
questions (Section 5) and report the experimental results and analysis from a
practical bug assignment perspective (Section 6), including analyzing threats
to validity (Section 7).

• We discuss the big picture, that is, the potential to deploy automated support
for bug assignment in the two case companies under study (Section 8).

2 Machine Learning
Machine learning is a field of study where computer programs can learn and get
better at performing specific tasks by training on historical data. In this section, we
discuss more specifically what machine learning means in our context, focusing on
supervised machine learning – the type of machine learning technique used in this
paper.

2.1 Supervised Machine Learning Techniques and Their
Evaluation

In supervised learning, a machine learning algorithm is trained on a training
set [62]. A training set is a subset of some historical data that is collected over
time. Another subset of the historical data is the test set, used for evaluation. The
evaluation determines how well the system performs with respect to some metric.

2 Machine Learning 147

In our context, an example metric is the number of bug reports that are assigned
to correct development teams, that is, the teams that ended up solving the bugs.
The training set can, in turn, be split into disjoint sets for parameter optimization.
These sets are called hold-out or validation sets. After the system has been trained
on the training data, the system is then evaluated on each of the instances in the
test set. From the point of view of the system, the test instances are completely
new since none of the instances in the training set are part of the test set.

To evaluate the predictions, we apply cross-validation with stratification [281].
Stratification means that the instances in the training sets and the test sets are se-
lected to be proportional to their distribution in the whole dataset. In our exper-
iments, we use stratified 10-fold cross-validation, where the dataset is split into
ten stratified sets. Training and evaluation are then performed ten times, each time
shifting the set used for testing. The final estimate of accuracy of the system is the
average of these ten evaluations.

In addition to 10-fold cross-validation, we use two versions of timed evaluation
to closely replicate a real world scenario: sliding window and cumulative time
window. In the sliding window evaluation, both the training set and the test set
have fixed sizes, but the time difference between the sets varies by selecting the
training set further back in time. Sliding window is described in more details in
Section 5.5. The sliding window approach makes it possible to study how time
locality of bug reports affects the prediction accuracy of a system.

The cumulative time window evaluation also has a fixed sized test set, but in-
creases the size of the training set by adding more data further back in time. This
scheme is described in more details in Section 5.5. By adding more bug reports
incrementally, we can study if adding older bug reports is detrimental to prediction
accuracy.

2.2 Classification

We are mainly concerned with the type of machine learning techniques called clas-
sification techniques. In classification, a software component, called a classifier,
is invoked with inputs that are named features. Features are extracted from the
training data instances. Features can, for instance, be in the form of free text,
numbers, or nominal values. As an example, an instance of a bug report can be
represented in terms of features where the subject and description are free texts,
the customer is a nominal value from a list of possible customers, and the severity
of the bug is represented on an ordinal scale. In the evaluation phase, the classi-
fier will – based on the values of the features of a particular instance – return the
class that the features correspond to. In our case, the different classes correspond
to the development teams in the organization that we want to assign bugs to. The
features can vary from organization to organization, depending on which data that
is collected in the bug tracking system.

148 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

2.3 Ensemble Techniques and Stacked Generalization

It is often beneficial to combine the results of several individual classifiers. The
general idea to combine classifiers is called ensemble techniques. Classifiers can
be combined in several different ways. In one ensemble technique, called bag-
ging [85], many instances of the same type of classifier are trained on different
versions of the training set. Each classifier is trained on a new dataset, created by
sampling with replacement from the original dataset. The final result is then ob-
tained by averaging the results from all of the classifiers in the ensemble. Another
ensemble technique, called boosting, also involves training several instances of the
same type of classifier on a modified training set, which places different weights
on the different training instances. The classifiers are trained and evaluated in se-
quence with subsequent classifiers trained with higher weights on instances that
previous classifiers have misclassified. A popular version of boosting is called
Adaboost [190]. Both bagging and boosting use the same type of classifiers in the
ensemble and vary the data the classifiers are trained on.

Stacked Generalization (SG) [478] (also called stacking or blending) is an en-
semble technique that combines several level-0 classifiers of different types with
one level-1 classifier (see Fig. 1) into an ensemble. The level-1 classifier trains and
evaluates all of the level-0 classifiers on the same data and learns (using a separate
learning algorithm) which of the underlying classifiers (the level-0 classifiers) that
perform well on different classes and data. The level-1 training algorithm is typ-
ically a relatively simple smooth linear model [474], such as logistic regression.
Note that in stacking, it is completely permissible to put other ensemble techniques
as level-0 classifiers.

In this study (see Sections 5 and 6), we are using stacked generalization be-
cause this ensemble technique meets our goal of combining and evaluating differ-
ent classifiers.

3 Related Work on Automated Bug Assignment

Several researchers have proposed automated support for bug assignment. Most
previous work can either be classified as ML classification problems or Informa-
tion Retrieval (IR) problems. ML-based bug assignment uses supervised learning
to classify bug reports to the most relevant developer. IR-based bug assignment
on the other hand, considers bug reports as queries and developers as documents
of various relevance given the query. A handful of recent studies show that spe-
cialized solutions for automated bug assignment can outperform both ML and IR
approaches, e.g., by combining information in the BTS with the source code repos-
itory, or by crafting tailored algorithms for matching bug reports and developers.
We focus the review of previous work on applications of off-the-shelf classification
algorithms, as our aim is to explore combinations of readily available classifiers.

3 Related Work on Automated Bug Assignment 149

Stacked
Generalizer

Decision Tree
Classifier

SVM
Classifier

KNN
Classifier

Naive Bayes
Classifier

Bayes Net
Classifier

w1

w2 w3 w4
w5

Final Prediction

Level – 1
Classifier

Level – 0
Classifier

Prediction Prediction Prediction

Legend

Figure 1: Stacked Generalization

However, we also report key publications both from IR-based bug assignment and
specialized state-of-the-art tools for bug assignment in Section 3.2.

3.1 Automated Bug Assignment Using General Purpose
Classifiers

Previous work on ML-based bug assignment has evaluated several techniques. Ta-
ble 1 gives a comprehensive summary of the classifiers used in previous work on
ML-based bug assignment. Čubranić et al. [125] pioneered the work by proposing
a Naïve Bayes (NB) classifier trained for the task. Anvik et al. [23] also used NB,
but also introduced Support Vector Machines (SVM), and C4.5 classifiers. Later,
they extended that work and evaluated also rules-based classification and Expec-
tation Maximization (EM) [21], as well as Nearest Neighbor (NN) [24]. Several
other researchers continued the work by Anvik et al. by evaluating classification-
based bug assignment on bug reports from different projects, using a variety of
classifiers. Ahsan et al. [6] were the first to introduce Decision Trees (DT), RBF
Network (RBF), REPTree (RT), and Random Forest (RF) for bug assignment. The
same year, Jeong et al. [248] proposed to use Bayesian Networks (BNet). Helm-
ing et al. [217] used Neural Networks (NNet) and Constant Classifier (CC). In our
work, we evaluate 28 different classifiers, as presented in Section 5.

Two general purpose classification techniques have been used more than the
others, namely NB and SVM (cf. Table 1). The numerous studies on NB and SVM
are in line with ML work in general; NB and SVM are two standard classifiers with
often good results that can be considered default choices when exploring a new
task. Other classifiers used in at least three previous studies on bug assignment

150 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Table 1: Techniques used in previous studies on ML-based bug assignment. Bold
author names indicate comparative studies, capital X shows the classifier giving
the best results. IR indicates Information Retrieval techniques. The last row shows
the study presented in this paper.

are Bayesian Networks (BNET), and C4.5. We include both NB and SVM in our
study, as presented in Section 5.

Eight of the studies using ML-based bug assignment compare different classi-
fiers. The previously largest comparative studies of general purpose classifiers for
bug assignment used seven and six classifiers, respectively [6,217]. We go beyond
previous work by comparing more classifiers. Moreover, we propose applying
ensemble learning for bug assignment, i.e., combining several different classifiers.

Table 1 also displays the features used to represent bug reports in previous
work on ML-based bug assignment. Most previous approaches rely solely on tex-
tual information, most often the title and description of bug reports. Only two of
the previous studies combine textual and nominal features in their solutions. Ah-
san et al. [6] include information about product, component, and platform, and Lin
et al. [308] complement textual information with component, type, phase, priority,
and submitter. In our study, we complement textual information by submitter site,
submitter type, software revision, and bug priority.

3 Related Work on Automated Bug Assignment 151

Table 2 shows an overview of the previous evaluations of automated bug as-
signment (including studies presented in Section 3.2). It is evident that previous
work has focused on the context of Open Source Software (OSS) development,
as 23 out of 25 studies have studied OSS bug reports. This is in line with general
research in empirical software engineering, explained by the appealing availability
of large amounts of data and the possibility of replications [404]. While there is
large variety within the OSS domain, there are some general differences from pro-
prietary bug management that impact our work. First, the bug databases used in
OSS development are typically publicly available; anyone can submit bug reports.
Second, Paulson et al. [371] report that defects are found and fixed faster in OSS
projects. Third, while proprietary development often is organized in teams, an
OSS development community rather consists of individual developers. Also, the
management in a company typically makes an effort to maintain stable teams over
time despite employee turnover, while the churn behavior of individual developers
in OSS projects is well-known [28, 406]. Consequently, due to the different na-
ture of OSS development, it is not clear to what extent previous findings based on
OSS data can be generalized to proprietary contexts. Moreover, we are not aware
of any major OSS bug dataset that contains team assignments with which we can
directly compare our work. This is unfortunate since it would be interesting to use
the same set of tools in the two different contexts.

As the organization of developers in proprietary projects tend to be different
from OSS communities, the bug assignment task we study differs accordingly.
While all previous work (including the two studies on proprietary development
contexts by Lin et al. [308] and Helming et al. [217]) aim at supporting assign-
ment of bug reports to individual developers, we instead address the task of bug
assignment to development teams. Thus, as the number of development teams is
much lower than the number of developers in normal projects, direct comparisons
of our results to previous work can not be made. As an example, according to Open
HUB2 (Dec 2014), the number of contributors to some of the studied OSS projects
in Table 2 are: Linux kernel (13,343), GNOME (5,888), KDE (4,060), Fire-
fox (3,187), NetBeans (893), gcc (534), Eclipse platform (474), Bugzilla (143),
OpenOffice (124), Mylyn (92), ArgoUML (87), Maemo (83), UNICASE (83),
jEdit (55), and muCommander (9). Moreover, while the number of bugs resolved
in our proprietary datasets is somewhat balanced, contributions in OSS communi-
ties tend to follow the “onion model” [3], i.e., the commit distribution is skewed, a
few core developers contribute much source code, but most developers contribute
only occasionally.

Bug reports from the development of Eclipse are used in 14 out of the 21 stud-
ies (cf. Table 2). Still, no set of Eclipse bugs has become the de facto benchmark.
Instead, different subsets of bug reports have been used in previous work, contain-
ing between 6,500 and 300,000 bug reports. Bug reports originating from OSS

2Formerly Ohloh.net, an open public library presenting analyses of OSS projects
(www.openhub.net).

152 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Table 2: Evaluations performed in previous studies with BTS focus. Bold au-
thor names indicate studies evaluating general purpose ML-based bug assignment.
Results are listed in the same order as the systems appear in the fourth column.
The last row shows the study presented in this paper, even though it is not directly
comparable.

3 Related Work on Automated Bug Assignment 153

development in the Mozilla foundation is the second most studied system, con-
taining up to 550,000 bug reports [55]. While we do not study bug repositories
containing 100,000s of bug reports, our work involves much larger datasets than
the previously largest study in a proprietary context by [308] (2,576 bug reports).
Furthermore, we study bug reports from five different development projects in two
different companies.

The most common measure to report the success in previous work is accu-
racy3, reported in 10 out of 21 studies. As listed in Table 2, prediction accuracies
ranging from 0.14 to 0.78 have been reported, with an average of 0.42 and stan-
dard deviation of 0.17. This suggests that a rule-of-thumb could be that automated
bug assignment has the potential to correctly assign almost every second bug to an
individual developer.

3.2 Other Approaches to Automated Bug Assignment

Some previous studies consider bug assignment as an IR problem, meaning that
the incoming bug is treated as a search query and the assignment options are the
possible documents to retrieve. There are two main families of IR models used in
software engineering: algebraic models and probabilistic models [76]. For auto-
mated bug assignment, four studies used algebraic models [104, 260, 349, 428]. A
probabilistic IR model on the other hand, has only been applied by Canfora and
Cerulo [93]. Moreover, only [309] evaluated bug assignment using both classifica-
tion and IR in the same study, and reported that IR displayed the most promising
results.

Most studies on IR-based bug assignment report F-scores instead of accuracy.
In Table 2 we present F-scores for the first candidate developer suggested in pre-
vious work (F@1). The F-scores display large variation; about 0.60 for a study on
muCommander and one of the studies of Eclipse, and very low values on work on
Firefox, gcc, and jEdit. The variation shows that the potential of automated bug
assignment is highly data dependent, as the same approach evaluated on different
data can display large differences [24, 309]. A subset of IR-based studies reports
neither accuracy nor F-score. Chen et al. [104] conclude that their automated bug
assignment significantly reduces bug tossing as compared to manual work. Finally,
Kagdi et al. [260] and Nagwani and Verma [349] perform qualitative evaluations
of their approaches. Especially the former study reports positive results.

Three studies on automated bug assignment identified in the literature present
tools based on content-based and collaborative filtering, i.e., techniques from re-
search on Recommendation Systems [401]. Park et al. [368] developed an RS
where bug reports are represented by their textual description extended by the
nominal features: platform, version, and development phase. Baysal et al. [44]

3Equivalent to recall when recommending only the most probable developer, aka. the Top-1 recom-
mendation or Rc@1

154 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

presented a framework for recommending developers for a given bug report, us-
ing a vector space analysis of the history of previous bug resolutions. Matter et
al. [332] matched bug reports to developers by modelling the natural language in
historical commits and comparing them to the textual content of bug reports.

More recently, some researchers have showed that the accuracy of automated
bug assignment can be improved by implementing more advanced algorithms, tai-
lored for both the task and the context. Tamrawi et al. [444] proposed Bugzie, an
automated bug assignment approach they refer to as fuzzy set and cache-based.
Two assumptions guide their work: 1) the textual content of bug reports is as-
sumed to relate to a specific technical aspect of the software system, and 2) if
a developer frequently resolves bugs related to such a technical aspect, (s)he is
capable of resolving related bugs in the future. Bugzie models both technical as-
pects and developers’ expertise as bags-of-words and matches them accordingly.
Furthermore, to improve the scalability, Bugzie recommends only developers that
recently committed bug resolutions, i.e., developers in the cache. Bugzie was eval-
uated on more than 500,000 bug reports from seven OSS projects, and achieved an
prediction accuracies between 30% and 53%.

Wu et al. [481] proposed DREX, an approach to bug assignment using k-
nearest neighbour search and social network analysis. DREX recommends per-
forms assignment by: 1) finding textually similar bug reports, 2) extracting de-
velopers involved in their resolution, and 3) ranking the developers expertise by
analyzing their participation in resolving the similar bugs. The participation is
based on developers’ comments on historical bug reports, both manually written
comments and comments automatically generated when source code changes are
committed. DREX uses the comments to construct a social network, and approx-
imated participation using a series of network measures. An evaluation on bug
reports from the Firefox OSS project shows the social network analysis of DREX
outperforms a purely textual approach, with a prediction accuracy of about 15%
and recall when considering the Top-10 recommendations (Rc@10, i.e., the bug is
included in the 10 first recommendations) of 0.66.

Servant and Jones [424] developed WhoseFault, a tool that both assigns a bug
to a developer and presents a possible location of the fault in the source code.
WhoseFault is also different from other approaches reported in this section, as
it performs its analysis originating from failures from automated testing instead
of textual bug reports. To assign appropriate developers to a failure, WhoseFault
combines a framework for automated testing, a fault localization technique, and
the commit history of individual developers. By finding the likely position of
a fault, and identifying the most active developers of that piece of source code,
WhoseFault reaches a prediction accuracy of 35% for the 889 test cases studied in
the AspectJ OSS project. Moreover, the tool reports the correct developer among
the top-3 recommendations for 81.44% of the test cases.

A trending technique to process and analyze natural language text in software
engineering is topic modeling. Xie et al. [484] use topic models for automated

3 Related Work on Automated Bug Assignment 155

bug assignment in their approach DRETOM. First, the textual content of bug re-
ports is represented using topic models (Latent Dirichlet Allocation (LDA) [65]).
Then, based on the bug-topic distribution, DRETOM maps each bug report to a
single topic. Finally, developers and bug reports are associated using a probabilis-
tic model, considering the interest and expertise of a developer given the specific
bug report. DRETOM was evaluated on more than 5,000 bug reports from the
Eclipse and Firefox OSS projects, and achieved an accuracy of about 15%. How-
ever, considering the Top-5 recommendations the recall reaches 80% and 50% for
Eclipse and Firefox, respectively.

Xia et al. [482] developed DevRec, a highly specialized tool for automated bug
assignment, that also successfully implemented topic models. Similar to the bug
assignment implemented in DREX, DevRec first performs a k-nearest neighbours
search. DevRec however calculates similarity between bug reports using an ad-
vanced combination of the terms in the bug reports, its topic as extracted by LDA,
and the product and component the bug report is related to (referred to as BR-based
analysis). Developers are then connected to bug reports based on multi-label learn-
ing using ML-KNN. Furthermore, DevRec then also models the affinity between
developers and bug reports by calculating their distances (referred to as D-based
analysis). Finally, the BR-analysis and the D-based analyses are combined to rec-
ommend developers for new bug reports. Xia et al. [482] evaluated DevRec on
more than 100,000 bug reports from five OSS projects, and they also implemented
the approaches proposed in both DREX and Bugzie to enable a comparison. The
authors report average Rc@5 and Rc@10 of 62% and 74%, respectively, consti-
tuting considerable improvements compared to both DREX and Bugzie.

In contrast to previous work on specialised tools for bug assignment, we present
an approach based on general purpose classifiers. Furthermore, our work uses stan-
dard features of bug reports, readily available in a typical BTS. As such, we do not
rely on advanced operations such as mining developers’ social networks, or data
integration with the commit history from a separate source code repository. The
reasons for our more conservative approach are fivefold:

1. Our study constitutes initial work on applying ML for automated bug as-
signment in proprietary contexts. We consider it an appropriate strategy to
first evaluate general purpose techniques, and then, if the results are promis-
ing, move on to further refine our solutions. However, while we advocate
general purpose classifiers in this study, the way we combine them into an
ensemble is novel in automated bug assignment.

2. The two proprietary contexts under study are different in terms of work pro-
cesses and tool chains, thus it would not be possible to develop one special-
ized bug assignment solution that fits both the organizations.

3. As user studies on automated bug assignment are missing, it is unclear to
what extent slight tool improvements are of practical significance for an end

156 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

user. Thus, before studies evaluate the interplay between users and tools,
it is unclear if specialized solutions are worth the additional development
effort required. This is in line with discussions on improved tool support for
trace recovery [72], and the difference of correctness and utility of recom-
mendation systems in software engineering [32].

4. Relying on general purpose classifiers supports transfer of research results
to industry. Our industrial partners are experts on developing high quality
embedded software systems, but they do not have extensive knowledge of
ML. Thus, delivering a highly specialized solution would complicate both
the hand-over and the future maintenance of the tool. We expect that this
observation generalizes to most software intensive organizations.

5. Using general purpose techniques supports future replications in other comp-
anies. As such replications could be used to initiate case studies involving
end users, a type of studies currently missing, we believe this to be an im-
portant advantage of using general purpose classifiers.

4 Case Descriptions

This section describes the two case companies under study, both of which are
bigger than the vast majority of OSS projects. In OSS projects a typical power-
law behavior is seen with a few projects, such as the Linux kernel, Mozilla etc,
having large number of contributors. We present the companies guided by the six
context facets proposed by Petersen and Wohlin [374], namely product, processes,
practices and techniques, people, organization, and market. Also, we present a
simplified model of the bug handling processes used in the companies. Finally, we
illustrate where in the process our machine learning system could be deployed to
increase the level of automation, as defined by Parasuraman et al. [367]4.

4.1 Description of Company Automation

Company Automation is a large international company active in the power and au-
tomation sector. The case we study consists of a development organization man-
aging hundreds of engineers, with development sites in Sweden, India, Germany,
and the US. The development context is safety-critical embedded development
in the domain of industrial control systems, governed by IEC 615115. A typical
project has a length of 12-18 months and follows an iterative stage-gate project
management model. The software is certified to a Safety Integrity Level (SIL) of
2 as defined by IEC 61508 [239], mandating strict processes on the development

4Ten levels of automation, ranging from 0, for fully manual work, to 10, when the computer acts
autonomously ignoring the human.

5Functional safety - Safety instrumented systems for the process industry sector

4 Case Descriptions 157

and maintenance activities. As specified by IEC 61511 [238], all changes to safety
classified source code requires a formal impact analysis before any changes are
made. Furthermore, the safety standards mandate that both forward and backward
traceability should be maintained during software evolution.

The software product under development is a mature system consisting of large
amounts of legacy code; parts of the code base are more than 20 years old. As the
company has a low staff turnover, many of the developers of the legacy code are
still available within the organization. Most of the software is written in C/C++.
Considerable testing takes place to ensure a very high code quality. The typical
customers of the software product require safe process automation in very large
industrial sites.

The bug-tracking system (BTS) in Company Automation has a central role
in the change management and the impact analyses. All software changes, both
source code changes and changes to documentation, must be connected to an issue
report. Issue reports are categorized as one of the following: error corrections (i.e.,
bug reports), enhancements, document modification, and internal (e.g., changes to
test code, internal tools, and administrative changes). Moreover, the formal change
impact analyses are documented as attachments to individual issue reports in the
BTS.

4.2 Description of Company Telecom

Company Telecom is a major telecommunications vendor based in Sweden. We
are studying data from four different development organizations within Company
Telecom, consisting of several hundreds of engineers distributed over several coun-
tries. Staff turnover is very low and many of the developers are senior developers
that have been working on the same products for many years.

The development context is embedded systems in the Information and Com-
munications Technology (ICT) domain. Development in the ICT domain is heavily
standardized, and adheres to standards such as 3GPP, 3GPP2, ETSI, IEEE, IETF,
ITU, and OMA. Company Telecom is ISO 9001 and TL 9000 certified. At the time
the study was conducted, the project model was based on an internal waterfall-like
model, but has since then changed to an Agile development process.

Various programming languages are used in the four different products. The
majority of the code is written in C++ and Java, but other languages, such as
hardware description languages, are also used.

Two of the four products are large systems in the ICT domain, one is a mid-
dleware platform, and one is a component system. Two of the products are mature
with a code base older than 15 years, whereas the other two products are younger,
but still older than eight years. All four products are deployed at customer sites
world-wide in the ICT market.

158 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Issue management in the design organization is handled in two separate repos-
itories; one for change requests (planned new features or updates) and one for bug
reports. In this study we only use data from the latter, the BTS.

Customer support requests to Company Telecom are handled in a two lay-
ered approach with an initial customer service organization dealing with initial
requests, called Customer Service Requests (CSR). The task of this organization
is to screen incoming requests so that only hardware or software errors and no
other issue, such as configuration problems, are sent down to the second layer. If
the customer support organization believes a CSR to be a fault in the product, they
file a bug report based on the CSR in the second layer BTS. In this way, the second
layer organization can focus on issues that are likely to be faults in the software.
In spite of this approach, some bug reports can be configuration issues or other
problems not directly related to faults in the code. In this study, we have only used
data from the second layer BTS, but there is nothing in principle that prevents the
same approach to be used on the first layer CSR’s. The BTS is the central point
in the bug handling process and there are several process descriptions for the var-
ious employee roles. Tracking of analysis, implementation proposals, testing, and
verification are all coordinated through the BTS.

4.3 State-of-Practice Bug Assignment: A Manual Process

The bug handling process of both Company Automation and Telecom are substan-
tially more complex than the standard process described by Bugzilla [345]. The
two processes are characterized by the development contexts of the organizations.
Company Automation develops safety-critical systems, and the bug handling pro-
cess must therefore adhere to safety standards as described in Section 4.1. The
standards put strict requirements on how software is allowed to be modified, in-
cluding rigorous change impact analyses with focus on traceability. In Company
Telecom on the other hand, the sheer size of both the system under development
and the organization itself are reflected on the bug handling process. The resource
allocation in Company Telecom is complex and involves advanced routing in a
hierarchical organization to a number of development teams.

We generalize the bug handling processes in the two case companies and
present an overview model of the currently manual process in Figure 2. In general,
three actors can file bug reports: i) the developers of the systems, ii) the internal
testing organization, and iii) customers that file bug reports via helpdesk func-
tions. A submitted bug report starts in a bug triaging stage. As the next step, the
Change Control Board (CCB) assigns the bug report to a development team for
investigation. The leader of the receiving team then assigns the bug report to an
individual developer. Unfortunately, the bug reports often end up with the wrong
developer, thus bug tossing (i.e., bug report re-assignment) is common, especially
between teams. The BTS stores information about the bug tossing that takes place.

5 Method 159

Development

Test

Customer
Support

Bug

Tracking
System
(BTS)

Team 1

Team N

Developer 1

Developer N

Team Leader
CCB

New Bug
Report

New Bug
Report

New Bug
Report

Automatic
Assignment

Bug
Tossing

Figure 2: A simplified model of bug assignment in a proprietary context.

As a consequence, we can estimate the classification accuracy of the manual bug
assignment process.

4.4 State-of-the-Art: Automated Bug Assignment

We propose, in line with previous work, to automate the bug assignment. Our ap-
proach is to use the historical information in the BTS as a labeled training set for
a classifier. When a new bug is submitted to the BTS, we encode the available in-
formation as features and feed them to a prediction system. The prediction system
then classifies the new bug to a specific development team. While this resem-
bles proposals in previous work, our approach differs by: i) aiming at supporting
large proprietary organizations, and ii) assigning bug reports to teams rather than
individual developers.

Figure 2 shows our automated step as a dashed line. The prediction system
offers decision support to the CCB, by suggesting which development team that is
the most likely to have the skills required to investigate the issue. This automated
support corresponds to a medium level of automation (“the computer suggests one
alternative and executes that suggestion if the human approves”), as defined in the
established automation model by Parasuraman et al. [367].

5 Method
The overall goal of our work is to support bug assignment in large proprietary de-
velopment projects using state-of-the-art ML. As a step toward this goal, we study
five sets of bug reports from two companies (described in Section 4), including
information of team assignment for each bug report. We conduct controlled exper-
iments using Weka [211], a mature machine learning environment that is success-
fully used across several domains, for instance, bioinformatics [186], telecommu-

160 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Table 3: Overview of the research questions, all related to the task of automated
team allocation. Each question is listed along with the main purpose of the ques-
tion, a high-level description of our study approach, and the experimental variables
involved.

RQ1 RQ2 RQ3 RQ4
Description Does stacked gener-

alization outperform
individual classi-
fiers?

How does the ensem-
ble selection in SG
affect the prediction
accuracy?

How consistent
learning curves does
SG display across
projects?

How does the time
locality of training
data affect the pre-
diction accuracy?

Rationale Confirm the result
of our previous
work [255].

Explore which en-
semble selection per-
forms the best.

Study how SG per-
forms on different
data, and understand
how much training
data is required.

Understand how SG
should be retrained
as new bug reports
are submitted.

Approach Test the hypothesis:
“SG does not per-
form better than indi-
vidual classifiers wrt.
prediction accuracy”.

Based on RQ1: eval-
uate three different
ensemble selections.

Using the best en-
semble selection
from RQ2: evaluate
learning curves.

Using the best en-
semble selection
from RQ2 with
amount of training
data from RQ3: eval-
uate SG sensitivity to
freshness of training
data.

Related
experiments

Exp A, Exp B Exp B Exp C Exp D, Exp E

Dependent
variable

Prediction accuracy

Independent
variables

Individual classifier Ensemble selection Size of training set Time locality of
training data (Exp
D), size of training
set (Exp E)

Fixed vari-
ables

Preprocessing, feature selection, training size Preprocessing,
feature selection,
ensemble selection

Preprocessing,
feature selection,
ensemble selection

nication [11], and astronomy [495]. This section describes the definition, design
and setting of the experiments, following the general guidelines by Basili et al. [43]
and Wohlin et al. [477].

5.1 Experiment Definition and Context

The goal of the experiments is to study automatic bug assignment using stacked
generalization in large proprietary development contexts, for the purpose of eval-
uating its industrial feasibility, from the perspective of an applied researcher, plan-
ning deployment of the approach in an industrial setting.

Table 3 reminds the reader of our RQs. Also, the table presents the rationale of
each RQ, and a high-level description of the research approach we have selected
to address them. Moreover, the table maps the RQs to the five sub-experiments we
conduct, and the experimental variables involved.

5 Method 161

Table 4: Datasets used in the experiments. Note: At the request of our indus-
try partners the table only lists lower bounds for Telecom systems, but the total
number sums up to an excess of 50,000 bug reports.

Dataset #Bug reports Timespan #Teams
Automation 15,113 July 2000 – Jan 2012 67
Telecom 1 > 9,000 > 5 years 28
Telecom 2 > 8,000 > 5 years 36
Telecom 3 > 3,000 > 5 years 17
Telecom 4 > 10,000 > 5 years 64
Total > 50,000

5.2 Data Collection

We collect data from one development project at Company Automation and four
major development projects at Company Telecom. While the bug tracking sys-
tems in the two companies show many similarities, some slight variations force
us to perform actions to consolidate the input format of the bug reports. For in-
stance, in Company Automation a bug report has a field called “Title”, whereas
the corresponding field in Company Telecom is called “Heading”. We align these
variations to make the semantics of the resulting fields the same for all datasets.
The total number of bug reports in our study is 15,113 + 35,266 = 50,379. Table 4
shows an overview of the five datasets.

We made an effort to extract similar sets of bug reports from the two comp-
anies. However, as the companies use different BTSs, and interact with them
according to different processes, slight variations in the extraction steps are in-
evitable. Company Automation uses a BTS from an external software vendor,
while Company Telecom uses an internally developed BTS. Moreover, while the
life-cycles of bug reports are similar in the two companies (as described in Sec-
tion 4.3), they are not equivalent. Another difference is that Company Automation
uses the BTS for issue management in a broader sense (incl. new feature devel-
opment, document updates, and release management), Company Telecom uses the
BTS for bug reports exclusively. To harmonize the datasets, we present two sepa-
rate filtering sequences next, one per company.

Company Automation Data Filtering

The dataset from Company Automation contains in total 26,121 bug reports sub-
mitted between July 2000 and January 2012, all related to different versions of
the same software system. The bug reports originate from several development
projects, and describe issues reported concerning a handful of different related
products. During the 12 years of development represented in the dataset, both the

162 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

organization and processes have changed towards a more iterative development
methodology. We filter the dataset in the following way:

1. We included only CLOSED bug reports to ensure that all bugs have valid
team assignments, that is, we filter out bug reports in states such as OPEN,
NO ACTION, and CHANGE DEFERRED. This step results in 24,690 re-
maining bug reports.

2. We exclude bug reports concerning requests for new features, document
updates, changes to internal test code, and issues of administrative nature.
Thus, we only keep bug reports related to source code of the software sys-
tem. The rationale for this step is to make the data consistent with Company
Telecom, where the BTS solely contains bug reports. The final number of
bug reports in the filtered dataset is 15,113.

Company Telecom Data Filtering

Our first step of the data filtering for Company Telecom is to identify a timespan
characterized by a stable development process. We select a timespan from the
start of the development of the product family to the point in time when an agile
development process is introduced [472]. The motivation for this step is to make
sure that the study is conducted on a conformed data set. We filter the bug reports
in the timespan according to the following steps:

1. We include only bug reports in the state FINISHED.

2. We exclude bug reports marked as duplicates.

3. We exclude bug reports that do not result in an source code update in a
product.

After performing these three steps, the data set for the four products contains in
total 35,2666 bug reports.

5.3 ML Framework Selection
To select a platform for our experiments, we study features available in various
machine learning toolkits. The focus of the comparison is to find a robust, well
tested, and comparatively complete framework. The framework should also in-
clude an implementation of stacked generalizer and it should be scalable. As a
consequence, we focus on platforms that are suitable for distributed computation.
Another criterion is to find a framework that has implemented a large set of state-
of-the-art machine learning techniques. With the increased attention of machine
learning and data mining, quite a few frameworks have emerged during the last

6Due to confidentiality reasons these numbers are not broken down in exact detail per project.

5 Method 163

couple of years such as Weka [211], RapidMiner [222], Mahout [364], MOA [57],
Mallet [334], Julia [54], and Spark [488] as well as increased visibility of estab-
lished systems such as SAS, SPSS, MATLAB, and R.

For this study, we select to use a framework called Weka [211]. Weka is a com-
paratively well documented framework with a public Java API and accompanying
book, website, forum, and active community. Weka has many ML algorithms im-
plemented and it is readily extensible. It has several support functionalities, such
as cross-validation, stratification, and visualization. Weka has a built-in Java GUI
for data exploration and it is also readily available as a stand alone library in JAR
format. It has some support for parallelization. Weka supports both batch and
online interfaces for some of its algorithms. The meta facilities of the Java lan-
guage also allows for mechanical extraction of available classifiers. Weka is a well
established framework in the research community and its implementation is open
source.

5.4 Bug Report Feature Selection

This section describes the feature selection steps that are common to all our data
sets. We represent bug reports using a combination of textual and nominal features.
Feature selections that are specific to each individual sub-experiment are described
together with each experiment.

For the textual features, we limit the number of words because of memory
and execution time constraints. To determine a suitable number of words to keep,
we run a series of pilot experiments, varying the method and number of words to
keep, by varying the built in settings of Weka. We decide to represent the text
in the bug reports as the 100 words with highest TF-IDF7 as calculated by the
Weka framework. Furthermore, the textual content of the titles and descriptions
are not separated. There are two reasons for our rather simple treatment of the
natural language text. First, Weka does not support multiple bags-of-words; such
a solution would require significant implementation effort. Second, our focus is
not on finding ML configurations that provide the optimal prediction accuracies for
our datasets, but rather to explore SG for bug assignment in general. We consider
optimization to be an engineering task during deployment.

The non-textual fields available in the two bug tracking systems vary between
the companies, leading to some considerations regarding the selection of non-
textual features. Bug reports in the BTS of Company Automation contain 79 dif-
ferent fields; about 50% of these fields are either mostly empty or have turned
obsolete during the 12 year timespan. Bug reports in the BTS of Company Tele-
com contain information in more than 100 fields. However, most of these fields
are empty when the bug report is submitted. Thus, we restricted the feature selec-
tion to contain only features available at the time of submission of the bug report,

7Term Frequency-Inverse Document Frequency (TF-IDF) is a standard weighting scheme for infor-
mation retrieval and text mining. This scheme is common in software engineering applications [76].

164 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Table 5: Features used to represent bug reports. For company Telecom the fields
are reported for Telecom 1,2,3,4 respectively.

Company Automation Company Telecom Description
Textual features

Text Title+Description Heading+Observation One line summary
and full description
of the bug report

Nominal features
SubmitterType SubmitterClass Customer Affiliation of the is-

sue submitter
#Possible values 17 >170,>50,>120,>150
Site SubmitterSite SiteId Site from where the

bug was submitted
#Possible values 14 >250,>60,>80,>200
Revision Revision Faulty revision Revision of the prod-

uct that the bug was
reported on

#Possible values 103 547,1325,999,982
Priority Priority Priority Priority of the bug
#Possible values 5 3,3,3,3

i.e., features that do not require a deeper analysis effort (e.g., faulty component,
function involved). We also want to select a small set of general features, likely to
be found in most bug tracking systems. Achieving feasible results using a simple
feature selection might simplify industrial adaptation, and also it limits the ML
training times. Based on discussions with involved developers, we selected the
features presented in Table 5. In the rest of the paper, we follow the nomenclature
in the leftmost column.

A recurring discussion when applying ML concerns which features are the best
for prediction. In the two bug tracking systems we study, both textual and non-
textual features are available, thus we consider it valuable to compare the relative
predictive power of the two types of features. While our previous research has in-
dicated that including non-textual features improves the prediction accuracy [255],
many other studies rely solely on the text (see Table 1). To motivate the feature
selection used in this study, we performed a small study comparing textual vs.
non-textual features for our five datasets.

Figure 3 shows the results from our small feature selection experiment. The
figure displays results from three experimental runs, all using SG with the best
individual classifiers (further described in Section 6.1). The three curves represent
three different sets of features: 1) textual and non-textual features, 2) non-textual
features only, and 3) textual features only. The results show that for some systems
(Telecom 1, 2 and 4) the non-textual features performs better than the textual fea-
tures alone, while for some systems (Telecom 3 and Automation) the results are
the opposite. Thus, our findings strongly suggest that we should combine both

5 Method 165

non-textual features and textual features for bug assignment. Note that with more
sophisticated text modeling techniques, such as LDA [65], we suspect that the
textual features may have a higher impact on the final result.

5.5 Experiment Design and Procedure
Figure 4 shows an overview of our experimental setup. The five datasets originate
from two different industrial contexts, as depicted by the two clouds to the left.
We implement five sub-experiments (c.f. A-E in Fig. 4), using the Weka machine
learning framework. Each sub-experiment is conducted once per dataset, that is,
we performed 25 experimental runs. A number of steps implemented in Weka are
common for all experimental runs:

1. The complete dataset set of bug reports is imported.

2. Bug reports are divided into training and test sets. In sub-experiments A-C,
the bug reports are sampled using stratification.

3. Feature extraction is conducted as specified in Section 5.4.

We executed the experiments on two different computers. We conduct exper-
iments on the Company Automation dataset on a Mac Pro, running Mac OS X
10.7.5, equipped with 24 GB RAM and two Intel(R) Xeon(R) X5670 2.93 GHz
CPUs with six cores each. The computer used for the experiments on the Com-
pany Telecom datasets had the following specification: Linux 2.6.32.45-0.3-xen,
running SUSE LINUX, equipped with eight 2.80 GHz Intel(R) Xeon(R) CPU and
80 GB RAM.

As depicted in Figure 4, there are dependencies among the sub-experiments.
Several sub-experiments rely on results from previous experimental runs to select
values for both fixed and independent variables. Further details are presented in
the descriptions of the individual sub-experiments A–E.

We evaluate the classification using a top-1 approach. That is, we only con-
sider a correct/incorrect classification, i.e., we do not evaluate whether our ap-
proach correctly assigns bug reports to a set of candidate teams. In IR evaluations,
considering ranked output of search results, it is common to assess the output at
different cut-off points, e.g., the top-5 or top-10 search hits. Also some previ-
ous studies on bug assignment present top-X evaluations inspired by IR research.
However, our reasons for a top-1 approach are three-fold: First, for fully automatic
bug assignment a top-1 approach is the only reasonable choice, since an automatic
system would not send a bug report to more than one team. Second, a top-1 ap-
proach is a conservative choice in the sense that the classification results would
only improve with a top-k approach. The third motivation is technical; to ensure
high quality evaluations we have chosen to use the built-in mechanisms in the well
established Weka. Unfortunately, Weka does not support a top-k approach in its
evaluation framework for classifiers.

166 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Figure 3: The prediction accuracy when using text only features (“text-only“) vs.
using non-text features only (“notext-only“)

5 Method 167

Figure 4: Overview of the controlled experiment. Vertical arrows depict indepen-
dent variables, whereas the horizontal arrow shows the dependent variable. Arrows
within the experiment box depict dependencies between experimental runs A-E:
Experiment A determines the composition of individual classifiers in the ensem-
bles studied evaluated in Experiment B-E. The appearance of the learning curves
from Experiment C is used to set the size of the time-based evaluations in Experi-
ment D and Experiment E.

168 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Table 6: Individual classifiers available in Weka Development version 3.7.9. Col-
umn headings show package names in Weka. Classifiers in bold are excluded from
the study because of long training times or exceeding memory constraints.

bayes. functions. lazy. rules. trees. misc.
BayesNet Logistic IBk DecisionTable DecisionStump InputMappedClassifier
NaiveBayes MultilayerPerceptron KStar JRip J48
NaiveBayesMultinomial SimpleLogistic LWL OneR LMT
NaiveBayesMultinomialText SMO ZeroR PART RandomForest
NaiveBayesMultinomialUpdateable RandomTree
NaiveBayesUpdateable REPTree
net.BayesNetGenerator
net.BIFReader
net.EditableBayesNet

Experiment A: Individual Classifiers

Independent variable: Choice of individual classifier

Experiment A investigates RQ1 and the null hypothesis “SG does not perform
better than individual classifiers wrt. prediction accuracy”. We evaluate the 28
available classifiers in Weka Development version 3.7.9, listed in Table 6. The
list of possible classifiers is extracted by first listing all classes in the correspond-
ing .jar file in the “classifier“ package and then trying to assign them one by one
to a classifier. The independent variable is the individual classifier. For all five
datasets, we execute 10-fold cross-validation once per classifier. We use all avail-
able bug reports in each dataset and evaluated all 28 classifiers on all datasets. The
results of this experiment is presented in Section 6.1.

Experiment B: Ensemble Selection

Independent variable: Ensemble selection

Experiment B explores both RQ1 and RQ2, i.e., both if SG is better than individual
classifiers and which ensemble of classifiers to choose for bug assignment. As
evaluating all combinations of the 28 individual classifiers in Weka is not feasible,
we restrict our study to investigate three ensemble selections, each combining five
individual classifiers. We chose five as the number of individual classifiers to use
in SG at a consensus meeting, based on experiences of prediction accuracy and
run-time performance from pilot runs. Moreover, we exclude individual classifiers
with run-times longer than 24 hours in Experiment A, e.g., MultiLayerPerceptron
and SimpleLogistic.

Based on the results from Experiment A, we select three ensembles for each
dataset (cf. Table 6). We refer to these as BEST, WORST, and SELECTED. We
chose the first two ensembles to test the hypothesis “combining the best individual
classifiers should produce a better result than if you choose the worst”. The BEST
ensemble consists of the five individual classifiers with the highest prediction ac-

5 Method 169

curacy from Experiment A. The WORST ensemble contains the five individual
classifiers with the lowest prediction accuracy from Experiment B, while still per-
forming better than the basic classifier ZeroR that we see as a lower level baseline.
The ZeroR classifier simply always predicts the class with the largest number of
bugs. No classifier with a lower classification accuracy than ZeroR is included
in any ensemble, thus the ZeroR acts as a lower level cut-off threshold for being
included in an ensemble.

The SELECTED ensemble is motivated by a discussion by Wolpert [478], who
posits that diversity in the ensemble of classifiers improves prediction results. The
general idea is that if you add similar classifiers to a stacked generalizer, less new
information is added compared to adding a classifier based on a different classifi-
cation approach. By having level-0 generalizers of different types, they together
will better “span the learning space”. This is due to the fundamental theory behind
stacked generalization, claiming that the errors of the individual classifiers should
average out. Thus, if we use several similar classifiers we do not get the averaging
out effect since then, in theory, the classifiers will have the same type of errors
and not cancel out. We explore this approach by using the ensemble selection call
SELECTED, where we combine the best individual classifiers from five different
classification approaches (the packages in Table 6). The results of this experiment
is presented in Section 6.1.

Some individual classifiers are never part of a SG. This depends on either that
the classifier did not pass the cut-off threshold of being better than the ZeroR clas-
sifier, this case occurs for instance for the InputMappedClassifier (see Table 6).
Alternatively the classifier was neither bad enough to be in the WORST ensem-
ble nor good enough to be in the BEST or SELECTED, this is the case with for
instance JRip.

In all of the ensembles we use SimpleLogistic regression as the level-1 classi-
fier following the general advice by Wolpert [478] and Witten et al. [474] of using
a relatively simple smooth linear model.

We choose to evaluate the individual classifiers on the whole dataset in favor
of evaluating them on a hold-out set, i.e., a set of bug reports that would later not
be used in the evaluation of the SG. This is done to maximize the amount of data in
the evaluation of the SG. It is important to note that this reuse of data only applies
to the selection of which individual classifiers to include in the ensemble. In the
evaluation of the SG, all of the individual classifiers are completely retrained on
only the training set, and none of the data points in the test set is part of the training
set of the individual classifiers. This is also the approach we would suggest for
industry adoption, i.e., first evaluate the individual classifiers on the current bug
database, and then use them in a SG.

170 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Experiment C: Learning Curves

Independent variable: Amount of training data

The goal of Experiment C is to study RQ3: How consistent learning curves does
SG display across projects? For each dataset, we evaluate the three ensembles
from Experiment B using fixed size subsets of the five datasets: 100, 200, 400,
800, 1600, 3200, 6400, 12800, and ALL bug reports. All subsets are selected
using random stratified sampling from the full dataset. As the datasets Telecom 1-3
contain fewer bug reports than 12800, the learning curves are limited accordingly.
The results of this experiment is presented in Section 6.2.

Experiment D: Sliding Time Window

Independent variable: Time locality of training data

Experiment D examines RQ4, which addresses how the time locality of the train-
ing set affects the prediction accuracy on a given test set. Figure 5 shows an
overview of the setup of Experiment D. The idea is to use training sets of the same
size increasingly further back in time to predict a given test set. By splitting the
chronologically ordered full data set into fixed size training and test sets according
to Figure 5, we can generate a new dataset consisting of pairs (x,y). In this dataset,
x represents the time difference measured in number of days (delta time) between
the start of the training set and the start of the test set. The y variable represents
the prediction accuracy of using the training set x days back in time to predict the
bug assignments in the selected test set. We can then run a linear regression on
the data set of delta time and prediction accuracy samples and examine if there is
a negative correlation between delta time and prediction accuracy.

We break down RQ4 further into the following research hypothesis formula-
tion: “Is training data further back in time worse at predicting bug report assign-
ment than training data closer in time”? We test this research hypothesis with the
statistical method of simple linear regression. Translated into a statistical hypoth-
esis RQ4 is formulated as:

“Let the difference in time between the submission date of the first bug report
in a test set and the submission date of the first bug report in the training set be the
independent variable x. Further, let the prediction accuracy on the test set be the
dependent variable y. Is the coefficient of the slope of a linear regression fit on x
and y statistically different from 0 and negative at the 5 % α level?”

To create the training set and test sets, we sort the complete dataset in chrono-
logical order on the bug report submission date. To select suitable sizes to split
the training set and test sets, we employ the following procedure. For the simple
linear regression, we want to create enough sample points to be able to run a lin-
ear regression with enough power to detect a significant difference and still have
as large training and test sets as possible to reduce the variance in the generated

5 Method 171

samples. Green suggests the following formula [206]: N ≥ 50 + 8m as a rule-of-
thumb for calculating the needed number of samples at α level of 5 % and β level
of 20 %, wherem is the number of independent variables. In our case we have one
independent variable (delta time) so the minimum number of samples in our case
is 58 = 50 + 8 * 1. We use a combination of theoretical calculations for the lower
and upper bounds on the number of training samples given that we want an 80/20
ratio of training to test data. We combine the theoretical approach with a program
that calculates the number of sample points generated by a given training and test
set size, by simulating runs. This combination together with Green’s formula let
us explore the most suitable training and test sets for the different systems.

We also know from Experiment C that the “elbow” where the prediction accu-
racy tends to level out is roughly around 1,000-2,000 samples, this together with
the calculations for the linear regression guided our decision for the final selection
of sample size.

We arrived at the following dataset sizes by exploring various combinations
with the simulation program, the theoretical calculations and the experience from
Experiment C. For the smallest of the systems, the maximum sizes of training
and test sets that gives more than 58 samples amounts to 619 and 154 bug reports
respectively. For the larger systems, we can afford to have larger data sets. For
comparison we prioritize to have the same sized sets for all the other systems.
When we calculate the set sizes for the smallest of the larger systems, we arrived
at 1,400 and 350 bug reports for the training and test set sizes, respectively. These
values are then chosen for all the other four systems. The results of this analysis is
presented in Section 6.3.

Experiment E: Cumulative Time Window

Independent variable: Amount of training data

Experiment E is also designed to investigate RQ4, i.e., how the time locality of
the training set affects the prediction accuracy. Instead of varying the training data
using a fixed size sliding window as in Experiment D, we fix the starting point and
vary the amount of the training data. The independent variable is the cumulatively
increasing amount of training data. This experimental setup mimics realistic use
of SG for automated bug assignment.

Figure 6 depicts an overview of Experiment E. We sort the dataset in chrono-
logical order on the issue submission date. Based on the outcome from Experiment
C, we split the dataset into a corresponding number of equally sized chunks. We
used each chunk as a test set, and for each test set we vary the number of previous
chunks used as training set. Thus, the amount of training data was the indepen-
dent variable. We refer to this evaluation approach as cumulative time window.
Our setup is similar to the “incremental learning” that Bhattacharya et al. [55]
present in their work on bug assignment, but we conduct a more thorough evalua-

172 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Time	

Fixed	
 size	

Test	
 set	

Fixed	
 size	

Training	
 set	

Te1	
 Tr11	
 Tr12	
 Tr13	
 Tr14	
 Tr15	
 Tr16	

Te2	
 Tr21	
 Tr22	
 Tr23	
 Tr24	
 Tr25	

Te3	
 Tr31	
 Tr32	
 Tr33	
 Tr34	

Te4	
 Tr41	
 Tr42	
 Tr43	

Te5	
 Tr51	
 Tr52	

Te6	
 Tr61	

Tr	
 16	
 =	
 Training	
 set	
 6	
 for	
 test	
 set	
 1	

Te	
 1	
 	
 	
 =	
 Test	
 set	
 1	

Run	
 Test	
 set	
 	
 Training	
 set	

1	
 Te2	
 Tr21	

2	
 Te2	
 Tr22	

…	
 …	
 …	

Run	
 Test	
 set	
 	
 Training	
 set	

1	
 Te1	
 Tr11	

2	
 Te1	
 Tr12	

…	
 …	
 ...	

….	

Older	
 Bugs	
 Newer	
 Bugs	

Figure 5: Overview of the time-sorted evaluation. Vertical bars show how we
split the chronologically ordered data set into training and test sets. This approach
gives us many measurement points in time per test set size. Observe that the time
between the different sets can vary due to non-uniform bug report inflow but the
number of bug reports between each vertical bar is fixed.

6 Results and Analysis 173

Time	

Fixed	
 size	

Test	
 set	

Cumula0vely	

Increasing	

Training	
 set	

Te1	

Tr	
 16	
 =	
 Training	
 set	
 6	
 for	
 test	
 set	
 1	

Te	
 1	
 	
 	
 =	
 Test	
 set	
 1	

Run	
 Test	
 set	
 	
 Training	
 set	

1	
 Te2	
 Tr21	

2	
 Te2	
 Tr22	

…	
 …	
 …	

Run	
 Test	
 set	
 	
 Training	
 set	

1	
 Te1	
 Tr11	

2	
 Te1	
 Tr12	

…	
 …	
 ...	

Tr11	

Tr12	

Tr13	

…	

Tr16	

Te2	

Tr21	

Tr22	

Tr23	

…	
 Tr25	

Older	
 Bugs	
 Newer	
 Bugs	

…….	

Figure 6: Overview of the cumulative time-sorted evaluation. We use a fixed test
set, but cumulatively increase the training set for each run.

tion. We split the data into training and test sets in a more comprehensive manner,
and thus conduct several more experimental runs. The results of this experiment
is presented in Section 6.4.

6 Results and Analysis

6.1 Experiment A: Individual Classifiers and Experiment
B: Ensemble Selection

Experiment A investigates whether SG outperforms individual classifiers. Table 7
shows the individual classifier performance for the five evaluated systems. It also
summarizes the results of running SG with the three different configurations BEST,
WORST, and SELECTED, related to Experiment B. In Table 7 we can view the
classifier “rules.ZeroR” as a sort of lower baseline reference. The ZeroR classifier
simply always predicts the class with the highest number of bug reports.

The answer to RQ1 is that while the improvements in some projects are marginal,
using reasonable ensemble selection leads to a better prediction accuracy than us-
ing any of the individual classifiers. On our systems, the improvement is 3% better
than the best of the individual classifiers on two of the systems. The best improve-

174 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Table 7: Individual classifier results (rounded to two digits) on the five systems
use the full data set and 10-fold cross validation. Out of memory is marked O-
MEM and an execution that exceeds a time threshold is marked O-TIME.

Classifier
Accuracy

Automation
Accuracy
Telecom 1

Accuracy
Telecom 2

Accuracy
Telecom 3

Accuracy
Telecom 4

bayes.BayesNet 35 % (B,S) O-MEM O-MEM O-MEM O-MEM
bayes.NaiveBayes 15 % (W) 25 % (W) 18 % (W) 35 % 17 %
bayes.NaiveBayesMultinomial 22 % 34 % (W) 32 % 53 % (W) 26 % (W)
bayes.NaiveBayesMultinomialText 6 % 13 % 16 % 43 % 19 %
bayes.NaiveBayesMultinomialUpdateable 26 % 34 % 32 % (S) 61 % (W) 28 % (W)
bayes.NaiveBayesUpdateable 15 % 25 % 18 % 35 % 17 %
bayes.net.BIFReader 35 % O-MEM O-MEM O-MEM O-MEM
bayes.net.BayesNetGenerator 35 % 41 % (S) 31 % (W) 66 % (S,W) 37 % (S)
bayes.net.EditableBayesNet 35 % O-MEM O-MEM O-MEM O-MEM
functions.SMO 42 % (B,S) 70 % (B,S) 54 % (B,S) 86 % (B,S) 78 % (B,S)
lazy.IBk 38 % (B) 58 % (S) 44 % (B) 77 % (B) 63 %
lazy.KStar 42 % (B,S) 50 % 46 % (B,S) 77 % (S) 60 % (S)
lazy.LWL 9 % (W) 21 % (W) O-MEM O-MEM O-MEM
misc.InputMappedClassifier 6 % 13 % 16 % 43 % 19 %
rules.DecisionTable 26 % 52 % 31 % (W) 65 % (W) 55 %
rules.JRip 23 % 51 % 36 % 73 % 55 %
rules.OneR 13 % (W) 43 % (W) 30 % (W) 71 % 50 % (W)
rules.PART 29 % (S) 61 % (B,S) 38 % (S) 76 % (S) 64 % (B,S)
rules.ZeroR 6 % 13 % 16 % 43 % 19 %
trees.DecisionStump 7 % (W) 21 % (W) 22 % (W) 44 % (W) 20 % (W)
trees.J48 30 % 62 % (B) 40 % (B) 78 % (B) 66 % (B)
trees.LMT O-MEM O-MEM O-MEM O-MEM O-MEM
trees.REPTree 29 % 62 % (B) 34 % 79 % (B) 67 % (B)
trees.RandomForest 39 % (B,S) 63 % (B,S) 49 % (B,S) 84 (B,S)% 67 % (S)
trees.RandomTree 27 % 52 % 32 % 69 % 49 % (W)
functions.Logistic O-MEM O-MEM O-MEM O-MEM O-MEM
functions.SimpleLogistic 40 % O-TIME 52 % O-TIME O-TIME
functions.MultilayerPerceptron 20 % (W) O-TIME O-TIME O-TIME O-TIME

SG BEST (B) 50 % 71 % 57 % 89 % 77 %
SG SELECTED (S) 50 % 71 % 57 % 89 % 79 %
SG WORST (W) 28 % 57 % 45 % 83 % 62 %

ment is 8% on the Automation system and the smallest improvement is 1% on
system Telecom 1 and 4, which can be considered negligible. This conclusion
must be followed by a slight warning; mindless ensemble selection together with
bad luck can lead to worse result than some of the individual classifiers. In none of
our runs (including with the WORST ensemble) is the stacked generalizer worse
than all of the individual classifiers.

Experiment B addresses different ensemble selections in SG. From Table 7
we see that in the cases of the BEST and SELECTED configurations the stacked
generalizer in general performs as well, or better, than the individual classifiers.
In the case of Telecom 1 and 4, there is a negligible difference between the best
individual classifier SMO and the SELECTED and BEST SG. We also see that
when we use the WORST configuration the result of the stacked generalizer is
worse than the best of the individual classifiers, but it still performs better than
some of the individual classifiers. When it comes to the individual classifiers we

6 Results and Analysis 175

note that the SMO classifier performs best on all systems. The conclusion is that
the SG does not do worse than any of the individual classifiers but can sometimes
perform better.

Figure 7 shows the learning curves (further presented in relation to Experi-
ment C) for the five datasets using the three configurations BEST, WORST, and
SELECTED. The figures illustrate that the two ensembles BEST and SELECTED
have very similar performance across the five systems. Also, it is evident that the
WORST ensemble levels out at a lower prediction accuracy than the BEST and
SELECTED ensembles as the number of training examples grows and the rate of
increase has stabilized.

Experiment B shows no significant difference in the prediction accuracy be-
tween BEST and SELECTED. Thus, our results do not confirm that prediction
accuracy is improved by applying ensemble selections with a diverse set of in-
dividual classifiers. One possible explanation for this result is that the variation
among the individual classifiers in the BEST ensemble already is enough to obtain
a high prediction accuracy. There is clear evidence that the WORST ensemble
performs worse than BEST and SELECTED. As a consequence, simply using SG
does not guarantee good results – the ensemble selection plays an important role.

6.2 Experiment C: Learning Curves

In Experiment C, we study how consistent the learning curves for SG are across
different industrial projects. Figure 8 depicts the learning curves for the five sys-
tems. As presented in Section 5.5, the BEST and SELECTED ensembles yield
similar prediction accuracy, i.e., the learning curves in Figure 8 (a) and (c) are
hard to distinguish by the naked eye. Also, while there are performance differ-
ences across the systems, the learning curves for all five systems follow the same
general pattern: the learning curves appear to follow a roughly logarithmic form
proportional to the size of the training set, but with different minimum and maxi-
mum values.

An observation of practical value is that the learning curves tend to flatten out
within the range of 1,600 to 3,200 training examples for all five systems. We refer
to this breakpoint as where the graph has the maximum curvature, i.e., the point
on the graph where the tangent curve is the most sensitive to moving the point to
nearby points. For our study, it is sufficient to simply determine the breakpoint by
looking at Figure 8, comparable to applying the “elbow method” to find a suitable
number of clusters in unsupervised learning [447]. Our results suggest that at
least 2,000 training examples should be used when training a classifier for bug
assignment.

We answer RQ3 as follows: the learning curves for the five systems have dif-
ferent minimum and maximum values, but display similar shape and all flatten out
at roughly 2,000 training examples. There is a clear difference between projects.

176 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Figure 7: Comparison of BEST (black, circle), SELECTED (red, triangle) and
WORST (green, square) classifier ensemble.

6 Results and Analysis 177

Figure 8: Prediction accuracy for the different systems using the BEST (a)
WORST (b) and SELECTED (c) individual classifiers under Stacking

178 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

6.3 Experiment D: Sliding Time Window

Experiment D targets how the time locality of the training data affects the pre-
diction accuracy (RQ4). Better understanding of this aspect helps deciding the
required frequency of retraining the classification model. Figure 9 show the pre-
diction accuracy of using SG with the BEST ensemble, following the experimental
design described in Section 5.5. The X axes denote the difference in time, mea-
sured in days, between the start of the training set and the start of the test set. The
figures also depict an exponential best fit.

For all datasets, the prediction accuracy decreases as older training sets are
used. The effect is statistically significant for all datasets at a 5% level. We observe
the highest effects on Telecom 1 and Telecom 4, where the prediction accuracy is
halved after roughly 500 days. For Telecom 1 the prediction accuracy is 50% using
the most recent training data, and it drops to about 25% when the training data is
500 days old. The results for Telecom 4 are analogous, with the precision accuracy
dropping from about 40% to 15% in 500 days.

For three of the datasets the decrease in prediction accuracy is less clear. For
Automation, the prediction accuracy decreases from about 14% to 7% in 1,000
days, and Telecom 3, the smallest dataset, from 55% to 30% in 1,000 days. For
Telecom 2 the decrease in prediction accuracy is even smaller, and thus unlikely
to be of practical significance when deploying a solution in industry.

A partial answer to RQ4 is: more recent training data yields higher prediction
accuracy when using SG for bug assignment.

6.4 Experiment E: Cumulative Time Window

Experiment E addresses the same RQ as Experiment D, namely how the time lo-
cality of the training data affects the prediction accuracy (RQ4). However, instead
of evaluating the effect using a fixed size sliding window of training examples, we
use a cumulatively increasing training set. As such, Experiment E also evaluates
how many training examples SG requires to perform accurate classifications. Ex-
periment E shows the prediction accuracy that SG would have achieved at different
points in time if deployed in the five projects under study.

Figure 10 plot the results from the cumulated time locality evaluation using
SG with BEST ensembles. The curve represents the prediction accuracy (as fitted
by a local regression spline) with the standard error for the mean of the prediction
accuracy in the shaded region. The maximum prediction accuracy (as fitted by the
regression spline) is indicated with a vertical line. The vertical line represents the
cumulated ideal number of training points for the respective datasets. Adding more
bug reports further back in time worsens the prediction accuracy. The number of
samples (1589) and the prediction accuracy (16.41 %) for the maximum prediction
accuracy is indicated with a text label (x = 1589 Y = 16.41 for the Automation
system). The number of evaluations run with the calculated training set and test

6 Results and Analysis 179

Figure 9: Prediction accuracy for the datasets Automation (a) and Telecom 1-4
(b-e) using the BEST ensemble when the time locality of the training set is varied.
Delta time is the difference in time, measured in days, between the start of the
training set and the start of the test set. For Automation and Telecom 1,2, and
4 the training sets contain 1,400 examples, and the test set 350 examples. For
Telecom 3, the training set contains 619 examples and the test set 154 examples.

180 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

set sizes in each run is indicated in the upper right corner of the figure with the text
“Total no. Evals”.

For all datasets in Figures 10, except Telecom 3, the prediction accuracy in-
creases when more training data is cumulatively added until a point where they
reach a “hump” where the prediction accuracy reaches a maximum. This is fol-
lowed by declining prediction accuracy as more (older) training data is cumula-
tively added. For Automation, Telecom 1, and Telecom 4, we achieve the maxi-
mum prediction accuracy when using about 1,600 training examples. For Telecom
2 the maximum appears already at 1,332 training examples. For Telecom 3 on the
other hand, the curve is monotonically increasing, i.e., the prediction accuracy is
consistently increasing as we add more training data. This is likely a special case
for this dataset where we have not yet reached the point in the project where old
data starts to introduce noise rather than helping the prediction.

Also related to RQ4 is our observation: there is a balancing effect between
adding more training examples and using older training examples. As a conse-
quence, prediction accuracy does not necessary improve when training sets gets
larger.

7 Threats to Validity
We designed our experiment to minimize the threats to validity, but still a number
of decisions that might influence our results had to be made. We discuss the main
validity threats to our study with respect to construct validity, internal validity,
external validity, and conclusion validity [477].

7.1 Construct Validity
Construct validity involves whether our experiment measures the construct we
study. Our aim is to measure how well automated bug assignment performs. We
measure this using prediction accuracy, the basic measure for performance evalu-
ations of classification experiments. As an alternative measure of the classification
performance, we could have complemented the results with average F-measures
to also illustrate type I and type II errors. However, to keep the presentation and
interpretation of results simple, we decided to consistently restrict our results to
contain only prediction accuracy.

The Weka framework does not allow evaluations with classes encountered in
the test set that do not exist in the training set. For Experiments A-C (all based
on cross-validation) Weka automatically harmonizes the two sets by ensuring the
availability of all classes in both sets. However, for the time-sorted evaluations
performed in Experiment D and E, we do not use the cross-validation infrastruc-
ture provided by Weka. Instead, we have to perform the harmonization manually.
To simplify the experimental design and be conservative in our performance es-
timates in Experiment D and E, we always consider all teams present in the full

7 Threats to Validity 181

Figure 10: Prediction accuracy using cumulatively (further back in time) larger
training sets. The curve represents the prediction accuracy (fitted by a local re-
gression spline) with the standard error for the mean in the shaded region. The
maximum prediction accuracy (as fitted by the regression spline) is indicated with
a vertical line. The number of samples (1589) and the accuracy (16.41 %) for the
maximum prediction accuracy is indicated with a text label (x = 1589 Y = 16.41
for the Automation system). The number of evaluations done is indicated in the
upper right corner of the figure (Total no. Evals).

182 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

Time	

Triangle	
 team	

added,	
 Square	

removed	

Square	
 and	

Circle	
 team	

added	

Older	
 Bug	
 Reports	
 Newer	
 Bug	
 Reports	

Plus	
 team	

added	

Available	
 teams:	

Square	
 ,	
 Circle	
 ,	

Triangle	
 	
 Available	
 teams:	

Circle	
 ,	
 Triangle,	
 Plus	

	

We	
 know	
 Plus	
 team	

exists	
 but	
 have	
 not	
 seen	

any	
 Plus	
 team	
 bug	

reports	
 in	
 training	
 set	
 	

We	
 have	
 seen	

Square	
 team	

bug	
 reports	
 in	

training	
 set,	
 but	

we	
 know	
 the	

team	
 has	
 been	

removed	

Tr1	
 Tr2	
 Tr3	
 Tr4	
 Tr5	

Figure 11: Team dynamics and BTS structure changes will require dynamic re-
training of the prediction system. Teams are constantly added and removed during
development so a prediction system must be adapted to keep these aspects in mind.
These are all aspects external to pure ML techniques, but important for industry
deployment.

dataset as possible classification results, i.e., regardless of whether the teams are
present in the training and test sets of a specific run. This is a conservative de-
sign choice since it causes many more possible alternative classes available for
classification, making it a harder problem. In practice, the team structure in an
organization is dynamic. In the projects under study, teams are added, renamed,
merged, and removed over the years as illustrated in Figure 11. While the current
team structure would be known at any given time in a real project, we do not use
any such information in our experimental runs. Thus, there is a potential that the
prediction accuracy of a deployed tool using SG could be higher.

In the projects we study, the teams are not entirely disjunct. Individual de-
velopers might be members of several teams, teams might be sub-teams of other
teams, and certain teams are created for specific tasks during limited periods of
time. Thus, as some teams overlap, more than one team assignment could be
correct for a bug report. Furthermore, the correctness of a team assignment is
not a binary decision in real life. Teams might be hierarchically structured and
there are dependencies between teams. An incorrect bug assignment might thus

7 Threats to Validity 183

be anything from totally wrong (e.g., assigning a bug report describing embedded
memory management to a GUI team) to just as good as the team assignment stored
in the BTS. Again, our evaluation is conservative as we consider everything not
assigned to the same team as in the BTS as incorrect.

7.2 Internal Validity

Internal validity concern inferences regarding casual relationships. We aim to un-
derstand how SG performs compared to individual classifiers, and how its predic-
tion accuracy is affected by different training configurations. Our experimental
design addresses threats to internal validity by controlling the independent vari-
ables in turn. Still, there are a number of possibly confounding factors.

We conduct the same preprocessing for all classification runs. It is possible
that some of the classifiers studied perform better for our specific choice of pre-
processing actions than others. On the other hand, we conduct nothing but stan-
dard preprocessing (i.e., lower casing and standard stop word removal), likely to
be conducted in most settings.

We use default configurations of all individual classifiers studied. While most
classifiers are highly configurable, we do not perform any tuning. Instead, we
consistently use the default configurations provided by Weka. The default config-
urations for some classifiers might be favorable for team assignment and others
might underperform. Furthermore, we evaluated only one single level-1 classifier
in SG, also using the default configuration. However, Wolpert argues that a simple
level-1 classifier should be sufficient [478].

7.3 External Validity

External validity reflect the generalizability of our results. We study five large
datasets containing thousands of bug reports from proprietary development projects.
All datasets originate from development of different systems, including middle-
ware, client-server solutions, a compiler, and communication protocols. However,
while the datasets all are large, they originate from only two different companies.
Furthermore, while the two companies work in different domains, i.e., automation
and telecommunication, both are mainly concerned with development of embed-
ded systems. To generalize to other domains such as application development,
replications using other datasets are required.

The fraction of bug reports originating from customers is relatively low in all
five datasets under study. In development contexts where end users submit more
of the bug reports, different natural language descriptions and information content
might be used. This might have an impact on the performance of SG for team
assignment. However, as opposed to most previous work, we focus on proprietary
development projects using closed BTSs.

184 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

We filtered the five datasets to contain only bug reports actually describing de-
fects in the production software. It is possible that a BTS is used for other types
of issues, as is the case in Company Automation, e.g., document changes, change
requests, and changes to internal test code. We have not studied how well SG gen-
eralizes for these more generic types of issues. On the other hand, we assume that
the most challenging team assignment involves defects in the production software
where the location in source code and the related documentation are unknown.

7.4 Conclusion Validity

Conclusion validity is the degree to which conclusions we reach about relation-
ships in our data are reasonable. For Experiment A, B, and C we use 10-fold cross
validation as conventional in machine learning evaluations. However, as argued
by Rao et al. [388], evaluations should also be performed using a sequestered test
set. We accomplish this by performing Experiment D and E on separate training
and test sets. Moreover, we evaluate the performance in several runs as described
in Section 5.5.

The results from 10-fold cross-validation (using stratified sampling) and the
evaluations conducted using defect reports submitted by submission date are dif-
ferent. Cross validation yields higher prediction accuracy, in line with warnings
from previous research [280, 388]. To confirm the better results when using cross
validation, we validated the results using RapidMiner [222] for the two datasets
Automation and Telecom 4. We trained a Naïve Bayes classifier for Automation
and an SVM classifier for Telecom 4 and observed similar differences between
evaluations using 10-fold cross validation and a sorted dataset.

8 Discussion

This section contains a discussion of the results from our experiments in the con-
text of our overall goal: to support bug assignment in large proprietary develop-
ment projects using state-of-the-art ML. Section 8.1 synthesizes the results related
to our RQs and discusses the outcome in relation to previous work. Finally, Sec-
tion 8.2 reports important experiences from running our experiments and advice
on industrial adaptation.

8.1 Stacked Generalization in the Light of Previous Work

We conduct a large evaluation of using SG for bug assignment, extending our pre-
vious work [255]. Our results show that SG (i.e., combining several classifiers in
an ensemble learner) can yield a higher prediction accuracy than using individual
general purpose classifiers (RQ1, ExpA). The results are in line with findings in
general ML research [287]. However, we show that simply relying on SG is not

8 Discussion 185

enough to ensure good results; some care must be taken when doing the ensem-
ble selection (RQ2, ExpB). On the other hand, our results confirm the thesis by
Wolpert, i.e., that SG should on average perform better than the individual classi-
fiers included in the ensemble [478].

We present the first study on bug assignment containing 10,000s of bug reports
collected from different proprietary development projects. Previous work has in-
stead focused on bug reports from OSS development projects, e.g., Eclipse and
Firefox, as presented in Section 3. A fundamental difference is that while bug
assignment in OSS projects typically deal with individual developers, we instead
assign bug reports to development teams. As this results in a more coarse assign-
ment granularity, i.e., our output is a set of developers, one could argue that we
target a less challenging problem.

We achieve prediction accuracy between 50% and 85% for our five systems
using cross-validations, and between 15% and 65% for time-sorted evaluations.
Thus, our work on bug team assignment does not display higher prediction accu-
racy than previous work on automated bug assignment to individuals, but is similar
to what has been summarized in Table 2. Consequently, we show that automated
proprietary bug assignment, on a team level, can correctly classify the same frac-
tion of bug reports as what has been reported for bug assignment to individual
developers in OSS projects. Bug assignment to teams does not appear to be easier
than individual assignment, at least not when considering only the top candidate
team presented by the ML system.

Cross-validation consistently yielded higher prediction accuracy than conduct-
ing more realistic evaluations on bug reports sorted by the submission date. The
dangers of cross-validation have been highlighted in ML evaluation before [388],
and it is a good practice to complement cross-validation with a sequestered test
set. Our experiments show that evaluations on bug assignment can not rely on
cross-validation alone. Several factors can cause the lower prediction accuracy for
the time sorted evaluations. First, cross-validation assumes that the bug reports
are independent with no distributional differences between the training and test
sets [26]. Bug reports have a natural temporal ordering, and our results suggest
that the dependence among individual bug reports can not be neglected. Second,
we used stratified sampling in the cross-validation, but not in the time sorted eval-
uations. Stratification means that the team distributions in the training sets and
test sets are the same, which could improve the results in cross-validation. Third,
as we perform manual harmonization of the classes in the time sorted evaluation
(see Section 7), all teams are always possible classifications. In cross-validation,
Weka performs the harmonization just for the teams involved in the specific run,
resulting in fewer available teams and possibly a higher prediction accuracy.

186 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

8.2 Lessons Learned and Industrial Adoption

Two findings from our study will have practical impact on the deployment of our
approach in industrial practice. First, we studied how large the training set needs to
be for SG to reach its potential. The learning curves from 10-fold cross-validation
show that larger training set are consistently better, but the improvement rate de-
creases after about 2,000 training examples. The point with the maximum cur-
vature, similar to an elbow point [447] as used in cluster analysis, appears in the
same region for all five systems. As a result, we suggest, as a rule of thumb, that
at least 2,000 training examples should be used when using SG for automated bug
assignment (RQ3, ExpC).

The second important finding of practical significance relates to how often an
ML system for bug assignment needs to be retrained. For all but one dataset, our
results show a clear decay of prediction accuracy as we use older training data. For
two datasets the decay appears exponential, and for two datasets the decay is linear.
Our conclusion is that the time locality of the training data is important to get a
high prediction accuracy, i.e., SG for bug assignment is likely to achieve a higher
prediction accuracy if trained on recent bug reports (RQ4, ExpD). Bhattacharya et
al. [55] recently made the same observation for automated bug assignment using
large datasets from the development of Eclipse and Mozilla projects.

Finding the right time to retrain SG appears to be a challenge, as we want to
find the best balance between using many training examples and restricting the
training set to consist of recent data. In Experiment E, our last experiment, we try
several different cumulatively increasing training sets at multiple points in time.
This experimental setup mimics realistic use of SG for bug assignment, trained on
different amounts of previous bug reports. We show that for four of our datasets,
the positive effect of using larger training sets is nullified by the negative effect of
adding old training examples. Only for one dataset it appears meaningful to keep
as much old data as possible.

When deployed in industrial practice, we recommend that the prediction ac-
curacy of automated bug assignment should be continuously monitored to identify
when it starts to deteriorate. For four of our datasets, cumulatively increasing the
amount of training data is beneficial at first (see Fig. 10), but then SG reaches a
maximum prediction accuracy. For all but one dataset, the prediction accuracy
starts to decay even before reaching the 2,000 training examples recommended
based on the results from Experiment C. Furthermore, we stress that attention
should be paid to alterations of the prediction accuracy when significant changes to
either the development process or the actual software product are made. Changes
to the team structure and the BTS clearly indicate that SG should be retrained, but
also process changes, new tools in the organization, and changes to the product can
have an impact on the attributes used for automated bug assignment. In practice,
the monitoring of the prediction accuracy could be accomplished by measuring the
amount of bug tossing taking place after the automated bug assignment has taken

8 Discussion 187

Excessive	

Compe--ve	

Useful	

Useless	

U-lity	
 breakpoint	

Quality	
 Level	

Benefit	

Differen-a-on	

breakpoint	

Satura-on	

breakpoint	

Figure 12: Perceived benefit vs. prediction accuracy. The figure shows two
breakpoints and the current prediction accuracy of human analysts. Adapted from
Regnell et al. [390].

place.
While we can measure the prediction accuracy of SG for bug assignment, it

is not clear what this means for practical purposes. How accurate do the clas-
sifications have to be before developers start recognizing its value? Regnell et
al. [390] describe quality, in our case the prediction accuracy of automated bug
assignment, as continuous and non-linear. Figure 12 shows what this means for
bug assignment. The perceived usefulness of SG is on a sliding scale with spe-
cific breakpoints. The utility breakpoint represents when developers start consid-
ering automated bug assignment useful, any prediction accuracy below this level is
useless. The saturation breakpoint indicates where increased prediction accuracy
has no practical significance to developers. Figure 12 also displays the prediction
accuracy of human analysts between the breakpoints. We argue that automated
bug assignment does not have to reach the human accuracy to be perceived use-
ful, as the automated process is much faster than the manual process. Our early
evaluations indicate that the prediction accuracy of SG in Company Telecom is
in line with the manual process [255]. Even though this study also used 10-fold
cross-validation, which we have seen can give overly optimistic estimates in this
context; we believe that our prototype has passed the utility breakpoint before we
have started any context specific tuning of SG.

When we implement automated bug assignment in an industrial tool, we plan

188 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

to present a handful of candidate teams to the user for each bug report under inves-
tigation. While we could automatically assign the bug to the first candidate, our
first step is to provide decision support to the CCB. Considering the automation
levels defined by Parasuraman et al. [367], this reflects an increase in automation
from level 0 to level 3: “narrowing the selection down to a few”. By presenting a
limited selection of teams, possibly together with a measure of the confidence level
from SG, an experienced developer can quickly choose the best target for the bug
assignment. Note that the experimental design we used in the evaluations in this
study are stricter as we only considered one single team assignment per bug report.
Another recommendation is to plan from the start to run the new ML-based system
in parallel with the old way of working, to evaluate if the prediction accuracy is
good enough for a complete roll over to a process supported by ML.

Furthermore, we must develop the tool to present the candidate teams to the
user in a suitable manner. Murphy-Hill and Murphy presents several factors that
affects how users perceive recommendations provided by software engineering
tools [346]. The two most important factors for our tool are transparency and
the related aspect assessability. A developer must be able to see why our tool
suggests assigning a bug report to a specific team, i.e., the rationale leading to the
SG classification must be transparent. Also, our tool should support developers
in assessing the correctness of a suggested assignment. We aim to achieve this
by enabling interaction with the output, e.g., browsing previous bug assignments,
opening detailed bug information, and comparing bug reports.

9 Conclusions and Future Work

We conduct the first evaluation of automated bug assignment using large amounts
of bug reports, collected from proprietary software development projects. Using
an ensemble learner, Stacked Generalization (SG), we train an ML system on his-
torical bug reports from five different projects in two different, large companies.
We show that SG consistently outperforms individual classifiers with regard to pre-
diction accuracy even though the improvements are sometimes marginal (RQ1).
Moreover, our results suggest that it is worthwhile to strive for a diverse set of
individual classifiers in the ensemble (RQ2), consistent with recommendations in
the general ML research field. Our results show that SG, with feasible ensemble
selection, can reach prediction accuracies of 50% to 90% for the different sys-
tems, in line with the prediction accuracy of the current manual process. We also
briefly study the relative value of textual vs. non-textual features, and conclude
that the most promising results are obtained when combining both in SG. In future
work we plan to improve the textual features with more advanced text modeling
techniques such as Topic Modeling (LDA).

We study the SG learning curves for the five systems (RQ3), using 10-fold
cross-validation. The learning curves for all five datasets studied display similar

9 Conclusions and Future Work 189

behaviour, thus we present an empirically based rule-of-thumb: when training SG
for automated bug assignment, aim for at least 2,000 bug reports in the training
set. Using time-sorted bug reports in the training and test sets we show that the
prediction accuracy decays as older training data is used (RQ4). Consequently,
we show that the benefit of adding more bug reports in the training set is nullified
by the disadvantage of training the system on less recent data. Our conclusion is
that any ML system used for automated bug assignment should be continuously
monitored to detect decreases in prediction accuracy.

Our results confirm previous claims that relying only on K-fold cross-validation
is not enough to evaluate automated bug assignment. We achieve higher prediction
accuracy when performing 10-fold cross-validation with stratification than when
analyzing bug reports sorted by the submission date. The differences we observe
are likely to be of practical significance, thus it is important to report evaluations
also using sorted data, i.e., mimicking a realistic inflow of bug reports. Several
authors have proposed modifications to cross-validation to allow evaluations on
dependent data, e.g., h-block cross-validation [90]. Future work could try this for
bug assignment evaluation, which means reducing the training set by removing h
observations preceding and following the observations in the test set.

When deploying automated bug assignment in industry, we plan to present
more than one candidate development team to the user of the ML system. By
presenting a ranked list of teams, along with rationales of our suggestions, an ex-
perienced member of the CCB should be able to use the tool as decision support to
select the most appropriate team assignment. Our current evaluation does not take
this into account, as we only measure the correctness of the very first candidate.
Future work could extend this evaluation by evaluating lists of candidates, opening
up for measures from the information retrieval field, e.g., mean average precision
and normalized discounted cumulative gain. Finally, to properly evaluate how ML
can support bug assignment in industry, the research community needs to conduct
industrial case studies in organizations using the approach. In particular, it is not
clear how high the prediction accuracy needs to be before organizations perceive
the system to be “good enough”.

Future work could be directed toward improving our approach to automated
bug assignment. A number of studies in the past show that tools specialized for bug
assignment in a particular project can outperform general purpose classifiers [444,
482, 484]. It would be possible for us to explore if any enhancements proposed
in previous work could improve the accuracy of SG, e.g., topic models, social
network analysis, or mining the commit history of source code repositories. Also,
we could further investigate if any particular characteristics of team assignment
in proprietary projects could be used to improve automated bug assignment, i.e.,
characteristics that do not apply to OSS projects.

Another direction for future enhancements of our approach could explore how
to adapt bug assignment based on the developers’ current work load in the orga-
nization. The current solution simply aims to assign a bug report to development

190 Automated Bug Assignment: Ensemble-based Machine Learning in . . .

teams that worked on similar bug reports in the past. Another option would to op-
timize the resolution times of bug reports by assigning bugs to the team most likely
to close them fast. For many bug reports, more than one team is able to resolve
the issue involved, especially in organizations with a dedicated strategy for shared
code ownership. Future work could explore the feature engineering required for
SG to cover this aspect. Yet another possible path for future work, made possi-
ble by the large amount of industrial data we have collected, would be to conduct
comparative studies of bug reports from OSS and proprietary projects, similar to
what Robinson and Francis reported for source code [404].

Acknowledgements
This work was supported in part by the Industrial Excellence Center EASE – Em-
bedded Applications Software Engineering8.

8http://ease.cs.lth.se

CHAPTER IV

SUPPORTING CHANGE
IMPACT ANALYSIS USING A

RECOMMENDATION SYSTEM:
AN INDUSTRIAL CASE

STUDY IN A
SAFETY-CRITICAL CONTEXT

Abstract

Change Impact Analysis (CIA) during software evolution of safety-critical sys-
tems is a fundamental but labor-intensive task. Several authors have proposed tool
support for CIA, but very few have been evaluated in industry. We present Imp-
Rec, a Recommendation System for Software Engineering (RSSE), tailored for
CIA at an automation company. Building on research from assisted tracing using
information retrieval solutions, and mining software repositories, ImpRec recom-
mends development artifacts potentially impacted when resolving incoming issue
reports. In contrast to previous work on automated CIA, our approach explicitly
targets development artifacts that are not source code. We evaluate ImpRec in a
two-phase industrial case study. First, we measure the correctness of ImpRec’s
recommendations by simulating the historical inflow of 12 years worth of issue
reports in the company. Second, we assess the utility of working with ImpRec
by deploying the RSSE in two development teams. Our results suggest that Imp-
Rec presents about 40% of the true impact among the top-10 recommendations.
Furthermore, user log analysis indicates that ImpRec can support CIA in industry,
and developers acknowledge the value of ImpRec in interviews. In conclusion,
our findings show the potential of reusing traceability associated with developers’

192 Supporting Change Impact Analysis Using a Recommendation System: . . .

past activities in an RSSE. However, more research is needed on how to retrain the
tool once deployed, and how to adapt processes when new tools are introduced in
safety-critical contexts.

Markus Borg, Krzysztof Wnuk, Björn Regnell, and Per Runeson To be submitted

1 Introduction

Large-scale software-intensive systems evolve for years. Several studies report
that software evolution might last for over a decade, e.g., at Siemens [462], Erics-
son [170], and ABB [5]. Long-term evolution results in complex legacy systems in
which changes are known to be labor-intensive [68] and error-prone [103]. How-
ever, understanding how changes propagate in large systems is fundamental in
software evolution. In an analysis of 14 recent catastrophic accidents caused by
software failures, Wong et al. report inadequate change management as one of the
main factors [480].

In safety-critical software engineering, formal Change Impact Analysis (CIA)
is mandated in process standards such as the general standard IEC 61508 [239],
IEC 61511 in the process industry sector [238], ISO 26262 in the automotive
domain [242], DO-178C in avionics [382], and EN 50128 for the railway sec-
tor [174]. The standards state that a CIA must be conducted prior to any soft-
ware change, but do not contain details on how the activity shall be practically
conducted. Thus, the implementation of the CIA activity is specific to the devel-
opment organization, and an important component of the safety case [268], i.e.,
the structured argument evaluated by external assessors to justify safety certifica-
tion [350].

Several studies report that CIA is a tedious part of software maintenance and
evolution, e.g., in process automation [71], in nuclear power [109], in the automo-
tive industry [208], and in the aerospace domain [271]. Still, the level of CIA tool
support in industry is low, as we show in a recent cross-domain survey [136]. The
low level of CIA automation has also been reported in previous work by Lettner et
al. [296]. Moreover, Li et al. report that most proposed CIA tools are restricted to
source code impact, but also other artifacts are important, e.g., UML models [87],
quality requirements [117], and regression test plans [363]. This paper focuses
on filling this gap by explicitly focusing on CIA of software artifacts that are not
source code, i.e., non-code artifacts.

Several researchers claim that semi-automated tracing applying Information
Retrieval (IR) techniques can support CIA. A handful of controlled experiments
with student subjects show favorable results [72, 128, 148]. Moreover, initial ev-
idence from a small industrial case study in China suggests that IR-based tracing
tools has the potential to support CIA [304]. However, still no tool implementing
IR-based tracing has been evaluated in a large software development context [76].

1 Introduction 193

Although scalability was identified as one of the eight “grand challenges of
traceability” by CoEST1, most previous evaluations on IR-based tracing scaled
down the challenge to small datasets containing fewer than 500 artifacts [76]. In-
stead, scalability is often discussed as a threat to validity, and highlighted as im-
portant concerns for future work (see, e.g., De Lucia et al. [144] and Huffman
Hayes et al. [232]). The work presented in this paper focuses on designing a
scalable solution that matches industry needs. Our solution is based on analyzing
large amounts of artifact relations, i.e., we leverage on the volume of information
available, and evaluate the solution in a real world context.

We build on previous work on IR-based tracing tools, and enhance it with a se-
mantic network mined from historical CIA data recorded in an issue tracker. Our
combined approach is implemented in ImpRec [75], a Recommendation System
for Software Engineering (RSSE) [402]. ImpRec is tailored for one of our indus-
try partners active in process automation, although comprising general solution
elements. The RSSE assists developers performing CIA as part of issue manage-
ment by providing recommendations of potentially impacted artifacts. ImpRec
identifies textually similar issue reports, and recommends candidate impact by an-
alyzing a semantic network of development artifacts.

We evaluate ImpRec in a large-scale industrial case study using user-oriented
evaluation. Robillard and Walker highlight the absence of user oriented evalua-
tions in a recently published book on RSSEs. They claim that that many tools
have been fully implemented, but “much less energy has been devoted to research
on the human aspects” [402]. Our study responds to their call for in-depth evalu-
ations, by reporting from a longitudinal in situ study of ImpRec deployed in two
proprietary development teams. Also, we perform a static validation [201] of Imp-
Rec, resulting in quantitative results reflecting common evaluation practice in both
RSSE and traceability research.

The main parts of the paper are:

• A comprehensive background section on CIA, IR in software engineering,
and RSSEs for change management (Section 2).

• A detailed context description that supports understanding and analytical
generalization to other cases (Section 3). We also introduce several chal-
lenges experienced in state-of-practice CIA, establishing relevant directions
for future inquiries.

• A presentation of ImpRec, a prototype RSSE for CIA in a safety-critical
context (Section 4.4). ImpRec is unique in specifically targeting CIA for
non-code artifacts.

• An in-depth case study, comprising both a quantitative static validation and
a qualitative dynamic validation (Section 5). Thus, our study is designed to

1The Center of Excellence for Software Traceability, an organization of academics and practitioners
with a mission to advance traceability research, education, and practice (www.coest.org).

194 Supporting Change Impact Analysis Using a Recommendation System: . . .

assess both the correctness of the ImpRec output, and the utility of actually
working with ImpRec.

• We show that ImpRec recommends about 40% of the true impact among the
top-10 recommendations (Section 6.1). Also, developers report that Imp-
Rec’s current level of correctness can be helpful when conducting CIA (Sec-
tion 6.2).

• A thorough discussion on threats to validity (Section 7), and implications
for research and practice (Section 8).

2 Background and Related Work

This section provides a background on CIA in safety-critical contexts. Then we
present related work on IR in software engineering, and the closest work on RSSEs
for change management. We conclude the section by reporting our previous work
on the topic.

2.1 Change Impact Analysis

A fundamental facilitator in the success of software is that software artifacts can
be modified faster than most of its counterparts in other engineering disciplines.
Unfortunately, understanding the impact of changes to complex software systems
is tedious, typically avoided unless necessary [68], and instead mended by exten-
sive regression testing [171]. In safety-critical software development however, to
avoid unpredictable consequences, CIA is a mandated practice [174, 239, 242].

Bohner defines CIA as “identifying the potential consequences of a change, or
estimating what needs to be modified to accomplish a change” [68]. Furthermore
he describes CIA as a process that is iterative and discovery in nature, i.e., identify-
ing change impact is a cognitive task that incrementally adds items to a candidate
impact set. Furthermore, he discusses three main obstacles for CIA support in
practice. First, information size volume - artifacts from many different sources
must be related and analyzed. Second, change semantics - methods for describing
change relationships are lacking. Third, analysis methods - methods for analyzing
software dependencies and traceability have not been fully explored.

Manual work dominates CIA in industry. A recent survey with software engi-
neers from different safety-critical fields confirmed that the level of automation in
CIA is low and that CIA support is mainly available in the source code level [136].
Moreover, insufficient tool support was mentioned as the most important challenge
in the state-of-practice. The survey also highlighted that practitioners typically
work with only basic tool support, e.g., MS Word and MS Excel, and no dedicated
CIA tools are widely used. The importance of research on improved CIA tools has
also been highlighted by other researches, e.g., stated by Bohner: “ever-increasing

2 Background and Related Work 195

need to wade through volumes of software system information [...] automated as-
sistance is important to cut analysis time and improve the accuracy of software
changes” [68], and Lehnert: “more attention should be paid on linking require-
ments, architectures, and code to enable comprehensive CIA” [292].

Two recent literature reviews confirm that most research on CIA is limited to
impact on source code. Lehnert created a taxonomy for research on CIA [293],
partly based on Arnold and Bohner’s early work on a framework for CIA compar-
ison [27] and populated this taxonomy with 150 primary studies from a literature
review [292]. The results show that only 13% of the studies address multiple ar-
tifact types, and 65% targets only source code impact. Li et al. also concluded,
in a systematic literature review, that the source code focus dominates among CIA
researchers [301]. Based on the 30 publications in the study, they identified that
more research is needed to go beyond mere research prototype tools evaluated
in lab environments, to evaluations of how deployed tools perform in the soft-
ware maintenance context. Moreover, Li et al. explicitly mentioned studies on
tool support that provides ranked lists of potentially impacted entities. Gethers
et al. present another good overview of tool support for CIA on the source code
level [192].

Some previous work on CIA has also targeted the process automation domain.
Acharya and Robinson developed Imp, a tool that uses static program slicing to
assist developers with accurate impact analyses [5]. Imp was evaluated on a large
proprietary evolving software system, and this is the first reported large-scale eval-
uation of CIA. While the evaluation addresses a software system consisting of
more than a million lines of code, thus matching the scale of the system we stud-
ied in this paper, the proposed solution is restricted to impact on source code.

Another study on CIA for software-intensive systems in the process automa-
tion domain is presented by Ghosh et al. [196]. The authors studied 33 historical
software development projects to explore impact analysis triggered by requirement
changes. Their focus is however not on what specific artifacts are impacted, but
how much effort the changes require in total. Using a linear regression model, they
predict the cost of changing requirements, and practitioners confirm the value of
their approach.

Not all research effort on CIA is devoted to tool support. Stålhane et al. sug-
gest supporting CIA by process improvements, and propose agile change impact
analysis as part of SafeScrum [440]. Their work is based on the lack of practical
CIA guidelines, and they present an approach to move from typical heavy upfront
analysis to more incremental work, i.e., agile. The same authors also present a
new structure of CIA reports tailored for software engineering in railway and the
process industry [348]. Jonsson et al. also studied how to apply agile software
development in the railway domain and the authors conclude that impact analysis
can be problematic in highly iterative development contexts [253].

Some researchers studied organizational aspects of CIA. Kilpinen identified
that experiential CIA is common in industry, i.e., scoping changes through inspec-

196 Supporting Change Impact Analysis Using a Recommendation System: . . .

tion and engineering judgement [270]. She introduced “the adapted rework cycle”
to improve the interplay between CIA and the design process, and demonstrates
its feasibility using simulation in an aerospace company. In a case study at Eric-
sson in Sweden [409], Rovegård et al. mapped the CIA work conducted by 18
interviewees to decision making at three different organization levels: strategic
(large scope, long term), tactical (mid-term, e.g., resource allocation) and opera-
tive (short term, technical details). Furthermore, they explore current challenges
involved in state-of-practice CIA, and propose five explicit improvements to ad-
dress them, including two that we employ in this paper: a) introducing a knowl-
edge base of old CIA results, and b) introducing better tool support.

2.2 Information Retrieval in Software Engineering

Large software engineering projects constitute complex information landscapes
of thousands of heterogenous artifacts. These artifacts constantly change, thus
providing developers quick and concise access to information is pivotal. Various
IR systems support developers, including both general purpose search tools and
more specialized solutions. This section presents research on the two areas of IR
in software engineering relevant to our work: IR-based tracing [76] and duplicate
detection of issue reports. [410].

More than a hundred publications on using IR for traceability management
have been published since year 2000. A recent book on traceability makes an at-
tempt to unify the definitions [203]. According to this work, traceability creation
is the activity of associating artifacts with trace links. Trace capture involves cre-
ation of trace links concurrently with the artifacts that they associate, and trace
recovery implies establishing trace links after the artifacts have been created. Us-
ing IR in the traceability context means to link artifacts with highly similar textual
content. We use the term IR-based tracing tools to refer to similarity-based tools
for either trace recovery or trace capture.

Antoniol et al. were the first to express identification of trace links as an IR
problem [18]. They used the Binary Independence Model (BIM) and the Vector
Space Model (VSM) to generate candidate trace links between design and source
code. Marcus and Maletic introduced Latent Semantic Indexing (LSI) to recover
trace links between source code and natural language documentation [327]. Huff-
man Hayes et al. enhanced VSM-based trace recovery with relevance feedback.
Their approach is clearly human-oriented and aims at at supporting V&V activities
at NASA using their tool called RETRO [231]. De Lucia et al.’s research in this
topic focuses on empirically evaluating LSI-based trace recovery in their document
management system called ADAMS [144]. They advanced the front of empirical
research on IR-based tracing by conducting a series of controlled experiments and
case studies with student subjects. Cleland-Huang and colleagues have published
several studies using probabilistic IR models for trace recovery, implemented in
their tool Poirot [500]. Much of their work has focused on improving the accu-

2 Background and Related Work 197

racy of their tool by various enhancements, e.g., project glossaries and term-based
methods.

We have recently published a systematic mapping study of IR-based trace
recovery [76]. The majority of the proposed approaches reported in the iden-
tified 79 papers were evaluated on small sets of software artifacts, often origi-
nating from student projects [79]. Furthermore, we found that most evaluations
of IR-based trace recovery do not involve humans, i.e., constitute in silico stud-
ies, and only one primary study was conducted as a case study in industry [304].
We have also reported that there appears to be little practical difference between
different IR models [74], which corroborates previous observations by other re-
searchers [72, 128, 360].

IR systems in software engineering were also applied for issue report duplicate
detection. The results showed that, in large projects, the fraction of duplicates
can be between 10-30% and might cause considerable extra effort during triage
[22, 243, 410]. IR-based duplicate identification could substantially reduce this
effort. We have previously summarized work on issue duplicate detection based
on textual similarity, and concluded that duplicate detection is promising when the
inflow of issue reports is large [75].

The RSSE we present in this paper builds on previous research on IR in soft-
ware engineering. Similar to IR-based tracing tools, the goal of our tool is to
identify trace links in databases containing a plethora of artifacts. Consequently,
our work is also related to duplicate issue reports detection. We develop a tool
intended to support developers with the inflow of issue reports. Most IR-based
tracing tools on the other hand, address trace recovery rather than trace capture.

2.3 RSSEs for Change Management and CIA

RSSEs differ from other software engineering tools in three ways [402]. First,
RSSEs primarily provide information (in contrast to tools such as static code an-
alyzers and test automation frameworks). Second, RSSEs estimate that a piece
of information is valuable, as opposed to “fact generators” (e.g., cross-reference
tools and call browsers). Third, the close relation to a specific task and context
distinguishes RSSEs from general search tools.

Several RSSEs support developers in navigating the complex information land-
scapes of evolving software systems. Čubranić et al. developed Hipikat, an RSSE
to help newcomers resolve issue reports in large software projects [127]. Hipikat
relies on Mining Software Repositories (MSR) [258] techniques to establish a
project memory of previous experiences, including issue reports, commits, and
emails. The project memory is stored as a semantic network in which relations are
either explicit (e.g., email replies, commits implementing issue resolutions) or im-
plicit (deduced based on textual similarities). Hipikat uses the semantic network to
recommend potentially related information items to developers, e.g., source code,
issue reports, and documentation.

198 Supporting Change Impact Analysis Using a Recommendation System: . . .

Čubranić et al. implemented Hipikat in the context of the Eclipse OSS devel-
opment, and present both an in silico evaluation (i.e., a computer experiment) as
well as an in vitro user study (i.e., in a controlled lab environment). Both evalu-
ations are mainly qualitative, and assess how helpful Hipikat is when resolving a
new issue report. The IR evaluation reports an average precision and recall of 0.11
and 0.65, respectively, for a small set of 20 closed issue reports, comparing the
source code files recommended by Hipikat and the actually modified source code
files (the gold standard). The authors also qualitatively analyzed the Hipikat out-
put. Čubranić et al. also involved four experienced Eclipse developers and eight
experienced developers new to the Eclipse project to resolve (the same) two issue
reports in a controlled environment. The results showed that Hipikat helps new-
comers perform comparably to more knowledgeable developers, i.e., to implement
high quality corrective fixes under time pressure.

Another RSSE is eRose (originally Rose) developed by Zimmermann et al.
[497]. Using association rule mining in version control systems, eRose detects
source code files that tend to change together, and delivers recommendations ac-
cordingly to support change management. Using eRose in a project brings two
advantages: 1) improved navigation through the source code, and 2) prevention
of omission errors at commit time. Zimmermann et al. used simulation [466] to
evaluate three usage scenarios supported by eRose, including one scenario that re-
sembles our ImpRec approach: recommending source code files that are likely to
change given a source code file known to be modified. Using sequestered training
and test sets from eight OSS projects, with the test sets in total comprising more
than 8,000 commits, the top-10 recommendations from eRose contained 33% of
the true changes. In 34% of the cases eRose does not provide any recommenda-
tions. On the other hand, when eRose indeed provides recommendations, a correct
source code file is presented among the top-3 in 70% of the cases.

Ying et al. used association rule mining in version control systems to predict
source code changes involved in software maintenance [486]. In line with the work
by Zimmermann et al., the authors evaluated their approach in silico using simu-
lation on two large OSS projects, Eclipse and Mozilla, and they also investigated
recommendations for additional source code impact when knowing for certain that
one file was modified. The training and the test sets were sequestered in time and
contained more than 500,000 revisions of more than 50,000 source code files. For
Mozilla, precision is roughly 0.5 at recall 0.25, and for Eclipse, precision is 0.3 at
recall 0.15. Ying et al. argues that while the precision and recall obtained were not
high, the recommendations can still reveal valuable dependencies. They also in-
troduced an “interestingness value” to assess how meaningful a recommendation
is, but it is only applicable for source code.

Some researchers have explicitly mentioned CIA support as a promising use
case for their RSSEs. Canfora and Cerulo developed Jimpa [92], an RSSE that
uses MSR techniques to utilize past impact when conducting new CIAs. Using
textual similarity calculations between issue reports and commit messages, Jimpa

2 Background and Related Work 199

recommends files that are likely to be impacted to resolve an issue. The authors
evaluated Jimpa in silico using leave-one-out cross-validation on three medium-
sized OSS projects containing in total 1,377 closed issue reports. Top-10 recom-
mendations for the three OSS projects result in the following P-R pairs: 0.20-0.40,
0.05-0.20, and 0.15-0.90, and the authors consider the outcome promising.

Gethers et al. developed ImpactMiner, a tool that combines textual simi-
larity analysis, dynamic execution tracing, and MSR techniques [192]. Impact-
Miner mines evolutionary co-changes from the version control system, and uses
the search engine library Apache Lucene to index the source code and to enable
feature location. Furthermore, ImpactMiner can compare stack traces and present
recommendations based on the co-changes. Gethers et al. present an in silico
evaluation on four medium-sized OSS projects using a selected set of in total 181
closed issue reports. For the four OSS projects, the top-10 recommendations cor-
respond roughly to precision 0.10-0.15 and recall 0.20-0.35.

2.4 Contribution in Relation to Previous Work

This section presents how we combine our previous research results and positions
our contribution to related work.

Evolution of ImpRec Based on Previous Work

ImpRec is the result of an extensive research effort over three years that incorporate
relevant previous results. In previous work, we have developed ReqSimile, a tool
for consolidation of natural language requirements from multiple sources [353].
Positive results in identifying similar requirements with the help of ReqSimile laid
the foundation for the identification of related issue reports in ImpRec. Moverover,
previous positive results in using IR techniques at Sony Mobile Communications
[410] also encouraged us for further research efforts. Next, we evaluated using the
IR library Apache Lucene for duplicate detection in the Android issue tracker [78],
obtaining promising results. Finally, we have conducted a systematic mapping
of IR-based trace recovery [76], thoroughly investigating IR techniques applied
and the quality of the empirical evaluations. We also conducted an initial in vitro
experiment on IR-based trace recovery for CIA [72], whose results encouraged us
to pursue further research. Finally, the use of networked structures was piloted in
our previous work on the Android issue tracker and in a proprietary system [73],
and we have proposed to support CIA by reusing traceability captured in an issue
tracker [71].

ImpRec packages our previous research efforts in IR as an RSSE for CIA.
While the technical implementation details were reported in a recently published
book chapter [75], this paper brings significant empirical evidence from a large-
scale industrial case study. Section 4 presents an overview of the approach imple-
mented in ImpRec.

200 Supporting Change Impact Analysis Using a Recommendation System: . . .

ImpRec in Relation to Previous Research

The development of ImpRec was influenced and inspired by several other studies.
Among them, Čubranić et al.’s studies on Hipikat [126, 127] were central in mak-
ing key decision about the ImpRec development and architecture. However, while
Hipikat is intended to support project newcomers navigate OSS projects, ImpRec
is instead tailored to support CIA in a specific industrial context. ImpRec imple-
ments several approaches presented in Hipikat, including: 1) a semantic network
of artifacts and relations, 2) mining software repositories as the method to capture
important relations from the project history, and 3) creation of links between issue
reports based on textual similarity. For a thorough comparison of the internals of
Hipikat and ImpRec, we refer to our previous book chapter [75].

Several studies proposed history mining to identify artifacts that tend to change
together [92,192,486,497]. Especially the studies by Canfora and Cerulo [92] and
Gether et al. [192] use techniques similar to ours, as they combine mining with
IR techniques. However, while these four studies address CIA, they solely focus
on source code [292]. Our work aims to break new grounds by targeting CIA of
non-code artifacts.

While ImpRec combines existing techniques in novel ways, the main contri-
bution of this study comes from the empirical evaluation. Several RSSEs have
been fully implemented, but very few have been evaluated in situ, i.e., with real
developers using the RSSE as part of their normal work in a project [402]. While
simulating the operation of an RSSE can provide the correctness of the recommen-
dations, it does not reveal anything about the users’ reactions. Two previous RSSE
evaluations provide strength of evidence [166], in terms of level of realism, match-
ing our study: Čubranić et al.’s study on Hipikat [127] and Kersten and Murphy’s
evaluation of MyLyn [269]. However, our study is unique in its combination of a
thorough in silico evaluation and an in situ study in industry.

Compared to the Hipikat evaluation [127], our study on ImpRec is more thor-
ough in three ways. First, the in silico evaluation of Hipikat used only 20 issue
reports, randomly selected from a set of 215 feasible issue reports. We instead use
596 issue reports in our test set, and assure that they they are sequestered from the
test set as recommended by Rao et al. [388]. Second, our test set contains all issue
reports with CIA reports in our dataset, instead of a sample (as was also the case
in the evaluations by Zimmermann et al. [497] and Ying et al. [486]). Third, while
the number of participants in our user study is in line with the Hipikat study, we
designed a longitudinal study in situ instead of a one-shot in vitro task in the lab.

The ImpRec evaluation presented in this paper shares several aspects of the
MyLyn evaluation by Kersten and Murphy [269]. They also conducted a longitu-
dinal in situ study, collecting four months of data. Moreover, they also targeted
industry practitioners since the majority of their participants reported proprietary
affiliations. Kersten and Murphy distributed a call for volunteers among industry
programmers, and 97 initiated the study. In the end, 16 participants fulfilled all ac-

3 Industrial Context Description 201

tivity requirements and were considered subjects in the study. Based on these 16
participants, they collected both quantitative and qualitative evidence that MyLyn
can make programmers more productive. The main difference between the in situ
study by Kersten and Murphy and our ImpRec evaluations is their explicit focus on
programmers and source code navigation. In contrast, the evaluation presented in
this paper involves participants of other roles, and navigation of non-code artifacts.

3 Industrial Context Description

This section contains a general description of the case company and presents the
CIA work task. Furthermore, this section discusses the challenges related to CIA
identified during our initial interviews in the case company.

3.1 General Context

The studied development organization is part of a large multinational company in
the power and automation sector. We further describe the context structured in
six different context facets, according to the guidelines provided by Petersen and
Wohlin [258]: 1) products, 2) processes, 3) practices, tools, and techniques, 4)
people, 5) organization, and 6) market.

Products. The products under development constitute an automation sys-
tem that has evolved for decades. The system is safety-critical (governed by
IEC 61511 [238]) and, once deployed, is expected to run without interruption for
months or even years. Five major system versions exist, each introducing many
new features via minor update releases. The code base contains over a million
lines of code, dominated by C/C++ and some extensions in C#. The automation
system contains both embedded systems and desktop applications, e.g., an IDE for
developing control programs according to IEC 61131-3 [240]. The system is SIL2
safety-certified, according to IEC 61508 [239].

Processes. Projects follow a stage-gate iterative development process that is
tailored to support the safety certification activities performed prior to release
[121]. Prioritized features are added incrementally, followed by extensive test-
ing. The most critical parts of the system are developed as redundant components
by non-communicating teams at different development sites. All parts of the sys-
tem are documented in detail, and the documents map to the (vertical) abstraction
levels of the V-model e.g., system requirements, product requirements, functional
requirements, detailed design specifications, and the corresponding artifacts on the
testing side of the V-model.

Practices, tools, and techniques. The case company applies several estab-
lished software engineering practices related to software quality. All code is re-
viewed both at commit-time and in formal review meetings. Documents are also
reviewed in formal meetings. Several static code analysis tools run nightly on the

202 Supporting Change Impact Analysis Using a Recommendation System: . . .

source code and several unit test suites run daily as automated tests, and code cov-
erage is measured. Testing on the product and system level is conducted by an
independent testing organization, but communication with developers is encour-
aged.

People. Hundreds of engineers work in this context. The company has a his-
tory that stretches more than a century, and the organization has a mature mix
of experiences and ethnicities. Most engineers are male, but the genders are more
balanced among junior employees. The roles directly involved in this investigation
include developers, team leaders, managers, a safety engineer, and a configuration
manager (cf. Table 2).

Organization. The studied organization is globally distributed. The main
development sites are located in Europe, Asia and North America. Each develop-
ment site is organized as a matrix structure, with development teams organized to
satisfy project needs and a line organization offering various competences. The
organization is strict, i.e., engineers rarely transfer between teams during projects.

Market. The product is released to a small market with only few players.
Important customers in various market segment, e.g., oil & gas, or pulp & pa-
per, sometimes initiated by bespoke development with specific feature requests.
The market strategy is to offer the best possible automation system for very large
industrial plants in the domain of process automation.

3.2 Change Impact Analysis in Context

CIA is a fundamental activity in safety-critical change and issue management. In
the case company, all changes to source code need to be analyzed prior to imple-
mentation. The set of CIA analyses is a crucial component of the safety case, a
documented argument providing a compelling, comprehensive, and valid case that
a system is acceptably safe for a given application in a given operating environ-
ment [268]. Providing the external safety assessor with a high-quality safety case
is among the top priorities of the organization under study.

The safety engineers at the case company have developed a semi-structured
CIA report template (cf. Table 1) to support the safety case in relation to the IEC
61508 safety certification [239]. Developers use this template to document their
CIA before committing source code changes. Six out of thirteen questions in the
CIA template explicitly ask for trace links, see questions 4, 5, 6, 7, 8, and 12 in
Table 1.

In addition to documenting source code changes, IEC 61508 mandates that the
developers must also specify and update related development artifacts to reflect the
changes, e.g., requirement specifications, design documentation, test case descrip-
tions, test scripts and user manuals. Furthermore, the CIA report should specify
which high-level system requirements are involved in the change, and which test
cases should be executed to verify that the changes are correct once implemented
in the system.

3 Industrial Context Description 203

Table 1: The CIA template used in the case company, originally presented by
Klevin [279]. Questions in bold font require the developer to specify explicit trace
links.

Change Impact Analysis Questions
1 Is the reported problem safety critical?
2 In which versions/revisions does this problem exist?
3 How are general system functions and properties affected by the

change?
4 List modified code files/modules and their SIL classifications,

and/or affected safety safety related hardware modules.
5 Which library items are affected by the change? (e.g., library types,

firmware functions, HW types, HW libraries)
6 Which documents need to be modified? (e.g., product requirements

specifications, architecture, functional requirements specifications, de-
sign descriptions, schematics, functional test descriptions, design test
descriptions)

7 Which test cases need to be executed? (e.g., design tests, functional
tests, sequence tests, environmental/EMC tests, FPGA simulations)

8 Which user documents, including online help, need to be modified?
9 How long will it take to correct the problem, and verify the correction?
10 What is the root cause of this problem?
11 How could this problem been avoided?
12 Which requirements and functions need to be retested by the prod-

uct test/system test organization?

204 Supporting Change Impact Analysis Using a Recommendation System: . . .

Developers conduct CIAs regularly during development and maintenance proj-
ects, and the CIA activity requires much effort. The developers report that they on
average conduct CIAs weekly or bi-weekly during projects. The average time
they spend on a CIA report depends on both the component of the system and the
experience of the developer, ranging from fifteen minutes to several hours.

Several challenges are involved in the CIA process. In initial interviews to
define the scope of the study, developers and safety engineers at the case company
confirm that it is difficult to identify how a change affects the software system
under development. Example challenges highlighted by the developers include: 1)
side effects and ripple effects, 2) identifying impact on the system requirements,
and 3) analyzing impact on quality attributes such as performance. Developers also
reported organizational challenges such as: 4) building enough confidence in their
own CIA report, and 5) recognizing the value of the comprehensive CIA process.
Some developers report a slight aversion toward the CIA, which is considered a
mundane activity that requires extensive browsing of technical documentation.

Currently there is little tool support available for CIA in the organization.
The CIA process is tightly connected with the issue management process, as all
changes to formal development artifacts require an issue report in the issue reposi-
tory. All completed CIA reports are stored in the issue repository as attachments to
issue reports, but there are few features available apart from general database func-
tionality. Developers typically access the issue repository using a simple web in-
terface. Only rudimentary browsing and searching is supported in the issue repos-
itory, e.g., filtering issues using basic metadata and searching using keywords.
There is no support for full-text search, and the CIA reports (as they are attach-
ments) are not indexed by any search engine at all. The only tool related to CIA is
IA Sidekick, an internally developed tool, supports only input to the CIA template
by providing formatting and basic sanity checks.

4 Approach and ImpRec

This section presents an overview of our solution proposal, as well as a brief de-
scription of the implementation of our ideas in the tool ImpRec [75].

4.1 Traceability Reuse for Impact Analysis

Developers at the case company put much effort into producing high-quality CIA
reports, as described in Section 3.2. However, the content of the CIA reports is
mainly used to create a strong safety case for certification purposes. A typical
developer authors CIA reports to comply with the safety process, but does not
consider them again once accepted and stored in the issue repository.

One of the challenges related to the CIA identified in the case under study (see
Section 3.2) is that developers do not acknowledge the value of the rigorous CIA

4 Approach and ImpRec 205

Figure 1: Overview of the approach implemented in ImpRec. First, the issue
repository is mined to establish a knowledge base. Second, ImpRec identifies
similar issue reports in the knowledge base using Apache Lucene and recommends
impact based on the network structure.

process, i.e., it is regarded as an activity conducted solely to satisfy external stake-
holders. Our approach addresses this negative perception by enabling developers
to reuse knowledge from previously completed CIA reports [71]. By extracting
trace links from the semi-structured CIA reports to previously impacted artifacts
(a.k.a. link mining [195]), we establish a knowledge base of historical impact.

Once the knowledge base has been established, ImpRec uses it to recommend
potentially impacted artifacts for new incoming issue reports. As such, ImpRec
lets developers reuse the collaboratively constructed trace link network, i.e., “to
follow in the footsteps of previous developers in the information landscape”. Fig-
ure 1 shows an overview of our approach. The two main steps, mining the knowl-
edge base and recommending impact, are described in Section 4.2 and Section 4.3,
respectively.

4.2 Mining Previous Impact
As a first step in our approach, we construct a knowledge base of previous CIAs by
conducting link mining in the issue repository (cf. the horizontal arrow in Fig. 1).
First, we extract the “related issue” links between issue reports, stored in an ex-
plicit field in the issue tracker [73]. Then, we use regular expressions to extract
trace links from the issue reports with attached CIA reports. As developers in the
case company must use formal artifact IDs to report impact, regular expressions
can capture all correctly formatted trace links.

Trace links in a CIA report are structured by the CIA template (cf. Table 1)
and thus belong to a specific question. Consequently, we can deduce the meaning

206 Supporting Change Impact Analysis Using a Recommendation System: . . .

of most of the extracted trace links, e.g., answers to Q7 and Q12 are related to
verification. Another heuristic we rely on is that requirements and HW descrip-
tions IDs have distinguished formats. Finally, we store all extracted traces (i.e.,
triplets of source artifact, target artifact, and trace link [203]) in a knowledge base
represented by a semantic network [435].

The knowledge base contains 32,000+ issue reports and 13,000+ CIA reports
from about a decade of software evolution. During this time period, developers
have pointed out almost 2,000 unique non-code artifacts as impacted, categorized
as requirements, test specifications, hardware descriptions, or miscellaneous arti-
facts (when no type could be deduced). Moreover, the knowledge base contains
trace links of the following types (and count): specified-by (5,000+), verified-by
(4,000+), needs-update (1,500+), impacts-HW (1,500+), and trace links whose
type could not be determined (1,000+). Finally, the knowledge base contains
22,000+ related-to links between issue reports. In the visual representation in Fig-
ure 1, some of the semantic type information is encoded using colors.

4.3 Recommending Potential Impact
When the knowledge base is established, recommendations are calculated in three
steps as described in Borg and Runeson [75]: 1) identification of textually similar
issue reports (cf. Fig. 1), 2) breadth-first searches to identify candidate impact, and
3) ranking the candidate impact.

First, we use IR techniques to identify similar reports, referred to as start-
ing points in the knowledge base. Apache Lucene, a state-of-the-art OSS search
engine library [215], is used for the similarity calculation. Both terms in the ti-
tle and description of issue reports are considered, after stemming and stop word
removal. The first step in the recommendation process is in line with previous
work on duplicate detection of issue reports [78], IR-based trace capture [31], and
content-based RSSEs [179].

Second, we perform breadth-first searches in the knowledge base to identify
candidate impact. Artifacts reported as impacted by the starting point i are added
to a set of potentially impacted artifacts, the impact set (SETi). Then, related-to
links are iteratively followed from the starting points to extend the impact sets.
This second step is inspired by collaborative RSSEs [179], and attempts to help
the user to follow in the footprints (traces) of previous developers.

Third, we rank the artifacts in the impact sets. As multiple starting points are
identified, the same artifact might appear in several impact sets. Thus, the final
ranking value of an individual artifact (ARTx) is calculated by summarizing the
contributions to the ranking value for all impact sets containing ARTx:

Weight(ARTx) =
∑

ARTx∈SETi

ALPHA ∗ CENTx + (1−ALPHA) ∗ SIMx

1 + LEV EL ∗ PENALTY
(1)

4 Approach and ImpRec 207

where SIMx is the similarity of the issue report that was used as starting point
when identifying ARTx, LEV EL is the number of related issue links followed
from the starting point to identify ARTx, and CENTx is the centrality measure
of ARTx in the knowledge base. ALPHA and PENALTY are constants that
enable tuning for context-specific improvements [70].

4.4 ImpRec: An RSSE for Change Impact Analysis

We implemented our approach in the prototype tool ImpRec2, an RSSE for CIA.
To ease deployment and to lower the training effort of the developers, we devel-
oped ImpRec as a .Net extension to IA Sidekick, an existing suite of CIA support
tools. ImpRec evolved in close collaboration with developers in the case company,
and our development effort was guided by continuous feedback.

ImpRec was directly developed for industrial-scale software development. We
let the large number of artifacts work for us, as ImpRec leverages on a large knowl-
edge base. Also, ImpRec scales well, as both the semantic network representing
the knowledge base, as well as the search engine index provided by Apache Lucene
can manage a large amount of information without performance issues.

Figure 2 shows the ImpRec GUI. The input area, denoted by A, is the first area
the user interacts with. The user can paste the title and/or the description of the
current issue report to trigger recommendations, the user can also conduct general
free-text searches. The lower parts of the ImpRec GUI are used to present ranked
recommendations. B shows a list view with similar issue reports in the knowledge
base, and E lists potentially impacted artifacts.

ImpRec also implements a feedback mechanism, developed to support evalu-
ation of the collected data (further described in Section 5.4). All items in the list
views B and E have check boxes used by to denote that the corresponding recom-
mendation is relevant for the ongoing CIA. Every time a developer starts ImpRec,
a unique session is created. During the session, the following user actions are
recorded:

• Search - The developer clicks the ‘Search’ button, next to A. All information
related to the query is stored.

• Selection - The developer selects an item in the list view B or E.

• Relevant - The developer toggles the check box of an item in list view B or
E.

• CancelRelevant - The developer untoggles a check box in the list view B or
E.

2The name ImpRec refers to an imp, a mischievous little creature in Germanic folklore, always in
search of human attention. Imps could also be helpful however, and Shivaji et al. recently envisioned
imps sitting on the shoulders of software developers to guide them [404]. The authors also implemented
a virtual imp, using machine learning, to enable prediction of software changes that introduce defects.

208 Supporting Change Impact Analysis Using a Recommendation System: . . .

Figure 2: The ImpRec GUI. A: The search field. B. List of similar issue re-
ports. C. Detailed information view. D. Feedback button. E. List of recommended
impact. Selected parts purposely blurred.

5 Research Method 209

• Confirmation - The developer clicks the ‘Done’ button (D), to conclude the
feedback of the ongoing CIA task.

The user interface of ImpRec was designed according to the five factors that
RSSE developers must consider according to Murphy-Hill and Murphy [346]: 1)
understandability, 2) transparency, 3) assessability, 4) trust, and 5) distraction.
While ImpRec still evolves, below we discuss some initial GUI decisions based
on these factors.

Distraction does not apply to ImpRec, as the users initiate searches on their
own. The understandability of the ImpRec recommendations is supported by the
users’ experiences of general search tools. Thus, also the assessability is sup-
ported; developers are used to assess items with a relevance that is predicted to
decrease further down on a ranked list. Still, the separation of search results in two
ranked lists (B and E) might not be obvious, and thus thoroughly explained in the
user manual, available on the companion website3. Moreover, to further support
assessibility, when a user clicks on an item in B, the full description of the issue
report is presented in D, complemented by any stored CIA reports.

The two most critical factors for the delivery of ImpRec’s recommendations
are transparency and trust. We assume that user trust can only be built from a his-
tory of correct recommendations, and thus we focus on transparency. We increase
transparency in two ways. First, the output of the ranking functions is presented to
the user (i.e., the Apache Lucene similarity score in B, and the result of the ImpRec
ranking function in E). This decision is in contrast to general search tools, but it
might help expert users to understand the value of the recommendations. Second,
when the user selects issue reports in B, the items in E that were reported in the
corresponding CIA report are highlighted. Items that frequently were reported as
impacted obtain a high ranking, and the user can observe this phenomenon while
browsing the GUI.

5 Research Method

In this section we outline the research steps of this study and summarize the un-
dertaken research method. Figure 3 provides an overview of the study.

Rationale and Purpose. This work was triggered by articulated issues at the
case company associated with CIA for safety-critical development, and the po-
tential solutions identified in the surveyed literature [76]. CIA is a fundamental
part of the development and maintenance processes, and a requirement for safety
certification of computer controlled systems. CIA is particularly challenging in
the studied context due to a need for determining impact on non-code artifacts.
Therefore, this research was conducted with an aim to support the developers by
increasing the level of CIA automation using ImpRec.

3http://serg.cs.lth.se/research/experiment-packages/imprec/

210 Supporting Change Impact Analysis Using a Recommendation System: . . .

Figure 3: Overview of study design. A: Data extraction from issue repository.
B: Knowledge base established in the form of a semantic network. C: ImpRec
iteratively developed with short feedback loops. D: Static validation based on sim-
ulation. E: ImpRec deployed in Team Sweden. F: Intermediate results analyzed
and tuning of ImpRec [70]. G: Tuned ImpRec deployed in Team India.

5 Research Method 211

Table 2: Study participants in the dynamic validation.

12

 The second unit of analysis included seven developers in
India from the Protocols team, working with the same
issue repository as Unit Sweden. The seven developers
were selected to cover as many perspectives as possible,
and all of them accepted to join the study.

Overview of the study. The study comprised three
main phases: incremental ImpRec development in collabo-
ration with the company (A-C in Fig. TODO), static valida-
tion using simulation (D), and dynamic validation (E-G) as
recommended by Gorschek et al. [50]. The first step of the
development involved extracting all history from the
issue repository at the case company (A) and mining the
unstructed CIA reports to create a semantic network of
software artifacts (B), further described in Section 5.2.
Based on the semantic network, we iteratively developed
ImpRec as described in Section 4. The static validation
was conducted using in silico simulation, in which Im-
pRec was applied on the historical inflow of issue reports
(D), as proposed by Walker and Holmes [106]. Promising
results from the static validation lead us to deploy Im-
pRec in Unit Sweden (E) and initiated dynamical evalua-
tion thourgh a longitudinal in situ case study as defined
by Runeson et al. [97]. We used the initial results to tune
the parameter settings of ImpRec (F) before deploying the
RSSE in Unit India (G). The dynamic validation is further
described in Section 5.3.

The steps involved in the study represent several years
of research. The data collection (A) was conducted in the
end of 2011. The mining involved in establishing a seman-
tic network (B) was conducted and improved during
2012, and resulted in two publications [14][15]. ImpRec
was continuously developed and improved from 2013
[18], up to date. The static validation (D) was performed
in the end of 2013, but the simulations were repeatedly
executed as regression tests during ImpRec evolution. We
deployed ImpRec in Unit Sweden in March 2014 (E), did
tuning during Summer (F), and deployed ImpRec in Unit
India (G) in August 2014. We conducted post-study inter-
views and concluded data collection in December 2014.

5.1 Research
questions

The following
research ques-
tions guide
our study:

RQ1 How
accurate is
ImpRec in

recommend-
ing impact for

incoming
issue reports?

RQ2 Do
developers

consider the
level of accu-
racy delivered
by ImpRec

sufficient to help when conducting impact analy-
sis?

RQ3 Do newcomer developers benefit more from
ImpRec than developers that know the system
well?

We addressed RQ1 using static validation in the form
of computer simulations (see Section 5.2). By applying
established IR measures (i.e., precision and recall) we
enable comparisons with previous work, but we also go
beyond set-based measures by presenting Mean Average
Precision (MAP) [78].

We tackled RQ2 and RQ3 by deploying ImpRec in two
development teams. RQ2 deals with mapping the quanti-
tative results from RQ1 to actual user satisfaction. How
accurate must an RSSE be before developers start recog-
nizing its value? Has ImpRec passed the utility break-
point, as discussed by Regnell et al. in the QUPER model
[91]?

RQ3 is an attempt to corroborate an assumption from
previous research that newcomer developers benefit the
most from RSSEs. Cubranic developed Hipikat particular-
ly to support developers new to OSS projects [34], and ten
years later Panichella also developed RSSEs for OSS pro-
ject newcomers [87]. We aim to find supporting or con-
tradicting empirical support that newcomers really bene-
fit more from ImpRec than more seasoned developers.

5.2 Static Validation: in silico evaluation

Our approach to initially justify our RSSE is to conduct a
simulation [106]. To minimize potential confounding
factors, this step was conducted without human subjects
by comparing recommendations from ImpRec with the
results from the historical CIA reports. This static valida-
tion assesses the correctness of ImpRec as defined by
Avazpour et al. [6] , i.e., “how close the recommendations
are to a set of recommendations that are assumed to be
correct”. Since the historical CIA reports have undergone
a thorough review process, due to their key role in the
safety case, it is safe to assume that they are correct.

Simulations are performed by scientists and engineers

Unit ID Team Role Degree
year

System
exp.

Classification

 A Safety team Safety engineer 1999 1999 -> Senior, seasoned
B R&D Development manager 2001 2001 -> Senior, seasoned
C Protocols Technical manager 2004 2005 -> Senior, seasoned

S
w

ed
en

 D I/O Team leader 2002 2004 -> Senior, seasoned
E I/O Developer 2007 2008 -> Senior, seasoned
F I/O Developer 1995 2014 -> Senior, newcomer
G I/O Developer/CM 2012 2012 -> Junior, newcomer

In
d

ia

H Protocols Team leader 2004 2005 -> Senior, seasoned
I Protocols Developer 2004 2010 -> Senior, seasoned
J Protocols Developer 2011 2011 -> Junior, newcomer
K Protocols Developer 2013 2013 -> Junior, newcomer
L Protocols Developer 2007 2007 -> Senior, seasoned
M Protocols Developer 2001 2007 -> Senior, seasoned
N Protocols Product manager 1994 2005 -> Senior, seasoned

The case and units of analysis. The investigated case is the formal CIA work
task at the case company. Two units of analysis were investigated in this study,
named Unit Sweden and Unit India, see Figure 3. In both units of analysis, our
aim was to investigate how using ImpRec can support engineers conducting formal
CIA. All study participants are listed in Table 2. Developers in Unit Sweden and
Unit India and three senior engineers (two from Sweden and one from India) were
involved in the study.

Unit Sweden consisted of four developers in Sweden from the I/O team. We
distributed a call for participation among all 60 developers at a site in Sweden.
Three developers volunteered, and they happened to all be members of the same
team working on safety-critical I/O communication. The three developers all had
different responsibilities and experiences, offering the variety of perspectives suit-
able for a case study. To include yet another perspective in the study, we also asked
the newest member of the team to join. As a sanity check, we examined the project
history and found that the CIA frequency of the I/O team was close to the average
among the teams at the development site.

The second unit of analysis included seven developers in India from the Pro-
tocols team, working with the same issue repository as Unit Sweden. The seven
developers were selected to cover as many perspectives as possible, and all of them
accepted to join the study.

Overview of the study. The study comprised three main phases: incremen-
tal ImpRec development in collaboration with the company (A-C in Fig. 3), static
validation using simulation (D), and dynamic validation (E-G) as recommended
by Gorschek et al. [201]. The first step of the development involved extracting all
history from the issue repository at the case company (A) and mining the unstruc-
tured CIA reports to create a semantic network of software artifacts (B), further
described in Section 5.2. Based on the semantic network, we iteratively developed

212 Supporting Change Impact Analysis Using a Recommendation System: . . .

ImpRec as described in Section 4. The static validation was conducted using in
silico simulation, in which ImpRec was applied to the historical inflow of issue
reports (D), as proposed by Walker and Holmes [466]. Promising results from
the static validation lead us to deploy ImpRec in Unit Sweden (E), i.e., we initi-
ated dynamical evaluation through a longitudinal in situ case study as defined by
Runeson et al. [413]. We used the initial results to tune the parameter settings of
ImpRec (F) before deploying the RSSE in Unit India (G). The dynamic validation
is further described in Section 5.3.

The steps involved in the study represent several years of research. The data
collection (A) was conducted in the end of 2011. The mining involved in estab-
lishing a semantic network (B) was conducted and improved during 2012, and
resulted in two publications [71, 73]. ImpRec was continuously developed and
improved from 2013 [75], up to date. The static validation (D) was performed in
the end of 2013, but the simulations were repeatedly executed as regression tests
during ImpRec evolution. We deployed ImpRec in Unit Sweden in March 2014
(E), did tuning during the following Summer (F), and deployed the RSSE in Unit
India (G) in August 2014. We conducted post-study interviews and concluded data
collection in December 2014.

5.1 Research Questions
The following research questions guide our study:

RQ1 How accurate is ImpRec in recommending impact for incoming issue re-
ports?

RQ2 Do developers consider the level of accuracy delivered by ImpRec sufficient
to help when conducting change impact analysis?

RQ3 Do newcomer developers benefit more from ImpRec than developers that
know the system well?

We addressed RQ1 using static validation in the form of computer simulations,
see Section 5.2. By applying established IR measures, i.e., precision and recall, we
enable comparisons with previous work, but we also go beyond set-based measures
by reporting Mean Average Precision (MAP) [325].

We tackled RQ2 and RQ3 by deploying ImpRec in two development teams.
RQ2 deals with mapping the quantitative results from RQ1 to actual user satis-
faction. How accurate must an RSSE be before developers start recognizing its
value? Has ImpRec passed the utility breakpoint, as discussed by Regnell et al. in
the QUPER model [390]?

RQ3 is an attempt to corroborate an assumption from previous research that
newcomer developers benefit the most from RSSEs. Čubranić developed Hipikat
particularly to support developers new to OSS projects [126], and ten years later
Panichella also developed RSSEs for OSS project newcomers [366]. We aim to

5 Research Method 213

find supporting, or contradicting, empirical support that newcomers benefit more
from ImpRec than seasoned developers.

5.2 Static Validation: In silico Evaluation

Our approach to initially justify our RSSE is to conduct a simulation [466]. To
minimize potential confounding factors, this step was conducted without human
subjects by comparing recommendations from ImpRec with the results from the
historical CIA reports. This static validation assesses the correctness of ImpRec
as defined by Avazpour et al. [32] , i.e., “how close the recommendations are to
a set of recommendations that are assumed to be correct”. Since the historical
CIA reports have undergone a thorough review process, due to their key role in the
safety case, it is safe to assume that they are correct.

Simulations are performed by scientists and engineers to “better understand
the world when it cannot be directly studied due to complexity, costs, or risks”
[466]. By imitating the environment where ImpRec will be deployed, i.e., the
inflow of issue reports at the case company, we could examine the correctness of
the recommendations. We collected 26,120 chronologically ordered issue reports
and 4,845 CIA reports from the last 12 years of development. We divided these
data into a training set (88%) and a test set (12%). To ensure a realistic simulation,
we do not filter the dataset in any way.

We established a knowledge base from the training set of (all) 4,249 CIA re-
ports submitted prior to July 2010. The test set contained issue reports submitted
between July 2010 and January 2012. Among the issue reports in the test set, there
were 596 CIA reports. In the simulation, we used the titles of the associated issue
reports as queries to ImpRec. We considered the 320 trace links from these CIA
reports to various non-code artifacts as our gold standard. Among these 320 trace
links, 20% of their target artifacts had not been reported as impacted during the 10
years of evolution represented in the knowledge base. Consequently, as ImpRec
relies on developers’ previous work, the catalog coverage [32] in the simulation
was 80%, i.e., only 80% of the artifacts we wanted to link were available in the
knowledge base (cf. the horizontal ‘ceiling’ line in subplot a) Fig. 4).

We compare two configurations of ImpRec against two baselines representing
naïve strategies. ImpRec A (deployed in Unit Sweden) and ImpRec B (deployed
in Unit India) constitute the two configurations deployed, before and after system-
atic parameter tuning (presented in detail in previous work [103]). ImpRec Text
is a baseline that only relies on textual similarity, simply returning the artifacts
previously reported as impacted in the 20 most similar issue reports in the issue
repository, ranked by the number of occurrences. ImpRec Cent is a baseline that
only uses the network structure in the knowledge base. The baseline always reports
the artifacts with the highest centrality measures, no matter the textual content of
the incoming issue report.

214 Supporting Change Impact Analysis Using a Recommendation System: . . .

5.3 Dynamic Validation: In situ Evaluation

While the results from an in silico evaluation can indicate the usefulness of an
RSSE, user studies must be conducted to gain deeper understanding [402]. To
study ImpRec in the full complexity of an industrial context, we performed a lon-
gitudinal in situ evaluation. By letting the developers in Unit Sweden and Unit
India use ImpRec during their daily work, we complemented the assessment of
correctness (RQ1) with utility, i.e., the value that the developers gain from the
recommendations (RQ2).

The participants first received ImpRec instructions and a research study de-
scription in an initial face-to-face meeting. The instructions clarified the purpose
of the study, and how the participants should use ImpRec in their CIA process.
During the meeting we also presented a demo of ImpRec and distributed the user
manual.

Before deploying ImpRec, we conducted semi-structured interviews with all
participants individually, and three additional senior engineers (A-C in Table 2).
The interviews4, roughly 45 min long, covered the state-of-practice CIA work task,
and challenges experienced by the participants. Also, we discussed some specific
CIA reports authored by the interviewee, as well as two measures extracted from
their recent CIA history (10-30 CIA reports per interviewee):

i) the time from the assignment of an issue report to a developer until a CIA
report is submitted (TimeCIA: reflecting the effort required per CIA)

ii) the number of modifications to an CIA report after submission (ModCIA:
indicating the quality of the first CIA).

We concluded the interviews by installing ImpRec on the participants’ com-
puters followed by a brief tutorial. We also clarified that all actions performed in
ImpRec would be stored in a local log file, as described in Section 4.4. After the
interviews and the demo, all participants felt that they were ready to use ImpRec
in their daily work. We offered them the possibility to email their questions or
get additional training if needed. We also instructed all participants that our study
was longitudinal, planned for several months, and that reminders would be sent
regularly during the study.

Throughout the study we received partial log files through email, comple-
mented by qualitative feedback, a type of communication we strongly encouraged.
We collected final versions of the user log files in December 2014.

After concluding the data collection, we conducted post-study interviews with
the participants in Unit Sweden, about 30 min each, also following an interview
guide. Feedback and reflections from Unit India were collected via email. The
main goal of the post-study interviews was to discuss utility focused on quality

4The interview guide is available on the accompanying web site [78]. The full analysis of the
interviews will be reported in a separate publication.

5 Research Method 215

breakpoints as introduced in the QUPER model [388]. The QUPER model con-
siders quality to be an inherent characteristic on a sliding scale, but non-linear in
its nature. We asked the interviewees to assess what the correctness of ImpRec
represents, as well the correctness of the current manual CIA approach, compared
to the three breakpoints of QUPER:

1. Utility: the user starts recognizing the value of the tool. A low quality level,
and anything below is useless.

2. Differentiation: (a.k.a. “wow!”) the tool starts to become impressive, and
users definitely would use it if available.

3. Saturation: (a.k.a. “overkill”) increased quality beyond this point is not of
practical significance.

Huffman Hayes et al. have proposed similar evaluation ideas for mapping
quantitative output from software engineering IR tools to quality levels [174].
However, while they presented initial threshold based on their own experiences,
we try to explore quality levels based on interviews with developers. The goal of
our utility assessment is primarily to determine whether the accuracy of the rec-
ommendations provided by ImpRec has passed the utility breakpoint (RQ2), i.e.,
“the point where developers start to recognize the value of the tool” [293].

5.4 Measures and Analysis

In the in silico static validation, we quantified the correctness based on the fraction
of the gold standard recommended by ImpRec. We define a true recommendation
as a suggestion from ImpRec that is also present in the corresponding CIA report,
and a useful recommendation as either true or explicitly confirmed as relevant by
a participant. We report set-based measures rather than averages per query (a.k.a.
matrix-based IR evaluation [76], or micro-evolution [497]). Recall is the fraction
of the true impact that ImpRec recommends (max 80% in the simulation). Pre-
cision is the fraction of the ImpRec recommendations that indeed represent true
impact. F1-score is the harmonic mean of precision and recall, without favoring
one or the other. However, as several researchers argued that recall is more impor-
tant than precision in tracing experiments [118,144,231], we also report F2-score,
F5-score, and F10-score, corresponding to a user who attaches 2, 5, and 10 times
as much importance to recall as precision [460]. Mean Average Precision (MAP)
is a secondary IR measure [77], taking also the ranking of retrieved items into
account.

As argued by Spärck Jones et al., pioneers of IR evaluation, only reporting
precision at standard recall levels is opaque [438]. The figures obscure the actual
number of recommendations needed to get beyond low recall. Thus, we report IR

216 Supporting Change Impact Analysis Using a Recommendation System: . . .

measures for different cut-off points, representing between 1 and 50 recommen-
dations from ImpRec. Showing only one recommendation per CIA would not be
very useful, and recommending too many also brings no value.

To assess the utility in the in situ dynamic validation, we performed triangula-
tion of data from semi-structured interviews and collected log files. The interviews
before and after deploying ImpRec were recorded, transcribed word-by-word, and
sent back to the interviewees for validation within two weeks after the interview.
We conducted thematic analysis [123] of the initial interviews, and for the post-
study interviews we sought qualitative comments related to the findings in the user
log files. Further qualitative feedback, informal but highly valuable, was collected
in meetings and e-mails during the study.

The log files collected from the users contain rich information, and thus enable
Search Log Analysis (SLA) [244]. We primarily used the search logs to study
the explicit feedback functionality (see Section 4.4), but we also compared the
recommendations against the final CIA reports stored in the issue tracker (when
available).

Finally, we studied how the developers interacted with the ranked recommen-
dations, and how much time they spent browsing the results. We report the click
distribution, i.e., the frequency of clicks distributed across different positions on
the ranked list, however only for related issues (B in Fig. 2) as there is no incite-
ment for the participants to click on individual items among the potential impact
(C in Fig. 2).

6 Results and Interpretation
This section presents the results from our evaluation, as well as the corresponding
interpretation.

6.1 Static Validation: In silico Evaluation
Figures 4 and 5 portray the correctness of ImpRec’s recommendations from the in
silico simulation. The graphs show precision, recall, MAP, and F-scores from a
simulation, using an unfiltered set of issue reports, constituting 10 years of soft-
ware evolution at the case company, as described in Section 5.2.

The four subplots a)-d) in Figures 4 and 5 follow the same structure. The y-
axes show the different IR measures, all with values between 0 and 1. The x-axes
depict the cut-off point of the ranked list, N, i.e., how many ImpRec recommenda-
tions are considered. The subplots display four different ImpRec configurations:
A (solid line), B (dashed line), Text (dot-dashed line), and Cent (dotted line). As
presented in Section 5.2, Text and Cent constitute two naïve baselines relying fully
on textual similarity and centrality measures, respectively.

Figure 4 a) presents how the recall improves as N increases. ImpRec A per-
forms the best (among the four configurations) before N exceeds 10 (Rc@5=0.33

6 Results and Interpretation 217

Figure 4: Recall, precision, and MAP from the static validation, i.e., the in sil-
ico simulation. Solid line: ImpRec A, dashed line: ImpRec B, dot-dashed line:
ImpRec Text, and dotted line: ImpRec Cent.

218 Supporting Change Impact Analysis Using a Recommendation System: . . .

Figure 5: F-scores from the static validation, i.e., the in silico simulation. Solid
line: ImpRec A, dashed line: ImpRec B, dot-dashed line: ImpRec Text, and dotted
line: ImpRec Cent.

6 Results and Interpretation 219

and Rc@10=0.39), but there is little improvement as the number of recommen-
dations increases further. ImpRec B performs slightly worse than ImpRec A for
N<10, but improves steadily until Rc@20=0.51. Regarding the two baselines, we
conclude that ImpRec Text (dot-dashed line) is imprecise for few recommenda-
tions, but for large N, the recall matches the level of ImpRec A. The low initial
recall (Rc@1-9<0.20) of the purely textual baseline shows that it does not capture
all variations of the natural language. However, it appears that the naïve textual
approach matches recall levels of a more advanced configuration for N>30, i.e., if
the user accepts sifting through a high number of recommendations. ImpRec Cent
(dotted line) on the other hand displays a notably worse recall curve.

Figure 4 b) shows how precision drops as N increases (gray lines). ImpRec
A, B, and Text show similar declines, with ImpRec Text being somewhat better
at N>10. Our results show that while a purely textual approach to recommend-
ing impact does not cover everything in the gold standard at low N (Rc@5<0.1),
the textual similarity appears to indicate helpful historical issue reports with a
reasonable precision (Pr@5>0.06). Again ImpRec Cent results in the worst rec-
ommendations (Pr <0.03 for all N). Figure 4 b) also shows how MAP changes
with increasing N (black lines). Among the four configurations, ImpRec A shows
the best MAP at N<19, at larger N ImpRec Text performs equivalently. ImpRec B
and ImpRec Cent generally perform worse wrt. MAP (e.g., Map@20=0.057 and
MAP@20=0.032, respectively).

Figure 5 c) shows F1-scores (black lines) and F2-scores (gray lines), i.e., a
combined measure treating recall equally important, or twice as important, as pre-
cision. When the number of recommendations is low (N<10), ImpRec A displays
the best F1- and F2-scores. The highest F1- and F2-scores correspond to two or
three recommendations from ImpRec A, respectively.

Figure 5 d) presents F5-scores (gray lines) and F10-scores (black lines), i.e.,
evaluation measures greatly emphasizing recall. The highest F5- and F10-scores
correspond to nine recommendations from ImpRec A and twenty recommenda-
tions from ImpRec B, respectively.

The in silico simulation suggests that reusing traceability established by pre-
vious developers is a feasible approach to support non-code CIA. As reported in
Section 5.2, ImpRec’s catalog coverage in the evaluation is 80%, i.e., a majority of
the non-code artifacts impacted by issue reports in the test set had been reported
as impacted before. We also show that the ImpRec ranking function appears to be
useful, as roughly 30% of the true impact in the gold standard is recommended
among the top-5 candidates, and 40% among the top-10 candidates. ImpRec B is
the configuration that comes the closest to the upper limit, with Rc@50=0.54, i.e.,
54% of the true impact is recommended among the top-50 candidates.

Table 3 lists the correctness of ImpRec compared to the related work presented
in Section 2.3. The figures can not be directly compared as: 1) ImpRec recom-
mends non-code artifacts and the related work addresses code impact, and 2) the
projects studied are different. Nevertheless, the results indicate that ImpRec per-

220 Supporting Change Impact Analysis Using a Recommendation System: . . .

Table 3: ImpRec correctness compared to previous work.
Study Pr Rc Project(s)

@10

ImpRec 0.05 0.40 Automation
Canfora and Cerulo [92] 0.20 0.40 Gedit

0.05 0.20 ArgoUML
0.15 0.90 Firefox

Gethers et al. [194] 0.15 0.20 ArgoUML
0.10 0.20 JabRef
0.15 0.35 jEdit
0.10 0.25 muCommander

Zimmermann et al. [497] 0.33
(avg.)

Eclipse, gcc, Gimp, JBoss,
jEdit, KOffice, Postgres,
Python

@? Čubranić et al. [127] 0.10 0.65 Eclipse
Ying et al. [486] 0.5 0.25 Mozilla

forms in line with previous work on CIA. Focusing on other evaluations reporting
the correctness of the top-10 recommendations, we observe that the precision of
ImpRec is below average, but the recall is among the best. This result mirrors our
aim to reach high recall within a reasonable (browsable) amount of recommenda-
tions.

To summarize, the static validation results in correctness, i.e., precision and re-
call measures, in line with previous work. We observe that the static validations of
ImpRec, using a test set containing all issue reports submitted during 1.5 years of
system development, reaches Rc@10=0.40. This result is competitive compared to
the work presented in Section 2.3, only outperformed by the approach by Canfora
and Cerulo when evaluated on the Firefox project. Regarding precision however,
ImpRec appears to perform in the lower end. As we consider recall to be more
important however, at least at reasonable levels of N, we consider the correctness
of ImpRec to be good enough to initiate the dynamic validation.

6.2 Dynamic Validation: In situ Evaluation

This section describes the results from the dynamic validation, organized into: 1)
overall results, 2) detailed results per participant, and 3) mapping correctness to
utility.

Overview of the Results

The initial interviews confirmed the significance of the problem, and the consid-
erable effort spent (already described in the context description in Section 3). The
interviewees report that the frequency of the CIAs depends on the phase of the
project and give two CIAs on average per month. However, the interviews refuted
the value of the two measures TimeCIA and ModCIA defined in Section 5.3, as
too confounded by other variables, and only useful as “a very rough indication of

6 Results and Interpretation 221

effort and complexity” (participant A). Thus, we focus the dynamic validation on
SLA combined with qualitative feedback from the post-interviews.

We received positive responses during initial installation and demonstration of
ImpRec. Several participants expressed interest in trying the RSSE, and promised
to provide further feedback. One participant immediately found helpful recom-
mendations during the demonstration, saying “this [issue report] was exactly what
I was looking for actually” (K). On the other hand, one participant (H) did not
foresee any obvious use cases for the tool, indicating that its use might not be fully
intuitive for all potential users.

In total, the participants conducted 43 ImpRec search sessions to explore CIAs
related to issue reports, 33 times in Unit Sweden and 10 times in Unit India. The
numbers reflect the different development phases and the extended period of data
collection in Unit Sweden, see Section 5. Thirty-one of the search sessions concern
issue reports that resulted in a completed CIA report during the study, i.e., we can
directly compare them to the ImpRec output. In total 5 of the 43 uses did not result
in an explicit ‘confirmation’ click by the user (cf. D in Fig. 2), but we could still
perform partial analyses.

Table 4 shows descriptive statistics about the ImpRec sessions. First, five
columns report general information about ImpRec usage: unit of analysis, par-
ticipant ID, number of ImpRec sessions (in parenthesis: the number of related
CIA reports stored at the end of the study), query-style of the user (T=copy/paste
of title, D=copy/paste of title+description, U=user generated query, i.e., free text)
incl. average number of characters/terms in the queries, and the average time per
ImpRec session. The participants spent about five minutes per session with Imp-
Rec. The Search Log Analysis (SLA) revealed that different search strategies were
used. Six users used manually crafted queries as input to ImpRec (U in the fourth
column), typically important keywords from the domain. These users used several
different queries per session, but they were often restricted to a few terms. Partici-
pant D explained that he “started with broad searches, and then tried to gradually
make them more specific”. On the other hand, participant E exclusively used long
queries (avg. 101 terms), consisting of both the title and the description of issue
reports, stating that “I didn’t think of any patterns really, but I think that’s how
you should search”. Three users mostly used titles as search queries, on average
containing ten terms.

Table 4 also shows the accuracy, per participant, of the ImpRec recommenda-
tions. Second, four columns show results concerning related issue reports: number
of related issue reports in the gold standard (in parenthesis: number of related issue
reports covered by the knowledge base), number of true related issue reports rec-
ommended by ImpRec, number of useful but not true recommendations, and the
corresponding result in term of recall (in parenthesis: the maximum recall based
on the knowledge base coverage). Finally, four columns show results regarding
impacted artifacts, analogous to the related issues.

In total, the participants used the confirmation clicks to report that ImpRec pro-

222 Supporting Change Impact Analysis Using a Recommendation System: . . .

Table 4: Detailed results, per participant, from the dynamic validation.

AUTHOR ET AL.: TITLE 17

6.2 Dynamic Validation: In situ Evaluation

This section describes the results from the dynamic vali-
dation, organized into 1) overall results, 2) detailed re-
sults per participant, and 3) mapping correctness to utili-
ty.

6.2.1 Overview of the Results

The initial interviews confirmed the significance of the
problem, and the considerable effort spent (already de-
scribed in the context description in Section TODO). The
interviewees report that the frequency of the IAs depends
on the phase of the project and give two IAs on average
per month. However, the interviews refuted the value of
the two measures TimeIA and ModIA (defined in Section
TODO), as too confounded by other variables, and only
useful as “a very roughly indication of effort and com-
plexity” (participant A). Thus, we focus the dynamic
validation on SLA combined with qualitative feedback
from the post-interviews.

We received positive responses during initial installa-
tion and demonstration of ImpRec. Several developers
expressed interest in trying the tool, and promised to
provide further feedback. One participant immediately
found helpful recommendations during the demonstra-
tion, saying “this [issue report] was exactly what I was
looking for actually” (K). On the other hand, one partici-
pant (H) did not foresee any obvious use cases for the
tool, indicating that its use might not be fully intuitive.

In total, the participants used ImpRec 43 times to ex-
plore IAs related to issue reports, 33 times in the Team
Sweden and 10 time in the Team India. The numbers
reflect the different development phases and the extend-
ed period of data collection in Unit Sweden, see Section 5.

Thirty-one of the uses (numbers in parentheses) concern
issue reports that resulted in a completed CIA report
during the study (i.e., we can compare them to the Im-
pRec output). In total 5 of the 43 uses did not result in an
explicit ‘confirmation’ click by the user, but still we could
still perform partial analyses.

Table TODO shows descriptive statistics about the
search sessions. The participants spent about five minutes
per session with ImpRec. The Search Log Analysis (SLA)
revealed that different search strategies were used. Six
users used manually crafted queries as input to ImpRec
(cf. Fig. TODO, U in the forth column), typically im-
portant keywords from the domain. These users used
several different queries per session, but they were often
restricted to a few terms. Participant D explained that he
“started with broad searches, and then tried to gradually
make them more specific”. On the other hand, participant
E exclusively used long queries (avg. 101 terms), consist-
ing of both the title and the description of issue reports,
stating that “I didn’t think of any patterns really, but I
think that’s how you should search“. Three users mostly
used titles as search queries, on average containing ten
terms.

Table TODO shows the accuracy, per participant, of
the ImpRec recommendations using a set-based recall. In
total, the participants used the confirmation clicks to re-
port that ImpRec provided relevant items in 30 of the 43
uses (70%). Related issue reports were provided for 49%
of the uses, and truly impacted artifacts in 56% of the
uses. We observe that for two participants that did sever-
al search sessions (E and F), the recall for impacted items
corresponds to the static validation (0.45, and 0.42).

 Related issue reports Impacted artifacts

 ID #Ses-
sions

Query Avg.
time

#Gold #True #Extra RcRel #Gold #True #Extra RcImp

S
w

e
d

e
n

D 8 (4) U: 13/66 2 min 20 (11) 2 10 0.1
(0.55)

24 (24) 5 4 0.21 (1)

E 14 (14) D: 101/501 9 min 24 (9) 6 5 0.25
(0.3)

62 (56) 28 7 0.45
(0.90)

F 8 (4) T: 9/47 8 min 10 (4) 2 13 0.2
(0.4)

33 (31) 14 7 0.42
(0.94)

G 3 (3) T: 10/49 7 min 7 (7) 0 2 0 (1) 32 (28) 1 1 0.03
(0.88)

In
d

ia

H 3 (1) U: 5/30 1 min 5 (3) 0 1 0
(0.6)

4 (1) 0 1 0 (0.25)

I 1 (0) T: 11/63 3 min 16 (6) 0 2 0
(0.38)

N/A N/A 0 N/A

J 2 (1) U: 2/15 2 min 4 (4) 0 5 0 (1) 2 (1) 0 1 0 (0.5)
K 1 (1) U: 4/25 80 min 2 (0) 0 7 0 (0) 8 (0) 0 0 0 (0)
L Performed no change impact analyses during the study
M 1 (1) U: 2/8 ? 4 (4) 0 6 0 (1) 1 (1) 1 0 1 (1)
N 2 (2) U: 3/14 6 min 1 (1) 0 5 0 (1) 0 (0) 0 8 N/A

Sum 43 (31)

vided relevant items in 30 of the 43 ImpRec sessions (70%). Useful related issue
reports were provided for 49% of the sessions, and truly impacted artifacts in 56%
of the sessions. We observe that for two participants that did several search ses-
sions (E and F), the recall for impacted artifacts corresponds to the static validation
(0.45 and 0.42).

The participants sometimes missed true recommendations provided by Imp-
Rec. Among the 49 impacted artifacts that were true, participants missed 19 of
them (39%). As expected, the position of recommendations on the ranked lists
was important. The click distribution of recommended related issue reports (see
Fig. 6) shows that the participants interacted more with recommended issue re-
ports presented at the top of the list, and the decrease in clicks is similar to what
has been reported for web search [227]. Participant G commented that “the first
search hits felt good, but somewhere after 10 or 12 it turned wild”, and participant
E stated that “I don’t think I looked beyond 10. The ranking function was quite
good, I started trusting it”.

ImpRec often provided relevant related issue reports that were not explicitly
stored as ‘related’ in the issue tracker. In total, the participants reported that Imp-
Rec presented 66 relevant related issue reports, and 56 of these relations (85%)
were not explicitly stored in the issue tracker. This indicates that there is a large
amount of issue reports that never are connected, despite that developers consider
them related. Moreover, it suggests that the network of issue reports in the issue
tracker, analyzed in previous work [73], underestimates the issue interrelations.
Regarding potentially impacted artifacts, participants reported, by confirmation
clicks, that ImpRec presented 78 truly impacted artifacts, and 29 of them (37%)
were not reported in the formal CIA reports. This suggests that ImpRec can be
used to complement manual work by recommending novel artifacts, thus improv-
ing the recall of CIA reports.

6 Results and Interpretation 223

Figure 6: Click distribution of the participants’ interaction with recommended
related issue reports.

Detailed Results per Participant

Participant D, the team leader of Unit Sweden, conducted eight search sessions
with ImpRec. Compared to the other participants in the study, his sessions were
shorter, but conducted in an iterative fashion with short queries. ImpRec delivered
relatively few true recommendations (RcRel=0.10, RcImp=0.21), but he confirmed
several additional artifacts as relevant. Despite the rather poor quantitative results,
he was positive about the approach and explained that a tool that reuses previous
knowledge could help tracing changes to ‘difficult’ artifact types: “What we miss
as developers are items we don’t have a relation to. We know the code to change,
which files and modules. But tracing to requirements, and the system tests as well,
that’s where a tool like this could help”.

Participant E used ImpRec 14 times during the study, more than any other par-
ticipant. He was also the only participant who mainly used full text descriptions
as queries in ImpRec. Most of the issue reports related to his tasks were not avail-
able in the knowledge base, thus the RcRel of ImpRec was constrained to 0.3.
Regarding RcImp (0.45) however, the results are in line with the static validation.
During the post-study interview, (E) explained that he “already knew about most
recommendations provided by ImpRec”, and that only a few times ImpRec identi-
fied information that complemented his knowledge. This observation stresses that
it is not enough to look at recall in isolation, as there is a risk that a high recall
value contains nothing but obvious information. On the other hand, confirming
the users’ ideas is one of the goals of an RSSE [402] (the other goal is to provide
novelty), and it is also critical in building the users’ trust in the tool [32].

Participant F performed eight ImpRec search sessions, using titles of issue
reports as queries. As for participant E, most related issue reports were more
recent than what was covered by the knowledge base (RcRel constrained to 0.4).

224 Supporting Change Impact Analysis Using a Recommendation System: . . .

On the other hand, ImpRec identified 13 meaningful issue reports that were not
formally acknowledged in the issue tracker. Finally, RcImp (0.42) was in line with
the static validation. Participant F expressed that he “absolutely found some of
the recommendations useful”, but also that he maybe did not get the most out of
ImpRec as he “might not have used the tool properly” and that “any search hits that
require scrolling to find might be missed, and if the first hits do not make sense,
you stop looking”. Thus, the post-interview with participant F confirmed that both
proper tool instructions as well as an accurate ranking function are important.

Participant G used ImpRec three times during the study, even though he com-
mented: “Did I do only three? It felt like at least seven”. During the course of the
study, participant G gradually shifted to a full-time Configuration Management
(CM) role. This change decreased the number of issue reports assigned to him,
and introduced CM related meta-issues, e.g., branching, for which ImpRec did not
provide accurate recommendations. However, he explained that also when Imp-
Rec did not provide directly related artifacts, it supported general system compre-
hension: “It was worthwhile to further investigate some recommendations, even
though I didn’t report them as relevant in the end. Doing so helped me understand
how things go together”. Still, ImpRec’s poor results on meta-issues indicate that
the approach is best suited for actual defect reports.

Participant H, the team leader of Unit India, conducted three ImpRec search
sessions. However, only one of the sessions related to an issue report with a com-
pleted CIA report at the end of the study. She performed manually crafted queries
and iteratively modified them. Only in one session she confirmed the results using
the explicit feedback function, reporting two useful recommendations (one related
issue report and one impacted artifact). Participant H assessed the search results
very fast, on average in 1 minute. This behavior is partly explained by the iterative
search strategy. We suspect that ImpRec might have delivered more useful recom-
mendation if more effort was spent, but as explained by herself “as a team leader,
I do not work directly with CIA reports as much as before”.

Participant I used ImpRec only once during the study. The single issue report
triggering the CIA had 16 related issues stored in the tracker, the highest number
in the study. Still, only six of them were present in the knowledge base, and none
of them were recommended (RcRel=0). On the other hand, ImpRec recommended
two other issue reports that participant I confirmed as relevant. RcImp could not
be calculated, as there was no available CIA report for the specific issue report.

Participant J conducted two search sessions during the study, and one of them
had a corresponding CIA report. ImpRec did not provide her any true recommen-
dations (RcRel=RcImp=0), but instead four useful related issues and one useful
impacted artifact. The qualitative feedback confirmed the value of the recommen-
dations. Participant J said that “Your tool helped me to get a list of all related
issues. The issue that I was working on was raised in many earlier system ver-
sions, and different people apparently worked on that with no success”. This state-
ment again shows the importance of going beyond the simple recall measure when

6 Results and Interpretation 225

evaluating an RSSE.
Participant K, the most junior developer in the study, used ImpRec only once.

He used a short user generated query, and ImpRec recommended seven useful
previous issue reports. However, neither the two relevant issue reports in the gold
standard, nor the eight impacted artifacts, were covered by the knowledge base.
Still, participant K was satisfied with his single ImpRec experience, explaining: “I
used the tool for a crash issue I’m working on. I found it very useful as I was able
to find some old issue reports with similar problems and how they were fixed”.
He confirmed results in ImpRec 80 min after the click on the search button, thus
obviously doing other things in the meantime. We consider the time as an outlier,
i.e., it is not used in the calculation of average time per ImpRec session.

Participant L was was the only participant who did not use the tool during the
study. We consider this indicative of the individual variation in CIA frequency, in
line with the assessments made by the participants during the initial interviews.

Participant M used ImpRec for one search session using a short two-word
query. The query resulted in four useful (but no true) recommended related is-
sues, and the only truly impacted artifact. He did unfortunately not store his full
user log file, thus we could not perform a proper SLA.

Participant N represents the perspective of a product manager, a type of user
that browses rather than writes CIA reports. He confirmed that ImpRec delivered
several useful recommendations (five related issue reports and eight impacted arti-
facts) but none of them were in the gold standard. Participant N expressed worry,
in line with participants F and M that he might not have used ImpRec properly:
“I’m not sure how well I used it, I basically just looked at the CIA reports of the
related issues”. However, as this reflects a typical ImpRec use case, we do not
share the participant’s concern.

Mapping Correctness and Utility

The qualitative feedback from the developers enables us to map the quantitative
results from the static validation, i.e., correctness measured in recall, to the expe-
rienced utility of ImpRec. We discussed the utility during post-study interviews
with the participants in Unit Sweden, based on the QUPER model [390]. Figure 7
shows an overview of the discussions. Three developers found it useful to discuss
quality and benefit based on the QUPER model. Respondent F instead preferred
less structured discussion of utility, as he considered both the quality dimension
and the subjective benefit as too abstract.

Participant E have conducted many CIA reports during his time at the com-
pany, and he explained that they are rarely modified once they have been submit-
ted. “I do my best to answer the questions important to me, the document updates
and the tests to run, but of course I try to answer the rest properly as well. Subjec-
tively I would put my manual quality close to the saturation point”. This statement
reflects that higher recall in the CIA reports would have little practical signifi-

226 Supporting Change Impact Analysis Using a Recommendation System: . . .

Figure 7: Mapping correctness and utility using the QUPER model. Black arrows
depict the current manual work, white arrows represent working with ImpRec.

cance. Participant D put the current correctness of ImpRec in the lower end of the
‘useful’ region, and motivates his choice “I think I rarely got a really good search
hit that I hadn’t already thought of. Maybe just once or so. I don’t think using
the tool made me rethink the content of my CIA reports”. This statement clearly
shows that (E) did not receive much novelty from ImpRec, but rather confirmation.
Participant E also quantified the QUPER quality breakpoints for ImpRec: utility -
25%, differentiation - 50%, saturation - between 75% and 100%.

Participant D focused more on the benefit dimension than the quality. His main
consideration was that his experienced benefit of the CIA report was low with the
current way of working, no matter how correct they would be: “During the project
the value is very limited. We don’t use the content of the CIA report properly,
they just live on parallel to the project. Even if they would be 100% accurate, their
benefit to me would still not be better than ‘useful”’. However, he acknowledged
that other roles than developers might find them more useful, especially at the end
of projects. He also made a critical remark: “CIA reports is not a parameter in the
project planning. But they should be.” Regarding the utility of ImpRec, participant
D said “Already this prototype is clearly useful”. Moreover, he explained that the
overall RSSE approach is promising: “What we developers are bad at is tracing to
requirements. And reporting the test case selection back to the test organization.
This is where I think there is potential in a tool like this, to take advantage of what

6 Results and Interpretation 227

others have done before”.
Participant G had a contrasting view on the quality levels. He preferred to

view the quality as binary: “There are no different levels like this. CIA reports
are either worthless or ok.” He emphasized the variation of how skilful develop-
ers are at writing CIA reports, and that some tend to report too much. Thus, the
interview revealed some of the politics involved in the safety process: “Some love
to describe the whole world, but that typically hits you back. The safety team
will polish the answers before sending them to [the (anonymized) external safety
assessor]. Otherwise they will come back and demand re-implementation and test-
ing, strangling the development for two years.” Participant G explained that the
organization aimed for “good enough” CIA reports, and then hoped that the over-
all process would ensure a decent level of quality. Finally, participant G stated
that automated tool support for CIA could be useful, and quantified the QUPER
breakpoints as follows: utility - 10% (“below that it would be too much waste of
time”), differentiation - 25%, and saturation - 50% (“too much help is not good, I
still want the developers to work for themselves”).

Participant F was the only participant that preferred to discuss utility with-
out the structure of the QUPER breakpoints. Instead, his impression was that the
current manual CIA reports cover 75% of what should actually be reported. He ac-
knowledged that ImpRec sometimes provided him with useful recommendations,
but particularly commended the fast searches in the tool. He also encouraged fu-
ture evolution of the RSSE as he believed in the approach of finding related CIA
reports from the past. However, participant F also stressed other aspects of util-
ity: “You become more inclined to use the tool if it is integrated in some way.
Otherwise there is always this threshold. It has to be integrated and easy to use.”

The RSSE integration aspects were also mentioned by participant D during the
post-study interview. He requested ImpRec to be properly integrated in the issue
tracker, to help the RSSE reach its potential. He also mentioned three other im-
provement proposals: 1) enabling filtering of the search results, 2) personalization
of the searches, maybe by tagging ‘favorites’, and 3) introducing more templates,
both for searching and writing answers to the CIA questions. Towards the end of
the interview, participant D also warned about the dangers of tools like ImpRec,
since also developers’ erroneous decisions could be propagated to future CIAs.

We received positive qualitative feedback on the utility of ImpRec from Unit
India as well, e.g., from participants K and M, however not structured according to
the QUPER model. Some participants in Unit India were also eager to try ImpRec
further, as represented by participant J asking “Could you tell me how to upgrade
the database of the tool, so that it gets the latest set of issues?” The question puts
the importance of keeping the knowledge base up-to-date in focus, an important
direction for future work.

Summarizing the utility evaluation, we note that the developers’ reception of
ImpRec varies. Still, it appears that the level of correctness provided by Imp-
Rec can support developers in the case under study. For example, all participants

228 Supporting Change Impact Analysis Using a Recommendation System: . . .

in Unit Sweden shared some positive experiences from working with ImpRec.
Participants D and E explicitly put ImpRec beyond the utility breakpoint in the
QUPER model, and participant G associated the utility breakpoint with a quality
level well below what ImpRec delivers (10%). Participant F preferred to discuss
the utility in a more abstract fashion, but reported that ImpRec ‘absolutely’ pre-
sented some useful recommendations. The evaluation in Unit India, involving
more participants (but only 23% of the total number of ImpRec search sessions),
also indicated that ImpRec was helpful. The junior developers (participants J and
K) confirmed usefulness of the tool, and two senior developers (participants M
and N) reported several correct recommendations using the confirmation function-
ality. On the other hand, two other senior developers (participants H and I) did not
provide any qualitative feedback, and also confirmed fewer recommendations as
true.

7 Threats to Validity

We discuss threats to validity in terms of construct validity, internal validity, ex-
ternal validity, and reliability as proposed by Runeson et al. [413]. We minimize
the conclusion validity discussion as the conclusions of this paper do not arrive
from inferential statistics and its assumptions [477].

7.1 Static Validation (RQ1)

The main threats to our conclusions regarding correctness belong to construct va-
lidity (i.e., the relation between the theories behind the research and our observa-
tions) and external validity (i.e., whether the results can be generalized). As Imp-
Rec is tailored for the specific context, we discuss generalizing the static validation
to other sets of issue reports in the same organization, not to other companies.

All measurements of the ImpRec recommendations are made by comparing to
the gold standard. Thus, our conclusions regarding the ImpRec’s accuracy assume
that the gold standard is correct. The gold standard is extracted from manually
created CIA reports during years of software evolution, and it is likely that some
of the reports point out to either too many impacted artifacts or too few. However,
the CIA reports are among the most frequently reviewed artifacts in the organiza-
tion, as they are fundamental to the safety certification. The change control board,
project managers, and the safety team continuously validate them during the de-
velopment life-cycle.

Also related to construct validity, we evaluated ImpRec without filtering any
issue reports, i.e., we simply tried the RSSE by simulating the true historical inflow
of issue reports. In a real setting, it is likely that ImpRec would only be used for
defect reports that require corrective maintenance work. However, the decision to
include all types of issue reports in the static validation, as long as they had an

7 Threats to Validity 229

attached CIA report, is unlikely to have improved our results. Instead, we suspect
that the correctness of ImpRec might have been better if only defect reports were
studied.

External validity threats are also substantial in relation to RQ1. The static val-
idation procedure was designed to obtain preliminary results, and allow fast tran-
sition to the dynamic validation, the integral evaluation of this study. This choice
lead to some simplifications of the static validation. Even though we simulate 1.5
years of true issue inflow, we study only one test set. Thus, it is possible that
the results would have been different if we studied other test sets. An alternative
design would have been to use k-tail evaluation [331], a type of k-fold cross vali-
dation preserving the internal order of elements. However, the extent of our static
validation is in line with most previous work reported in Section 2.3. Moreover,
we argue that a more thorough in silico evaluation is beyond the scope of this case
study. We primarily consider correctness (RQ1) to be a prerequisite to study utility
(RQ2), a quality characteristic we consider more interesting. Previous studies on
the other hand, often use correctness as a proxy for utility, and leave studies with
real users as important future work.

7.2 Dynamic Validation (RQ2 and RQ3)

Even though we carefully designed our study, e.g., by creating and evolving a
detailed case study protocol as proposed by Runeson et al. [413], there are threats
to construct validity. When conducting interviews, there is a risk that academic
researchers and practitioners use different terminology and have different frames
of reference. There is also a risk that the interview guides did not capture all
utility aspects of ImpRec. To reduce these risks, the interview instruments were
reviewed by all authors, and the interviewees were all given opportunity to discuss
experiences openly. Furthermore, we improved construct validity by performing
method triangulation, i.e., SLA and interviews.

The user log files did not always contain all information needed for proper
SLA. Our design relied on that the participants used the confirmation functionality,
and sometimes they did not. However, most ImpRec sessions were concluded with
a click on the confirmation button (cf. D in Fig. 2), indicating that the participants
followed our instructions. Finally, there is a risk that some participants refrained
from using ImpRec because of the detailed user log files. To mitigate this threat,
we presented the location of the log file, and explained that all data was stored
without encryption in a readable XML format.

Our initial plan was to complement the interviews and the SLA by quantitative
measurements in the issue tracker representing: 1) the quality of the CIAs, and 2)
the effort required to conduct CIAs. Thus, we developed TimeCIA and ModCIA
(presented in Section 5.3), and extracted the corresponding data prior to the initial
interviews. However, the interviewees explained that there were too many con-
founding factors to interpret the two measures in meaningful ways. Consequently,

230 Supporting Change Impact Analysis Using a Recommendation System: . . .

we did not attempt to triangulate the utility of ImpRec with these quantitative mea-
sures. Nonetheless, we argue that the interviews and the SLA suffice to answer
RQ2 with reasonable validity.

Threats to internal validity deal with casual relations and confounding fac-
tors. Regarding RQ2, it is possible that the development phase in the organization
affected the dynamic validation results. To study the utility of a CIA tool, its de-
ployment should coincide with a CIA intensive phase. We deployed ImpRec in
Unit Sweden after a formal verification phase, typically resulting in a subsequent
peak of corrective maintenance, i.e., issue triaging and CIA. On the other hand,
the point in time for deployment in Unit India was selected for convenience. The
higher number of ImpRec uses in Unit Sweden reflects the different development
phases during the data collection.

RQ3 addresses differences between project newcomers and seasoned develop-
ers. All seasoned developers are also senior, and there is a risk that seniors have a
more balanced view on tools, i.e., seniors might be biased to more sceptical assess-
ments of the utility of ImpRec. Another systematic bias in our study might come
from cultural differences [420]. It is possible that the participants in the two units
of analysis were culturally inclined to provide certain feedback. However, we con-
sider the impact of this threat to be tolerable, as both Unit Sweden and Unit India
reported positive and negative feedback. Similar bias may also apply to RQ2.

We discuss external validity both in terms of generalization to other develop-
ers in the organization, and to other companies active in safety-critical software
development. We studied developers from two development teams in an organiza-
tion comprising roughly 10 teams. Looking at the project history, the two selected
teams have conducted CIAs with an average frequency, and the participants stud-
ied within the two teams represent different perspectives. Furthermore, we study
developers working on two different continents. We find it likely that developers
also from other teams in the organization, if they are working on evolving parts of
the system covered by the knowledge base, could benefit ImpRec as well.

Regarding generalization to other companies, analytical generalization is re-
quired to relate our findings to other cases [413]. Our case study is an in-depth
study of a specific organization, combining quantitative and qualitative analysis.
Several aspects are unique to the case under study, e.g., the CIA template, and
the practice of storing CIA reports as free text attachments in the issue tracker.
It is important to mention that other organizations developing safety-critical sys-
tems may have other adaptations of their development processes to fulfil safety
standards such as IEC61511-1 [238], ISO26262 [242], and EN50128 [174]. Still,
explicit CIAs are required in all organizations modifying a safety certified soft-
ware system [68]. Moreover, our cross-domain survey of CIA also suggests that
while details differ, many of the CIA challenges are universal in safety-critical de-
velopment [136]. As such, providing in-depth industrial case studies can enable
important knowledge transfer between domains, a phenomenon also reported by
participant B as remarkably limited at the moment.

8 Discussion 231

The analysis of qualitative research lies in interpretation by the involved re-
searchers, thus exact replications are improbable, which constitutes a threat to
reliability. However, to increase the reliability of our study, we combined the in-
terviews with SLA. Another threat to in situ studies, particularly with longitudinal
data collection, is that strong relationships are created between researchers and
study participants. Other researchers might have developed different relations, in-
fluencing the interviews in other ways.

Finally, there are multiple quality attributes available for RSSE evaluations.
Avazpour et al. listed 16 attributes [32], but this study focused only on correctness
and utility. Other researchers would maybe select other attributes. From our per-
spective, the most important ones among the 14 attributes we did not evaluate are
coverage and risk. However, we discuss them both in Section 8.

8 Discussion

In this section, we first discuss the research questions presented in Section 5. Sec-
ond, we discuss our work in the light of previous research on CIA. Third, we
discuss the implications for industry practice.

8.1 Revisiting the Research Questions

RQ1 addresses the correctness of ImpRec [32], a question that we tackled using
in silico simulation and quantitative IR measures, in what we refer to as static
validation [201]. We studied two configurations of ImpRec, and conclude that
ImpRec recommends about 30% of the true impact among the top-5 items and
40% among the top-10 items. Furthermore, while ImpRec A recommends few
truly impacted artifacts after rank 10, ImpRec B exceeds 50% among the top-20
items.

The ranking function of ImpRec performed better than two naïve approaches
to automated CIA: 1) recommending artifacts impacted by textually similar issue
reports, and 2) recommending the most frequently impacted artifacts. Further-
more, the in situ evaluation showed that the participants considered the ranking
function to be helpful, as indicated by the click distribution and as reported in the
post-study interviews.

To the best of our knowledge, ImpRec is the first tool for automated CIA that
exclusively targets non-code software artifacts. While this means that comparisons
to previous work should only be made to observe general trends, we conclude
that the correctness of ImpRec is in line with what can be found in the scientific
literature. ImpRec obtains better recall than precision, but we agree with previous
researchers [118,144,231] and consider recall more important (as long as the total
number of recommendations is still reasonable), we postulate that the correctness
of ImpRec is good enough to commence dynamic validation.

232 Supporting Change Impact Analysis Using a Recommendation System: . . .

RQ2 deals with the utility of ImpRec [32], and especially whether develop-
ers recognized the value of the RSSE. We assessed this using dynamic valida-
tion [201], by deploying ImpRec in two development teams, and then collecting
data in a longitudinal in situ study. While we also collected quantitative measures,
we primarily discuss utility based on the post-study interviews using the QUPER
model [390].

The post-study interviews with Unit Sweden suggest that the correctness of the
RSSE has passed the utility breakpoint, i.e., ImpRec is useful in supporting CIA.
Participants D and G estimated the utility breakpoint to be at 25% and 10% recall,
respectively, strictly lower than ImpRec’s recall at 40% already at N=10. Inter-
estingly, participant G put the differentiation breakpoint at 25% and the saturation
breakpoint at 50%, as he does not want a tool to deliver “too much”. Several other
participants, including Unit India, also reported positive feedback from working
with ImpRec.

The participants reported two considerations related to utility that will impact
future work. First, participant D expressed concerns that ImpRec rarely reported
anything that he did not already know. This implies that there is a risk that ImpRec
might primarily deliver obvious recommendations, i.e., only reinforcing what the
developers already know, but providing limited novelty [402]. On the other hand,
delivering confirmation is critical for an RSSE to establish user trust [32]. Still, fu-
ture work needs to further assess the value of the true recommendations provided
by ImpRec. In the same vein, participant E warned that ImpRec risks propagating
errors from previous CIA reports. This is indeed true, and further research is re-
quired on how to adapt development processes to take such error propagation into
account (see also Section 8.3).

Participants E and F emphasized another aspect of utility: they claimed that an
RSSE like ImpRec must be integrated in the existing tool chain, and not executed
as a separate tool. We were well aware of this during design of the tool [69], but as
the organization was (and still is) in a transition to replace the current issue tracker,
we decided to integrate ImpRec in another existing support tool instead only (IA
Sidekick). However, as most developers were unaware of IA Sidekick, it did not
support the dissemination of ImpRec much.

RQ3 explores whether project newcomers value navigational tool support more
than developers that are more knowledgeable, as suggested by previous work on
tool support for software engineering [127, 366]. In our in situ study, we consider
Participants (F), (G), (J), and (K) as newcomers with less knowledge of both the
domain in general and the particular software system.

Participant F obtained an RcImp matching the static validation (cf. Table 4, but
the other newcomers obtained modest results in terms of recall. On the other hand,
the newcomers confirmed a slightly higher number of useful related issue reports
than the seasoned developers (on average 1.7 per search session, compared to 1.3)
but the difference is not statistically significant. The average number of confirmed
impacted artifacts however was practically the same for newcomers and seasoned

8 Discussion 233

developers.
Newcomers expressed some of the most positive comments. Participants J

and K in Unit India were both very positive to ImpRec and interested in the fu-
ture evolution of the tool. Moreover, participant G in Unit Sweden put the utility
breakpoint in the QUPER model well below the current correctness of ImpRec.
The newcomers appeared to particularly value the quick access to previous issue
report provided by the RSSE, i.e., the qualitative feedback suggest that introducing
state-of-the-art search functionality in the issue tracker is promising.

The seasoned developers expressed most of the risks involved in increasing
the level of automation in CIA. While the junior developers (G), (J), and (K)
did not discuss any risks involved in tool support during interviews, some senior
developers were more defensive. Participant D warned that mistakes might be
propagated using tools. Participant H did not see obvious use cases for ImpRec,
and participant E questioned the lack of novelty in the ImpRec recommendations.
To conclude, the qualitative feedback suggests that newcomers are more positive
to navigational support provided by an RSSE compared to seasoned developers.
However, while our results slightly indicate that newcomers particularly appreciate
recommendations of related issue reports, whether newcomers in general benefit
more from ImpRec than seasoned developers remains inconclusive.

8.2 ImpRec and State-of-the-Art Research

Our study brings several novel contributions to CIA and RSSE research, in partic-
ular from an empirical perspective. In this section, we discuss four aspects where
our work goes further than previous studies. We mainly compare our work to
previous CIA research based on the taxonomy of CIA support proposed by Lehn-
ert [293] and his accompanying literature review [292]. Table 5 summarizes our
work according to the taxonomy. We conclude the section by sharing some lessons
learned that might help advance studies on CIA.

First, although CIA is fundamental in safety standards (e.g., [174, 242, 382]),
most of the previous evaluations of tool support for CIA exclusively consider Open
Source Software (OSS) [292]. We have previously identified the same lack of
studies in proprietary contexts regarding tool support for traceability management
[76], another corner stone in safety-critical development [115, 210].

Exclusively focusing on OSS is unfortunate, since there is a need for empiri-
cal studies on safety-critical software development in industry [350]. Also, there
are still no large safety-critical OSS systems available as surrogates [441], thus
researchers must target proprietary systems. The over-representation of studies in
the OSS domain applies to software engineering research in general, explained by
the appealing availability of large amounts of data and the possibility of replica-
tions [404]. Thus, this study is a rare example of an in-depth empirical study on
tool support for CIA, tailored for a specific safety-critical development process, in
a proprietary context.

234 Supporting Change Impact Analysis Using a Recommendation System: . . .

Table 5: ImpRec compared to Lehnert’s taxonomy of CIA tools [292]. Comments
in italic font represent types that do not exist in the original taxonomy.

Criterion Comment
Scope of Analysis Misc. artifacts
Utilized Technique(s) History mining, Traceability,

Information retrieval
Granularity of
- Entities Document
- Changes Issue report
- Results Document
Style of Analysis Search based
Tool Support ImpRec
Supported Languages N/A
Scalability Full scale
Experimental Results
- Size ≈ 50,000 entities
- Precision Pr@10=0.05
- Recall Rc@10=0.40
- Time < 1 s per search

+ in situ evaluation

Second, we conducted a longitudinal in situ study. Most previous evaluations
on CIA tools were instead only evaluated in silico, i.e., they were assessed based on
tool output from experimental runs on a computer. No study included in Lehnert’s
literature review involved a prolonged analysis of a deployed tool [292]. In the
RSSE community, Robillard and Walker recently highlighted the lack of studies
including humans in the loop [402]. Our study is unique in its in situ design, i.e.,
we study how developers in Sweden and India interact with ImpRec in their own
work environment, while they work on real CIA. Future research should continue
with this more holistic approach, by deploying tools and studying human output
as well as tool output.

Third, ImpRec addresses CIA of non-code artifacts. A clear majority of previ-
ous studies on CIA target the source code level, but our work is instead among the
few exceptions that deals with miscellaneous artifacts. In safety-critical software
development, the impact on different artifacts must be analyzed. Our previous
cross-domain survey of practitioners working with CIA in safety-critical systems
shows that not only source code impact is difficult to analyze, but also other de-
velopment artifacts [136]. The initial interviews in this case study confirm the
importance of extending CIA support to misc. types of artifact. In fact, some
of the developers even stated that tool support for CIA among requirements, test
cases and related documentation is more important than tool support for source

8 Discussion 235

code CIA, as they find it more difficult (and less interesting) to stay on top of in-
formation that does not reside in the source code repository, see Section 3.2. We
suspect that one reason for the strong code-orientation in previous CIA research
originates from the OSS domain in which fewer types of software artifacts are typ-
ically maintained. Consequently, we argue that more CIA researchers should study
software systems certified by some of the established safety standards in industry,
to enable more studies beyond the source code level.

Fourth, ImpRec combines techniques proposed in previous work in a novel
way. Lehnert’s taxonomy contains 10 different techniques to support CIA [293].
As presented in Table 5, ImpRec combines a collaboratively created knowledge
base with a state-of-the-art search solution. The knowledge base is established us-
ing History Mining (HM) of previous trace links, i.e., Traceability (TR). Apache
Lucene provides the Information Retrieval (IR) part, the driver of the ImpRec ap-
proach. According to Lehnert’s literature review, HM+TR have been combined in
previous work [135], as well as HM+IR [91, 92, 259] and TR+IR [464]. However,
ImpRec is the only tool support for CIA that combines HM+TR+IR.

Regarding the remaining criteria in Lehnert’s taxonomy [293], more aspects
of ImpRec are worth mentioning. The granularity considered in our work is ‘doc-
uments’, with ‘issue reports’ as change triggers. Our RSSE is used for a search
based style of CIA, i.e., on demand per issue report, the least frequent style in
Lehnert’s literature review [292]. The criterion ‘supported languages’ does not ap-
ply to ImpRec, as it does not deal with source code impact. Finally, the scalability
of our approach is implicit, as we already used it in situ in a real industrial set-
ting. The searches are still quick, and we leverage on size, i.e., we expect a larger
knowledge base to bring higher correctness and utility.

Finally, we report some lessons learned that might support future studies on
CIA. CIA analysis is a complex cognitive task that requires much from the devel-
oper. The initial interviews in this study clearly shows that assessing the value of
tool support cannot be made using simple measures such as TimeCIA and Mod-
CIA (introduced in Section 5.3), as there are too many confounding factors. Fur-
thermore, our post-study interviews reveal that also correctness (in terms of IR
measures) is too simplistic. The value of recommendations is not binary; a high
amount of correct results might still be barely useful, while a single correct item
(if delivered with a high ranking) can bring the experienced utility to high levels.
In conclusion, our work stresses the importance of qualitative analysis of output
from CIA tools.

8.3 ImpRec and Implications for Industry Practice

In this section we discuss the findings most important to industry practice. While
there are several aspects that could be of interest to industry practitioners in safety-
critical development contexts, we focus on three topics: 1) wasted effort when

236 Supporting Change Impact Analysis Using a Recommendation System: . . .

working with an inadequate issue tracker, 2) the potential of CIA history mining,
and 3) challenges in introducing CIA tool support.

First, we found strong evidence that using an underdeveloped issue tracker
impedes both CIA and issue management in general. The majority of participants
in the study were critical about the currently used issue tracker, explaining that it
was slow, and poor at both searching and browsing issue reports. Based on the
feedback functionality of ImpRec, we also identified that many relations among
issue reports were not properly stored in the issue tracker. It might be worth-
while to oversee how and when relations are specified, as research has shown that
helping other developers quickly find all related issues speeds up maintenance
work [53]. In our study, especially the junior developers appreciated quick access
to previous issue reports. Our recommendation to industry is to at least introduce
proper search functionality in the issue tracker (e.g., using the OSS library Apache
Lucene as we did in ImpRec) as it would constitute a small effort with a promising
return on investment. Furthermore, future search solutions might turn more accu-
rate if the inter-issue relations are properly stored, as network measures are central
in state-of-the-art ranking functions.

Second, our work highlights the significant potential of what mining explicit
knowledge from historical CIA reports could bring. As presented in Section 3.2,
one of the challenges of the rigid CIA process in safety-critical development is that
developers view it as an activity that simply must be done to achieve safety cer-
tification, but that the CIA reports once completed bring them no personal value.
Several participants in our study confirm this view, thus industry should make an
effort to increase the appeal of CIA. We argue that letting developers reuse knowl-
edge captured in previous CIAs could make developers more inclined to write high
quality CIA reports, and to make them living documents. Developers take pride
in evolving source code to high standards, but the CIA report is primarily a one-
shot production, and developers rarely look back. Spending hundreds of hours
on CIA reports in a project merely to please external certification agencies could
be considered as waste unless the knowledge built during the process is reused to
improve the software development.

Even though our study shows that reusing previous CIA reports has the poten-
tial to support developers, we are aware that our approach has limitations. Knowl-
edge reuse is only possible if the project contains enough history, and from a col-
laboratively created knowledge base, an RSSE can only recommend already en-
countered artifacts. This aspect is referred to as the coverage of the RSSE [32].
Table 4 shows that ImpRec’s coverage varies across different parts of the system,
and for participants working on new parts of the system ImpRec brings little value.
However, based on our positive assessment of utility (RQ2), we infer that mining
a knowledge base from historical CIA reports reaches useful coverage by focusing
on the most volatile components.

Third, introducing new tool support in a large organization is a challenging
endeavour. Dubey and Hudepohl share some experiences in a recent publica-

9 Conclusion and Future Work 237

tion [164], in which they categorize the challenges along three dimensions: 1)
technical, 2) collaboration, and 3) motivational.

Technical challenges originate in the varied environments encountered in large
organizations. ImpRec is tailored for a specific issue tracker, and a rigorous CIA
process using a formal CIA template. Thus, the use of ImpRec is limited to cer-
tain parts of the organization. Collaboration challenges on the other hand deal
with communication issues between the tool supplier and the users. As suggested
by Dubey and Hudepohl [164], we created an easy-to-follow user manual and
provided support via email. The motivational dimension is probably the most pro-
truding among Dupey and Hudepohl’s categories. Working with ImpRec must be
better than manual CIAs, otherwise the RSSE will have no users. Participants in
our study particularly stressed the importance of seamless integration in the issue
tracker and fast searches.

There seems to be an additional dimension not mentioned by Dubey and Hude-
pohl [164], which applies to introducing tool support in an environment certified
for safety-critical development: the organizational dimension. To formally intro-
duce a new tool in the organization under study, a ‘tool selection report’ must be
authored. The report should explain to the external safety assessor how system
safety might be affected with the new tool. Since ImpRec targets CIA, a safety-
critical activity, also development processes must be adapted. While ImpRec has
the ability to identify impacted artifacts that could be missed otherwise, the tool
might also lull the developers to a false sense of security. Thus, the CIA process
guidelines would have to be updated to counter this phenomenon. Future research
should further explore how RSSEs could be introduced in safety-critical contexts.

9 Conclusion and Future Work

This paper reports from an industrial case study on a Recommendation System for
Software Engineering (RSSE) for Change Impact Analysis (CIA) called ImpRec.
We introduced ImpRec [75] to provide decision support by presenting potentially
impacted non-code artifacts, tailored for a particular development organization.
ImpRec recommendations originate in the textual content of an incoming issue
report, and uses network analysis in a collectively created knowledge base to com-
pute candidate impact.

We evaluate ImpRec in a two-step study, as recommended practice for tech-
nology transfer by Gorschek et al. [201]. First, we conducted static validation in
silico, to assess the correctness of ImpRec (RQ1). Our results suggest that ImpRec
presents about 40% of the true impact within the top-10 recommendations. Sec-
ond, we conducted dynamic validation in situ, by deploying ImpRec in two devel-
opment teams for several months. We assess the utility of ImpRec (RQ2) based on
collected user logs and interviews. Our results indicate that ImpRec’s current level
of correctness represents tool support that has passed the utility breakpoint, i.e.,

238 Supporting Change Impact Analysis Using a Recommendation System: . . .

the developers recognize the value of using the tool. Also, developers acknowl-
edge the overall approach of reusing knowledge from past CIA to provide decision
support, and they are positive to further research.

Our findings have implications for both research and practice. First, our study
contributes to the state-of-the-art of RSSE evaluation. Our case study is a rare
example of an in-depth evaluation of an RSSE in a proprietary context. ImpRec
provides novel CIA tool support by solely targeting non-code impact, a type of
impact stressed as particularly challenging by our interviewees. Second, regarding
implications for industry, we show that if an issue tracker does not offer adequate
search and navigation, it impedes both CIA and issue management in general. We
argue that simply storing highly accurate CIA reports in a database, without moti-
vating developers to benefit from the captured knowledge, is a waste of effort. By
conducting link mining, the knowledge in the historical CIA reports can be used
to provide decision support that might be especially helpful for junior developers.

While the current version of ImpRec appears to be mature enough to be used
in industry, there are several important paths for future work. First, the RSSE itself
should be further evolved. The correctness might be increased by attempting to im-
prove preprocessing and to tune internal parameters. A promising direction would
also be to introduce source code impact to ImpRec. While it is not considered the
highest priority by the practitioners, it might result in a more complete semantic
network, thus offering more accurate recommendations. Second, as ImpRec uses
the historical CIA reports to build its knowledge base, we expect improvements
as more data becomes available. However, the knowledge base might also turn
partly obsolete, thus decreasing the correctness of ImpRec. Future work should
investigate how to maintain a deployed RSSE in industry, with regard to retraining
when additional data becomes available and monitoring performance as training
data becomes older. ImpRec should also be improved along those lines, as the
current version requires manual creation of the knowledge base, instead of online
learning [57]. Finally, research must be directed at how to introduce additional
tool support in safety-critical contexts, in line with work by Dupey and Hude-
pohl [164]. Deployment of new tools always introduces risks, and the mitigation
strategies in the target organizations should involve both adapted processes and
practices.

Acknowledgements
This work was funded by the Industrial Excellence Center EASE - Embedded
Applications Software Engineering5. Thanks go to all participants in the case
study.

5http://ease.cs.lth.se

PART III: THE UTILIZATION
PHASE

CHAPTER V

TUNER: A FRAMEWORK FOR
TUNING SOFTWARE

ENGINEERING TOOLS WITH
HANDS-ON INSTRUCTIONS IN

R

Abstract

Numerous tools automating various aspects of software engineering have been
developed, and many of the tools are highly configurable through parameters. Un-
derstanding the parameters of advanced tools often requires deep understanding
of complex algorithms. Unfortunately, sub-optimal parameter settings limit the
performance of tools and hinder industrial adaptation, but still few studies address
the challenge of tuning software engineering tools. We present TuneR, an experi-
ment framework that supports finding feasible parameter settings using empirical
methods. The framework is accompanied by practical guidelines of how to use R
to analyze the experimental outcome. As a proof-of-concept, we apply TuneR to
tune ImpRec, a recommendation system for change impact analysis. Compared to
the output from the default setting, we report a 20.9% improvement in the response
variable. Moreover, TuneR reveals insights into the interaction among parameters,
as well as non-linear effects. TuneR is easy to use, thus the framework has poten-
tial to support tuning of software engineering tools in both academia and industry.

Markus Borg Submitted to a journal

242 TuneR: A Framework for Tuning Software Engineering Tools with . . .

1 Introduction

Tools that increase the level of automation in software engineering are often highly
configurable through parameters. Examples of state-of-the-art tools that can be
configured for a particular operational setting include EvoSuite for automatic test
suite generation [187], FindBugs for static code analysis [34], and MyLyn, a task-
oriented recommendation system in the Eclipse IDE [269]. However, the perfor-
mance of these tools, as well as other tools providing decision support, generally
depends strongly on the parameter setting used [45], often more so than the choice
of the underlying algorithm [291]. The best parameter setting depends on the spe-
cific development context, and even within the same context it might change over
time.

Finding feasible parameter settings is not an easy task. Automated tools in
software engineering often implement advanced techniques such as genetic algo-
rithms, dimensionality reduction, Information Retrieval (IR), and Machine Learn-
ing (ML). Numerous studies have explored how tool performance can be improved
by tailoring algorithms and tuning parameters, for example in test data genera-
tion [188], test case selection [305], fault localization [4, 446], requirements clas-
sification [98], and trace recovery [360, 500]. We have previously published a
systematic mapping study highlighting the data dependency of IR-based trace re-
covery tools [74], and Hall et al. found the same phenomenon in a systematic
literature review on bug prediction, stating that “models perform the best where
the right technique has been selected for the right data, and these techniques have
been tuned for the model rather than relying on default tool parameters” [212].
However, the research community cannot expect industry practitioners to have the
deep knowledge required to fully understand the settings of advanced tools.

Feasible tuning of parameter settings is critical for successful transfer of Soft-
ware Engineering (SE) tools from academia to industry. Unfortunately, apart from
some work on Search-Based Software Engineering (SBSE) [25,178] there are few
software engineering publications that specifically address parameter tuning. One
could argue that academia should develop state-of-the-art tools, and that the actual
deployment in different organizations is simply a matter of engineering. How-
ever, we argue that practical guidelines for tuning SE tools, i.e., finding feasible
parameter settings, are needed to support adaptation to industrial practice.

In this paper we discuss ImpRec [75], a Recommendation System for Software
Engineering (RSSE) [402] developed to support Change Impact Analysis (CIA) in
a company developing safety-critical software systems. ImpRec implements ideas
from the area of Mining Software Repositories (MSR) to establish a semantic net-
work of dependencies, and uses state-of-the-art IR to identify textually similar
nodes in the network. The tool combines the semantic network and the IR system
to recommend artifacts that are potentially impacted by an incoming issue report,
and presents a ranked list to the developer. During development of the tool, we
had to make several detailed design decisions, e.g., “how should distant artifacts

1 Introduction 243

in the system under study be penalized in the ranking function?” and “how should
we weigh different artifact features in the ranking function to best reflect the con-
fidence of the recommendations?”. Answering such questions at design time is
not easy. Instead we parametrized several decisions, a common solution that ef-
fectively postpones decisions to the tool user. We have deployed an early version
of ImpRec in two pilot development teams to get feedback [80]. However, we did
not want to force the study participants to consider different parameter settings;
instead we deployed ImpRec with a default setting based on our experiences. The
question remains however; is the default setting close to the optimum?

We see a need for tuning guidelines for SE tools, to help practitioners and
applied researchers to go beyond trial and pick-a-winner approaches. We suspect
that three sub-optimal tuning strategies [165, pp. 211] [342, pp. 4] dominate
tuning of SE tools: 1) ad hoc tuning, 2) quasi-exhaustive search, and 3) Change
One Parameter at a Time (COST) analysis. Ad hoc tuning might be a quick way to
reach a setting, but non-systematic tuning increases the risk of deploying tools that
do not reach their potential, therefore not being disseminated properly in industry.
Quasi-exhaustive search might be possible if the evaluation does not require too
much execution time, but it does not provide much insight in the parameters at play
unless the output is properly analyzed. COST analysis is a systematic approach to
tuning, but does not consider the effect of interaction between parameters.

We present TuneR, a framework for tuning parameters in automated software
engineering tools. The framework consists of three phases: 1) Prepare Experi-
ments, 2) Conduct Screening, and 3) Response Surface Methodology. The essence
of the framework lies in space-filling and factorial design, established methods to
structure experiments in Design of Computer Experiments (DoCE) and Design
of Experiments (DoE), respectively. As a proof-of-concept, we apply TuneR to
find a feasible parameter setting for ImpRec. For each step in TuneR, we present
hands-on instructions of how to conduct the corresponding analysis using various
packages for R [381], and the raw data is available on the companion website1. Us-
ing TuneR we increase the accuracy of ImpRec’s recommendations, with regard to
the selected response variable, by 20.9%. We also validate the result by comparing
the increased response to the outcome of a more exhaustive space-filling design.

The rest of this paper is structured as follows: Section 2 introduces the fun-
damental concepts in DoE and DoCE, and discusses how tuning of SE tools is
different. Section 3 presents related work on finding feasible parameter setting for
SE tools. In Section 4 we introduce ImpRec, the target of our tuning experiments.
The backbone of the paper, the extensive presentation of TuneR, interweaved with
the proof-of-concept tuning of ImpRec, is found in Section 5. In Section 6, we
report from the exhaustive experiment on ImpRec parameter settings. Section 7
discusses our results, and presents the main threats to validity. Finally, Section 8
concludes the paper.

1http://serg.cs.lth.se/research/experiment-packages/tuner/

244 TuneR: A Framework for Tuning Software Engineering Tools with . . .

2 Background

This section introduces design of experiments, both of physical and simulated na-
ture, and presents the terminology involved. Then we discuss how tuning of au-
tomated SE tools differ from traditional experiments. We conclude the section
by reporting related work on experimental frameworks and parameter tuning in
software engineering.

2.1 Design of Experiments

Design of Experiments (DoE) is a branch of applied statistics that deals with plan-
ning and analyzing controlled tests to evaluate the factors that affect the output of
a process [342]. DoE is a mature research field, a key component in the scientific
method, and it has proven useful for numerous engineering applications [236].
Also, DoE is powerful in commercialization, e.g., turning research prototypes into
mature products ready for market release [351]. DoE is used to answer questions
such as “what are the key factors at play in a process?”, “how do the factors inter-
act?”, and “what setting gives the best output?”.

We continue by defining the fundamental experimental terminology that is
used throughout the paper. For a complete presentation of the area we refer
to one of the available textbooks, e.g., Montgomery [342], Box et al. [82], and
Dunn [165]. An experiment is a series of experimental runs in which changes are
made to input variables of a system so that the experimenter can observe the out-
put response. The input variables are called factors, and they can be either design
factors or nuisance factors. Each design factor can be set to a specific level within
a certain range. The nuisance factors are of practical significance for the response,
but they are not interesting in the context of the experiment.

Dealing with nuisance factors is at the heart of traditional DoE. Nuisance fac-
tors are classified as controllable, uncontrollable, or noise factors. Controllable
nuisance factors can be set by the experimenter, whereas uncontrollable nuisance
factors can be measured but not set. Noise factors on the other hand can neither be
controlled nor measured, and thus require more of the experimenter.

The cornerstones in the experimental design are randomization, replication,
and blocking. Randomized order of the experimental runs is a prerequisite for
statistical analysis of the response. Not randomizing the order would introduce
a systematic bias into the responses. Replication means to conduct a repeated
experimental run, independent from the first, thus allowing the experimenter to
estimate the experimental error. Finally, blocking is used to reduce or eliminate
the variability introduced by the nuisance factors. Typically, a block is a set of
experimental runs conducted under relatively similar conditions.

Montgomery lists five possible goals of applying DoE to a process: 1) factor
screening, 2) optimization, 3) confirmation, 4) discovery, and 5) robustness [342,
pp. 14]. Factor screening is generally conducted to explore or characterize a new

2 Background 245

process, often aiming at identifying the most important factors. Optimization is
the activity of finding levels for the design factors that produce the best response.
Confirmation involves corroborating that a process behaves in line with existing
theory. Discovery is a type of experiments related to factor screening, but the aim
is to systematically explore how changes to the process affect the response. Finally,
an experiment with a robustness goal tries to identify under which conditions the
response substantially deteriorates. As the goal of the experiments conducted in
this paper is to find the best response for an automated software engineering tool by
tuning parameters, i.e., optimization, we focus the rest of this section accordingly.

The traditional DoE approach to optimize a process involves three main steps:
1) factor screening to narrow down the number of factors, 2) using factorial design
to study the response of all combinations of factors, and 3) applying Response
Surface Methodology (RSM) to iteratively change the setting toward an optimal
response [347]. Factorial design enables the experimenter to model the response
as a first-order model (considering main effects and interaction effects), while RSM
also introduces a second-order model in the final stage (considering also quadratic
effects).

Different experimental designs have been developed to study how design fac-
tors affect the response. The fundamental design in DoE is a factorial experiment,
an approach in which design factors are varied together (instead of one at a time).
The basic factorial design evaluates each design factor at two levels each, referred
to as a 2k factorial design. Such a design with two design factors is represented
by a square, where the corners represent the levels to explore in experimental runs
(see A in Fig. 1). When the number of design factors is large, the number of ex-
perimental runs required for a full factorial experiment might not be feasible. In
a fractional factorial experiment only a subset of the experimental runs are con-
ducted. Fractional factorial designs are common in practice, as all combinations
of factors rarely need to be studied. The literature on fractional factorial designs is
extensive, and we refer the interested reader to discussions by Montgomery [342]
and Dunn [165].

All points in the experimental designs represent various levels of a design fac-
tor. In DoE, all analysis and model fitting are conducted in coded units instead of
in original units. The advantage is that the model coefficients in coded units are
directly comparable, i.e., they are dimensionless and represent the effect of chang-
ing a design factor over a one-unit interval [342, pp. 290]. We use 1 and −1 to
represent the high and low level of a design factor in coded units.

Factorial design is a powerful approach to fit a first-order model to the re-
sponse. However, as the response is not necessarily linear, additional experimen-
tal runs might be needed. The first step is typically to add a center point to the
factorial design (cf. B in Fig. 1). If quadratic effects are expected, e.g., indicated
by experimental runs at the center point, the curvature needs to be better charac-
terized. The most popular design for fitting a second-order model to the response
is the Central Composite Design (CCD) [342, pp. 501] (cf. C in Fig. 1). CCD

246 TuneR: A Framework for Tuning Software Engineering Tools with . . .

complements the corners of the factorial design and the center point with axial
points. A CCD is called rotatable if all points are at the same distance from the
center point [276, pp. 50].

RSM is a sequential experimental procedure for optimizing a response (for a
complete introduction we refer the reader to Myers’ textbook [347]). In the initial
optimization phase, RSM assumes that we operate at a point far from the optimum
condition. To quickly move toward a more promising region of operation, the ex-
perimenter fits a first-order model to the response. Then, the operating conditions
should be iteratively changed along the path of steepest ascent. When the process
reaches the region of the optimum, a second-order model is fitted to enable an
analysis pinpointing the best point.

DoE has been a recommended practice in software engineering for decades.
The approaches have been introduced in well-cited software engineering textbooks
and guidelines, e.g., Basili et al. [43], Pfleeger [376], and Wohlin et al. [477].
However, tuning an automated software engineering tool differs from traditional
experiments in several aspects, as discussed in the rest of this section.

2.2 Design of Computer Experiments

DoE was developed for experiments in the physical world, but nowadays a signifi-
cant amount of experiments are instead conducted as computer simulation models
of physical systems, e.g., during product development [288]. Exploration using
computer simulations shares many characteristics of physical experiments, e.g.,
each experimental run requires input levels for the design factors and results in
one or more responses that characterize the process under study. However, there
are also important differences between physical experiments and experiments in
which the underlying reality is a mathematical model explored using a computer.

Randomization, replication, and blocking, three fundamental components of
DoE, were all introduced to mitigate the random nature of physical experiments.
Computer models on the other hand, unless programmed otherwise, generate de-
terministic responses with no random error [463]. While the deterministic re-
sponses often originate from highly complex mathematical models, repeated ex-
perimental runs using the same input data generates the same response, i.e., repli-
cation is not required. Neither does the order of the experimental runs need to be
randomized, nor is blocking needed to deal with nuisance factors. Still, assessing
the relationship between the design factors and the response in a computer experi-
ment is not trivial, and both the design and analysis of the experiment need careful
thought.

Design of Computer Experiments (DoCE) focuses on space-filling designs.
Evaluating only two levels of a design factor, as in a 2k factorial design, might
not be appropriate when working with computer models, as it can typically not be
assumed that the response is linear [176, pp. 11]. Instead, interesting phenomena
can potentially be found in all regions of the experimental space [342, pp. 524].

2 Background 247

Figure 1: Overview of experimental designs for two factors. Every point repre-
sents an experimental setting.

The simplest space-filling designs are uniform design (cf. D in Fig. 1), in which
all design points are spread evenly, and random design (cf. E in Fig. 1). Another
basic space-filling design is the Latin Hypercube design. A two-factor experiment
has its experimental points in a latin square if there is only one point in each row
and each column (cf. F in Fig. 1), in line with the solution to a sudoku puzzle. A
Latin Hypercube is the generalization to an arbitrary number of dimensions. Latin
Hypercubes can be combined with randomization to select the specific setting in
each cell, as represented by white points in Figure 1.

Also RSM needs adaptation for successful application to computer experi-
ments. There are caveats that need to be taken into consideration when transferring
RSM from DoE to DoCE. Vining highlights that the experimenter need some infor-
mation about starting points, otherwise there is a considerable risk that RSM ends
up in a local optimum [463]. Moreover, bumpy response surfaces, which computer

248 TuneR: A Framework for Tuning Software Engineering Tools with . . .

models might generate, pose difficulties for optimization. Consequently, a starting
point for RSM should be in the neighborhood of an acceptable optimum. Finally,
RSM assumes that there should be only few active design factors. Vining argues
that both starting points and the number of design factors should be evaluated us-
ing screening experiments [463], thus screening is emphasized as a separate phase
in TuneR.

2.3 Tuning Automated Software Engineering Tools

DoE evolved to support experiments in the physical world, and DoCE was de-
veloped to support experiments on computer models of physical phenomena. The
question whether software is tangible or intangible is debated from both philosoph-
ical and juridical perspectives (see e.g., [50, 343]), but no matter what, there are
differences between software and the entities that are typically explored using DoE
and DoCE. Furthermore, in this paper we are interested in using experiments for
tuning2 a special type of software: tools for automated software engineering. We
argue that there are two main underlying differences between experiments con-
ducted to tune automated SE tools and traditional DoCE. First, automated SE
tools are not computer models of an entity in the physical world. Thus, we of-
ten cannot relate the meaning of various parameter settings to characteristics that
are easily comprehensible. In DoCE however, we are more likely to have a pre-
understanding of the characteristics of the underlying physical phenomenon. Sec-
ond, a tuned automated SE tool is not the primary deliverable, but a means to an
end. An automated SE tool is intended to either improve the software under de-
velopment, or to support the ongoing development process [182]. In DoCE on the
other hand, the simulation experiments tend to be conducted on a computer model
of the product under development or the phenomenon under study.

Consequently, an experimenter attempting to tune an automated SE tool must
consider some aspects that might be less applicable to traditional DoCE. The ex-
perimenter should be prepared for unexpected responses in all regions of the ex-
periment space, due to the lack of connection between parameters and physical
processes. Parameter ranges resulting in feasible responses might exist anywhere
in the experiment space, thus some variant of space-filling designs need to be
applied as in DoCE. However, responses from automated SE tools cannot be ex-
pected to behave linearly, as the response might display sudden steps in the re-
sponse or asymptotic behavior. While certain peculiarities might arise also when
calibrating physical processes, we believe that they could be more common when
tuning automated SE tools. Other aspects that must be taken into consideration
are execution time and memory consumption. An SE tool is not useful if it cannot
deliver its output in a reasonable amount of time, and it should be able to do so
with the memory available in the computers of the target environment.

2Adjusting parameters of a system is known as calibration when they are part of a physical process,
otherwise the activity is called tuning [299].

3 Related Work on Parameter Tuning in Software Engineering 249

When tuning an automated SE tool, we propose that it should be considered
a black-box model (also recommended by Arcuri and Fraser [25]). We define a
black-box model, inspired by Kleijnen, as “a model that transforms observable in-
put into observable outputs, whereas the values of internal variables and specific
functions of the tool implementation are unobservable” [276, pp. 16]. For any rea-
sonably complex SE tool, we suspect that fully analyzing how all implementation
details affect the response is likely to be impractical. However, when optimizing
a black-box model we need to rely on heuristic approaches, as we cannot be cer-
tain whether an identified optimum is local or global. An alternative to heuristic
approaches is to use metaheuristics (e.g., genetic algorithms, simulated annealing,
or tabu search [15]), but such approaches require extensive tuning themselves.

The main contribution of this paper is TuneR, a heuristic experiment frame-
work for tuning automated SE tools using R. TuneR uses a space-filling design to
screen factors of a black-box SE, uniform for bounded parameters and a geometric
sequence for unbounded parameters as shown in Figure 1 (G). Once a promising
region for the parameter setting has been identified, TuneR attempts to apply RSM
to find a feasible setting. We complement the presentation of TuneR with a hands-
on example of how we used it to tune the RSSE ImpRec.

3 Related Work on Parameter Tuning in Soft-
ware Engineering

Several researchers have published papers on parameter tuning in software en-
gineering. As the internals of many tools for automated SE involve advanced
techniques, such as computational intelligence and machine learning, academic
researchers must provide practical guidelines to support knowledge transfer to in-
dustry. In this section we present some of the most related work on tuning auto-
mated SE tools. All tools we discuss implement metaheuristics to some extent, a
challenging topic covered by Birattari in a recent book [61]. He reports that most
tuning of metaheurstics is done by hand and by rules of thumb, showing that such
tuning is not only an issue in SE.

Parameter tuning is fundamental in Search-Based Software Engineering (SBSE)
[25, 188]. As SBSE is based on metaheuristics, its performance is heavily depen-
dent on context-specific parameter settings. However, some parameters can be
set based on previous knowledge about the problem and the software under test.
Fraser and Arcuri refer to this as seeding, i.e., “any technique that exploits previous
related knowledge to help solve the testing problem at hand” [188]. They conclude
that seeding is valuable in tuning SBSE tools, and present empirical evidence that
the more domain specific information that can be included in the seeding, the better
the performance will be. In line with the recommendations by Fraser and Arcuri,
we emphasize the importance of pre-understanding by including it as a separate
step in TuneR.

250 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Arcuri and Fraser recently presented an empirical analysis on how their tool
EVOSUITE, a tool for test data generation, performed using different parameter
settings [25]. Based on more than one million experiments, they show that dif-
ferent settings cause very large variance in the performance of EVOSUITE, but
also that “default” settings presented in the literature result in reasonable perfor-
mance. Furthermore, they find that tuning EVOSUITE using one dataset and then
applying it on others brings little value, in line with the No Free Lunch Theorem
by Wolpert and Macready [479]. Finally, they applied RSM to tune the parameters
of EVOSUITE, but conclude that RSM did not lead to improvements compared to
the default parameter setting. Arcuri and Fraser discuss the unsuccessful outcome
of their attempt at RSM, argue that it should be treated as inconclusive rather than a
negative result, and call for more studies on tuning in SE. Their paper is concluded
by general guidelines on how to tune parameters. However, the recommendations
are on a high-level, limited to a warning on over-fitting, and advice to partition
data into non-overlapping training and test sets. The authors also recommend us-
ing 10-fold cross-validation in case only little data is available for tuning purposes.
Our work on TuneR complements the recommendations from Arcuri and Fraser,
by providing more detailed advice on parameter tuning. Also, there is no conflict
between the two sets of recommendations, and it is possible (and recommended)
to combine our work with for example 10-fold cross validation.

Da Costa and Schoenauer also worked on parameter tuning in the field of soft-
ware testing. They developed the software environment GUIDE to help practi-
tioners use evolutionary computation to solve hard optimization problems [130].
GUIDE contains both an easy-to-use GUI, and parameter tuning support. GUIDE
has been applied to evolutionary software testing in three companies including
Daimler. However, the parameter tuning offered by GUIDE is aimed for algo-
rithms in the internal evolution engine, and not for external tools.

Biggers et al. highlighted that there are few studies on how to tune tools for
feature location using text retrieval, and argue that it impedes deployment of such
tool support [58]. They conducted a comprehensive study on the effects of differ-
ent parameter settings when applying feature location using Latent Dirichlet Allo-
cation (LDA). Their study involved feature location from six open source software
systems, and they particularly discuss configurations related to indexing the source
code. Biggers et al. report that using default LDA settings from the literature on
natural language processing is suboptimal in the context of source code retrieval.

Thomas et al. addressed tuning of automated SE tools for fault localiza-
tion [446]. They also emphasized the research gap considering tuning of tools, and
acknowledged the challenge of finding a feasible setting for a tool using supervised
learning. The paper reports from a large empirical study on 3,172 different classi-
fier configurations, and show that the parameter settings have a significant impact
on the tool performance. Also, Thomas et al. shows that ensemble learning, i.e.,
combining multiple classifiers, provides better performance than the best individ-
ual classifiers. However, design choices related to the combination of classifiers

4 ImpRec: An RSSE for Automated Change Impact Analysis 251

also introduce additional parameter settings [254].
Lohar et al. discussed different configurations for SE tools supporting trace

retrieval, i.e., automated creation and maintenance of trace links [313]. They pro-
pose a machine learning approach, referred to as Dynamic Trace Configuration
(DTC), to search for the optimal configuration during runtime. Based on experi-
ments with data extracted from three different domains, they show that DTC can
significantly improve the accuracy of their tracing tool. Furthermore, the authors
argue that DTC is easy to apply, thus supporting technology transfer. However, in
contrast to TuneR, DTC is specifically targeting SE tools for trace retrieval.

ImpRec, the tool we use for the proof-of-concept evaluation of TuneR, is a type
of automated SE tool that presents output as a ranked list of recommendations,
analogous to well-known IR systems for web search. Modern search engines ap-
ply ranking functions that match the user and his query with web pages based on
hundreds of features, e.g., location, time, search history, query content, web page
title, content, and domain [489]. To combine the features in a way that yields rel-
evant search hits among the top results, i.e., to tune the feature weighting scheme,
Learning-to-Rank (LtR) is typically used in state-of-the-art web search [319]. LtR
is a family of machine learning approaches to obtain feasible tuning of IR sys-
tems [312]. Unfortunately, applying LtR to the ranking function of ImpRec is not
straightforward. The success of learning-to-rank in web search is enabled by enor-
mous amounts of training data [421], manually annotated for relevance by human
raters [459]. As such amounts of manually annotated training data is not available
for ImpRec, and probably not for other automated SE tools either, TuneR is instead
based on empirical experimentation. However, LtR is gaining attention also in SE,
as showed by a recent position paper by Binkley and Lawrie [60].

4 ImpRec: An RSSE for Automated Change Im-
pact Analysis

ImpRec is an SE tool that supports navigation among software artifacts [75], tai-
lored for a development organization in the power and automation sector. The
development context is safety-critical embedded development in the domain of in-
dustrial control systems, governed by IEC 61511 [238] and certified to a Safety
Integrity Level (SIL) of 2 as defined by IEC 61508 [239]. The target system has
evolved over a long time, the oldest source code was developed in the 1980s. A
typical development project in the organization has a duration of 12-18 months
and follows an iterative stage-gate project management model. The number of de-
velopers is in the magnitude of hundreds, distributed across sites in Europe, Asia
and North America.

As specified in IEC 61511 [238], the impact of proposed software changes
should be analyzed before implementation. In the case company, the impact anal-
ysis process is integrated with the issue repository. Before a corrective change is

252 TuneR: A Framework for Tuning Software Engineering Tools with . . .

made to resolve an issue report, the developer must store an impact analysis report
as an attachment to the corresponding issue report. As part of the impact anal-
ysis, engineers are required to investigate the impact of a change, and document
their findings in an impact analysis report according to a project specific template.
The template is validated by an external certifying agency, and the impact analysis
reports are internally reviewed and externally assessed during safety audits.

Several questions explicitly ask for trace links [71], i.e., “a specified associa-
tion between a pair of artifacts” [203]. The engineer must specify source code that
will be modified (with a file-level granularity), and also which related software ar-
tifacts need to be updated to reflect the changes, e.g., requirement specifications,
design documents, test case descriptions, test scripts and user manuals. Further-
more, the impact analysis should specify which high-level system requirements
cover the involved features, and which test cases should be executed to verify that
the changes are correct, once implemented in the system. In the target software
system, the extensive evolution has created a complex dependency web of software
artifacts, thus the impact analysis is a daunting work task.

ImpRec is an RSSE that enables reuse of knowledge captured from previous
impact analyses [71]. Using history mining in the issue repository, a collabora-
tively created trace link network is established, referred to as the knowledge base.
ImpRec then calculates the centrality measure of each artifact in the knowledge
base. When a developer requests impact recommendations for an issue report,
ImpRec combines IR and network analysis to identify candidate impact. First,
Apache Lucene [335] is used to search for issue reports in the issue repository that
are textually similar. Then, originating from the most similar issue reports, trace
links are followed both to related issue reports and to artifacts that were previously
reported as impacted. Each starting point results in a set of candidate impact (seti).
When all sets of candidate impact have been established, the individual artifacts
are given a weight according to a ranking function. Finally, the recommendations
are presented in a ranked list in the ImpRec GUI. For further details on ImpRec,
we refer to our previous publications [75, 80].

This paper presents our efforts to tune four ImpRec parameters, two related
to candidate impact identification, and two dealing with ranking of the candidate
impact. Figure 2 presents an overview of how ImpRec identifies candidate impact,
and introduces the parameters START and LEV EL. By setting the two param-
eters to high values, ImpRec identifies a large set of candidate impact. To avoid
overwhelming the user with irrelevant recommendations, the artifacts in the set are
ranked. As multiple starting points are used, the same artifact might be identified
as potentially impacted several times, i.e., an artifact can appear in several impact
sets. Consequently, the final ranking value of an individual artifact (ARTx) is
calculated by summarizing how each seti contributes to the ranking value:

Weight(ARTx) =
∑

ARTx∈seti

ALPHA ∗ centx + (1−ALPHA) ∗ simx

1 + links ∗ PENALTY
(1)

5 TuneR: An Experiment Framework and a Hands-on Example 253

Figure 2: Identification of candidate impact using ImpRec. Two related param-
eters (with an example setting) are targeted for tuning: 1) The number of starting
points identified using Apache Lucene (START), and 2) the maximum number
of issue-issue links followed to identify impacted artifacts (LEV EL).

where PENALTY is used to penalize distant artifacts and ALPHA is used to
set the relative importance of textual similarity and the centrality measure. simx

is the similarity score of the corresponding starting point provided by Apache
Lucene, centx is the centrality measure of artx in the knowledge base, and links
is the number of issue-issue links followed to identify the artifact (no more than
LEV EL− 1). The rest of this paper presents TuneR, and how we used it to tune
START , LEV EL, PENALTY , and ALPHA.

5 TuneR: An Experiment Framework and a Hands-
on Example

This section describes the three phases of TuneR, covering 11 steps. For each step
in our framework, we first describe TuneR in general terms, and then we present
a hands-on example of how we tuned ImpRec. Figure 3 shows an overview of the
steps in TuneR.

254 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Figure 3: Overview of TuneR. The three phases are depicted in gray boxes. Dot-
ted arrows show optional paths.

5.1 Phase 1: Prepare Experiments

Successful experimentation relies on careful planning. The first phase of TuneR
consists of four steps: A) Collect Tuning Dataset, B) Choose Response Metric, C)
Identify Parameters and Ranges, and D) Aggregate Pre-Understanding. All four
steps are prerequisites for the subsequent Screening phase.

A) Collect Tuning Dataset

Before any tuning can commence, a dataset that properly represents the target en-
vironment must be collected. The content validity of the dataset refers to the rep-
resentativeness of the sample in relation to all data in the target environment [457].
Thus, to ensure high content validity in tuning experiments, the experimenter must
carefully select the dataset, and possibly also sample from it appropriately, as dis-
cussed by Seiffert et al. [423]. Important decisions that have to be made at this
stage include how old data can be considered valid and whether the data should
be preprocessed in any way. While a complete discussion on data collection is
beyond the scope of TuneR, we capture some of the many discussions on how SE
datasets should be sampled and preprocessed in this section.

5 TuneR: An Experiment Framework and a Hands-on Example 255

In many software development projects, the characteristics of both the system
under development [337] and the development process itself [320] vary consid-
erably. If the SE tool is intended for such a dynamic target context, then it is
important that the dataset does not contain obsolete data. For example, Shepperd
et al. discuss the dangers of using old data when estimating effort in software de-
velopment, and the difficulties in knowing when data turns obsolete [426]. Jonsson
et al. show the practical significance on time locality in automated issue assign-
ment [254], i.e., how quickly the prediction accuracy deteriorates with old training
data for some projects.

Preprocessing operations, such as data filtering, influence the performance of
SE tools. Menzies et al. even warn that variation in preprocessing steps might be
a major cause of conclusion instability when evaluating SE tools [339]. Shepperd
et al. discuss some considerations related to previous work on publicly available
NASA datasets, and conclude that the importance of preprocessing in general has
not been acknowledged enough [427]. Regarding filtering of datasets, Lamkanfi
and Demeyer show how filtering outliers can improve prediction of issue resolu-
tion times [289], a finding that has also been confirmed by AbdelMoez et al. [2].
Thus, if the SE tools will be applied to filtered data, then the dataset used for
the tuning experiment should be filtered as well. Another threat to experimenta-
tion with tools implementing machine learning is the dataset shift problem, i.e.,
the distribution of data in the training set differs from the test set. Turhan discuss
how dataset shift relate to conclusion instability in software engineering prediction
models, and presents strategies to alleviate it [454].

The tuning dataset does not only need to contain valid data, it also needs to
contain enough of it. A recurring approach in SE is to evaluate tools on surro-
gate data, e.g., studying OSS development and extrapolating findings to propri-
etary contexts. Sometimes it is a valid approach, as Robinson and Francis have
shown in a comparative study of 24 OSS systems and 21 proprietary software sys-
tems [404]. They conclude that the variation among the two categories is as big
as between them, and, at least for certain software metrics, that there often ex-
ist OSS systems with characteristics that match proprietary systems. Several SE
experiments use students as subjects, and Höst et al. show that it is a feasible ap-
proach under certain circumstances [225]. However, the validity of experimenting
on data collected from student projects is less clear, as discussed in our previous
survey [79]. Another option is to combine data from various sources, i.e., com-
plementing proprietary data from different contexts. Tsunoda and Ono recently
highlighted some risks of this approach, based on a cross-company software main-
tenance dataset as an example [453]. They performed a statistical analysis of the
dataset, and exemplified how easy it is to detect spurious relationships between
totally independent data.

As ImpRec was developed in close collaboration with industry, and is a tool
tailored for a specific context, the data used for tuning must originate from the
same environment. We extracted all issue reports from the issue repository, repre-

256 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Figure 4: Composition of the ImpRec tuning dataset into training and test sets.
The knowledge base is established using issue reports from Jan 2000 to Jul 2010.
The subsequent issue reports are used to simulate the ImpRec response, measured
in Rc@20.

senting 12 years of software evolution in the target organization [75]. As the issue
reports are not independent, the internal order must be kept and we cannot use an
experimental design based on cross-validation. Thus, as standard practice in ma-
chine learning evaluation, and emphasized by Arcuri and Fraser [25], we split the
ordered data into non-overlapping training and test sets, as presented in Figure 4.
The training set was used to establish the knowledge base, and the test set was used
to measure the ImpRec performance. The experimental design used to tune Imp-
Rec is an example of simulation as presented by Walker and Holmes [466], i.e., we
simulate the historical inflow of issue reports to measure the ImpRec response. Be-
fore commencing the tuning experiments, we analyzed whether the content of the
issue reports had changed significantly over time. Also, we discussed the evolu-
tion of both the software under development, and the development processes, with
engineers in the organization. We concluded that we could use the full dataset for
our experiments, and we chose not to filter the dataset in any way.

B) Choose Response Metric

The next step in TuneR is to choose what metric to base the tuning on. TuneR
is used to optimize a response with regard to a single metric, as it relies on tradi-
tional RSM, thus the response metric needs to be chosen carefully. Despite mature
guidelines like the Goal-Question-Metric framework [41], the dangers of software
measurements have been emphasized by several researchers [88, 156, 262]. How-
ever, we argue that selecting a metric for the response of an SE tool is a far more
reasonable task than measuring the entire software development process based on
a single metric. A developer of an SE tool probably already knows the precise

5 TuneR: An Experiment Framework and a Hands-on Example 257

goal of the tool, and thus should be able to choose or invent a feasible metric.
Moreover, if more than one metric is important to the response, the experimenter
can introduce a compound metric, i.e., a combination of individual metrics. On
the other hand, no matter what metric is selected, there is a risk that naïvely tuning
with regard to the specific metric leads to a sub-optimal outcome, a threat further
discussed in Section 5.4.

Regarding the tuning of ImpRec, we rely on the comprehensive research avail-
able on quantitative IR evaluation, e.g., the TREC conference series and the Cran-
field experiments [465]. In line with general purpose search systems, ImpRec
presents a ranked list of candidates for the user to consider. Consequently, it is
convenient to measure the quality of the output using established IR measures for
ranked retrieval. The most common way to evaluate the effectiveness of an IR
system is to measure precision and recall. Precision is the fraction of retrieved
documents that are relevant, while recall is the fraction of relevant documents
that are retrieved. As there is a trade-off between precision and recall, they are
often reported pairwise. The pairs are typically considered at fixed recall levels
(e.g., 0.1. . . 1.0), or at specific cut-offs of the ranked list (e.g., the top 5, 10, or 20
items) [325].

We assume that a developer is unlikely to browse too many recommendations
from ImpRec. Consequently, we use a cut-off point of 20 to disregard all recom-
mendations below that rank. While it is twice as many as the standardized page-
worth output from search engines, CIA is a challenging task in which practitioners
request additional tool support [80, 136], and thus we assume that engineers are
willing to browse additional search hits. Also, we think that engineers can quickly
filter out the interesting recommendations among the top 20 hits.

Several other measures for evaluating the performance of IR systems have been
defined. A frequent compound measure is the F-score, a harmonized mean of pre-
cision and recall. Other more sophisticated metrics include Mean Average Preci-
sion (MAP) and Normalized Discounted Cumulative Gain (NDCG) [325]. How-
ever, for the tuning experiments in this paper, we decide to optimize the response
with regard to recall considering the top-20 results (Rc@20).

C) Identify Parameters and Specify Ranges for Normal Operation

The third step of Phase 1 in TuneR concerns identification of parameters to vary
during the tuning experiments. While some parameters might be obvious, maybe
as explicit in settings dialogs or configuration files, other parameters can be harder
to identify. Important variation points may be hidden in the implementation of the
SE tool, thus identifying what actually constitutes a meaningful parameter can be
challenging.

Once the parameters have been identified, the experimenter needs to decide
what levels should be used. A first step is, in line with standard DoE practice [165,
pp. 213], to identify what range represents “normal operation” for each parameter.

258 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Table 1: The four parameters studied in the tuning experiment, and the values
that represent their range for normal operation.

Parameter Type of range Normal range
ALPHA Non-negative bounded continuous [0-1]
PENALTY Non-negative continuous [0-5]
START Positive discrete [1-200]
LEV EL Positive discrete [1-10]

Parameter variations within such a range should be large enough to cause changes
in the response, but the range should not cover so distant values that the funda-
mental characteristics of the tool are altered. For some parameters, identification
of the normal range is straightforward because of well-defined bounds, e.g., a real
value between 0 and 1 or positive integers between 1 and 10. For other param-
eters, however, it is possible that neither the bounds nor even the sign is known.
Parameters can also be binary or categorical, taking discrete values [165, pp. 208].

Regarding ImpRec, Section 4 already presented the four parametersALPHA,
PENALTY , START , and LEV EL. However, also the search engine library
Apache Lucene is highly configurable. But as configuring Lucene is complex, see
for example McCandless et al. [335, Ch. 2], and since the default setting yielded
useful results in our previous work on issue reports [78], we choose to consider it
as a black box with fixed parameters in this study, i.e., we use the default setting.
The other four parameters of ImpRec on the other hand, do not have any default
values, thus we must continue by specifying ranges for normal operation.

Table 1 shows how we specify the ranges for normal operation for the four pa-
rameters. ALPHA represents the relative importance between textual similarities
and centrality measures, i.e., it is a bounded real value between 0 and 1, and we
consider the full range normal. START is a positive integer, there must be at least
one starting point, but there is no strict upper limit. We consider 200 to be the up-
per limit under normal operation, as we suspect larger values to generate imprecise
recommendations and too long response times. LEV EL and PENALTY both
deal with following links between issue reports in the knowledge base. Analogous
to the argumentation regarding START , we suspect that assigning LEV EL a too
high value might be counter-productive. LEV EL must be a positive integer, as
1 represents not following any issue-issue links at all. We decide to consider [1,
10] as the range for LEV EL under normal operation. PENALTY downweighs
potential impact that has been identified several steps away in the knowledge base,
i.e., impact with a high level. The parameter can be set to any non-negative num-
ber, but we assume that a value between 0 and 5 represents normal operation. Al-
ready the level 5 would make the contribution of distant issue reports practically
zero, see Equation 1.

5 TuneR: An Experiment Framework and a Hands-on Example 259

D) Aggregate Pre-Understanding

Successful tuning of an SE tool requires deep knowledge. The experimenter will
inevitably learn about the tool in the next two phases of TuneR, but probably there
are already insights before the experimentation commences. In line with Gummes-
son’s view [209, pp. 75], we value this pre-understanding as fundamental to reach
deep understanding. The pre-understanding can provide the experimenter with a
shortcut to a feasible setting, as it might suggest in what region the optimal setting
is located. To emphasize this potential, TuneR consists of a separate step aimed at
recapitulating what has already been experienced.

The development of ImpRec was inspired by test-driven development [46],
thus we tried numerous different parameter settings in test cases during develop-
ment. By exploring different settings in our trial runs during development, an
initial parameter tuning evolved as a by-product of the tool development. While
we performed this experimentation in an ad hoc fashion, we measured the output
with regard to Rc@20, and recorded the results in a structured manner. Recapit-
ulating our pre-understanding regarding the parameters provides the possibility to
later validate the outcome of the screening in Phase 2 of TuneR.

The ad hoc experiments during development contain results from about 100
trial runs. We exploredALPHA ranging from 0.1 to 0.9, obtaining the best results
for high values. START had been varied between 3 and 20, and again high values
appeared to be a better choice. Finally, we had explored LEVEL between 3 and
10, and PENALTY between 0 and 8. Using a high LEVEL and low PENALTY
yielded the best results. Based on our experiences, we deployed ImpRec in the
organization using the following default setting: ALPHA = 0.83, START =
17, LEV EL = 7, PENALTY = 0.2 (discussed in depth in another paper [80]).
The default setting yields a response of Rc@20=0.41875, i.e., about 40% of the
true impact is delivered among the top-20 recommendations. We summarize our
expectations as follows:

• The ranking function should give higher weights to centrality measures than
textual similarity (0.75 < ALPHA < 1)

• Many starting points benefit the identification of impact (START > 15)

• Following related cases several steps away from the starting point improves
results (LEV EL > 5)

• We expect an interaction between LEV EL and PENALTY , i.e., that in-
creasing the number of levels to follow would make penalizing distant arti-
facts more important

• Completing an experimental run takes about 10-30 s, depending mostly on
the value of START .

260 TuneR: A Framework for Tuning Software Engineering Tools with . . .

5.2 Phase 2: Conduct Screening Experiment

Phase 2 in TuneR constitutes three steps related to screening. Screening experi-
ments are conducted to identify the most important parameters in a specific con-
text [347, pp. 6] [165, pp. 240]. Traditional DoE uses 2k factorial design for
screening, using broad values (i.e., high and low values within the range of normal
operation) to calculate main effects and interaction effects. However, as explained
in Section 2.3, space-filling design should be applied when tuning SE tools. The
three screening steps in TuneR are: A) Design Space-Filling Experiment, B) Run
Experiment, and C) Fit Low-Order Models. Phase 2 concludes by identifying a
promising region, i.e., a setting that appears to yield a good response, a region that
is used as input to Phase 3.

A) Design a Space-Filling Experiment

The first step in Phase 2 in TuneR deals with designing a space-filling screening
experiment. The intention of the screening is not to fully analyze how the param-
eters affect the response, but to complement the less formal pre-understanding.
Still, the screening experiment will consist of multiple runs. As a rule of thumb,
Levy and Steinberg approximate that the number of experimental runs needed in a
DoCE screening is ten times the number of parameters involved [299].

Several aspects influence the details of the space-filling design, and we dis-
cuss four considerations below. First, parameters of different types (as discussed
in Phase 1, Step B) require different experimental settings. The space of categor-
ical parameters can only be explored by trying all levels. Bounded parameters on
the other hand can be explored using uniform space-filling designs as presented in
Section 2.2. Unbounded parameters however, at least when the range of normal
operation is unknown, requires the experimenter to select values using other ap-
proaches. Second, our pre-understanding from Phase 1, Step D might suggest that
some parameters are worth to study using more fine-granular values than others.
In such cases, the pre-understanding has already contributed with a preliminary
sensitivity analysis [418, pp. 189], and the design should be adjusted accordingly.
Third, the time needed to perform the experiments limits the number of experi-
mental runs, in line with discussions on search budget in SBSE [213]. Certain pa-
rameter settings might require longer execution times than others, and thus require
a disproportional amount of the search budget. Fourth, there might be known con-
straints at play, forcing the experimenter to avoid certain parameter values. This
phenomenon is in line with the discussion on unsafe settings in DoE [165, pp.
254].

Unless the considerations above suggest special treatment, we propose the fol-
lowing rules-of-thumb as a starting point:

• Restrict the search budget for the screening experiment to a maximum of 48
h, i.e., it should not require more than a weekend to execute.

5 TuneR: An Experiment Framework and a Hands-on Example 261

Table 2: Screening design for the four parameters ALPHA, PENALTY ,
START , and LEV EL.

Parameter #Levels Values
ALPHA 7 0.01, 0.17, 0.33, 0.5, 0.67, 0.83, 0.99
PENALTY 7 0.01, 0.1, 0.5, 1, 2, 4, 8
START 10 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
LEV EL 7 1, 2, 4, 8, 16, 32, 64

• Use the search budget to explore the parameters evenly, i.e., for an SE tool
with i parameters, and the search budget allows n experimental runs, use
i
√
n values for each parameter.

• Apply a uniform design for bounded parameters, i.e., spread the parameter
values evenly.

• Use a geometric series of values for unbounded parameters, e.g., for integer
parameters explore values 2i, i = 0, 1, 2, 3, 4 ...

When screening the parameters of ImpRec, we want to finish the experimental
runs between two workdays (4 PM to 8 AM, 16 h) to enable an analysis of the
results on the second day. Based on our pre-understanding, we predict that on
average four experimental runs can be completed per minute, thus about 3,840
experimental runs can be completed within the 16 h search budget. As we have
four parameters, we can evaluate about 4

√
3, 840 ≈ 7.9 values per parameter, i.e.,

7 rounded down.
Table 2 shows the values we choose for screening the parameters of ImpRec.

ALPHA is a relative weighting parameter between 0 and 1. We use a uniform
design to screen ALPHA, but do not pick the boundary values to avoid divisions
by zero. PENALTY is a positive continuous variable with no upper limit, and
we decide to evaluate several magnitudes of values. A penalty of 8 means that the
contribution of distant artifacts to the ranking function is close to zero, thus we do
not need to try higher values. START and LEV EL are both positive discrete pa-
rameters, both dealing with how many impact candidates should be considered by
the ranking function. Furthermore, our pre-understanding shows that the running
time is proportional to the value of START . As we do not know how high values
of START are feasible, we choose to evaluate up to 512, a value that represents
about 10% of the full dataset. Exploring such high values for LEV EL does not
make sense, as there are no such long chains of issue reports. Consequently, we
limit LEV EL to 64, already a high number. In total, this experimental design,
constituting 3,430 runs, appears to be within the available search budget.

262 TuneR: A Framework for Tuning Software Engineering Tools with . . .

B) Run Screening Experiment

When the design of the screening experiment is ready, the next step is to run the
experiment. To enable execution of thousands of experimental runs, a stable ex-
periment framework for automatic execution must be developed. Several work-
benches are available that enable reproducible experiments, e.g., frameworks such
as Weka [185] and RapidMiner [222] for general purpose machine learning and
data mining, and SE specific efforts such as the TraceLab workbench [266] for
traceability experiments, and the more general experimental Software Engineer-
ing Environment (eSSE) [452]. Furthermore, the results should be automatically
documented as the experimental runs are completed, in a structured format that
supports subsequent analysis.

We implement a feature in an experimental version of ImpRec that allows us
to execute a sequence of experimental runs. Also, we implement an evaluation
feature that compares the ImpRec output to a ‘gold standard’ (see the ‘static val-
idation’ in our parallel publication [80] for a detailed description), and calculates
established IR measures, e.g., precision, recall, and MAP at different cut-off lev-
els. Finally, we print the results of each experimental run as a separate row in a file
of Comma Separated Values (CSV). Listing V.1 shows an excerpt of the resulting
csv-file, generated from our screening experiment. The first four columns show
the parameter values, and the final column is the response measured in Rc@20.

Listing V.1: screening.csv generated from the ImpRec screening experiment.
a lpha , p e n a l t y , s t a r t , l e v e l , r e s p
0 . 0 1 , 0 . 0 1 , 1 , 1 , 0 .059375
0 . 0 1 , 0 . 0 1 , 1 , 2 , 0 .078125
0 . 0 1 , 0 . 0 1 , 1 , 4 , 0 .1125
0 . 0 1 , 0 . 0 1 , 1 , 8 , 0 .115625
0 . 0 1 , 0 . 0 1 , 1 , 16 , 0 .115625
. . .
(3 , 4 2 0 a d d i t i o n a l rows)
. . .
0 . 9 9 , 8 , 512 , 4 , 0 .346875
0 . 9 9 , 8 , 512 , 8 , 0 .315625
0 . 9 9 , 8 , 512 , 16 , 0 .31875
0 . 9 9 , 8 , 512 , 32 , 0 .321875
0 . 9 9 , 8 , 512 , 64 , 0 .328125

C) Fit Low-order Polynomial Models

The final step in Phase 2 of TuneR involves analyzing the results from the screen-
ing experiment. A recurring observation in DoE is that only a few factors domi-
nate the response, giving rise to well-known principles such as the ‘80-20 rule’ and
‘Occam’s razor’ [277, pp. 157]. In this step, the goal is to find the simplest poly-
nomial model that can be used to explain the observed response. If neither a first
nor second-order polynomial model (i.e., linear and quadratic effects plus two-way

5 TuneR: An Experiment Framework and a Hands-on Example 263

interactions) fits the observations from the screening experiment, the response sur-
face is complex. Modelling a complex response surfaces is beyond the scope of
TuneR, as it requires advanced techniques such as neural networks [347, pp. 446],
splines, or kriging [251]. If low-order polynomial models do not fit the response,
TuneR instead relies on quasi-exhaustive space-filling designs (see Fig. 3). We
discuss this further in Section 6, where we use exhaustive search to validate the
result of the ImpRec tuning using TuneR.

When a low-order polynomial model has been fit, it might be possible to sim-
plify it by removing parameters that do not influence the response much. The
idea is that removal of irrelevant and noisy variables should improve the model.
Note, however, that this process known as subset selection in linear regression, has
been widely debated among statisticians, referred to as “fishing expeditions” and
other derogatory terms (see for example discussions by Lukacs et al. [318] and
Miller [340, pp. 8]). Still, when tuning an SE tool with a multitude of parameters,
reducing the number of factors might be a necessary step for computational rea-
sons. Moreover, working with a reduced set of parameters might reduce the risk of
overfitting [14]. A standard approach is stepwise backward elimination [395, pp.
336], i.e., to iteratively remove parameters until all that remain have a significant
effect on the response. While parameters with high p-values are candidates for
removal [445, pp. 277], all such operations should be done with careful consid-
eration. We recommend visualizing the data (cf. Fig. 5 and 6), and trying to
understand why the screening experiment resulted in the response. Also, note that
any parameter involved in interaction or quadratic effects must be kept.

To fit low-order polynomial models for ImpRec’s response surface, we use
the R package rsm [294], and the package visreg [84] to visualize the results.
Assuming that screening.csv has been loaded to screening, Listing V.2 and V.3
fit a first-order and second-order polynomial model, respectively.

Listing V.2: Fitting a first-order polynomial model with rsm [294]. The results
are truncated.

1 > FO_model <− rsm (r e s p ~ FO(a lpha , p e n a l t y , s t a r t , l e v e l) , d a t a = s c r e e n i n g)
2 > summary (FO_model)
3
4 C a l l :
5 rsm (f o r m u l a = r e s p ~ FO(a lpha , p e n a l t y , s t a r t , l e v e l) , d a t a = s c r e e n i n g)
6
7 E s t i m a t e S td . E r r o r t v a l u e Pr (> | t |)
8 (I n t e r c e p t) 2 .4976 e−01 4 .2850 e−03 58 .2855 <2e−16 ∗∗∗
9 a l p h a 4 .9432 e−02 5 .7393 e−03 8 .6129 <2e−16 ∗∗∗

10 p e n a l t y 8 .8721 e−04 7 .0248 e−04 1 .2630 0 .2067
11 s t a r t 1 .2453 e−04 1 .2052 e−05 10 .3327 <2e−16 ∗∗∗
12 l e v e l 6 .9603 e−05 8 .8805 e−05 0 .7838 0 .4332
13 −−−
14 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 0 01 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
15
16 M u l t i p l e R−s q u a r e d : 0 . 0 5 0 7 6 , A d j u s t e d R−s q u a r e d : 0 .04965
17 F− s t a t i s t i c : 45 .79 on 4 and 3425 DF , p−v a l u e : < 2 . 2 e−16

264 TuneR: A Framework for Tuning Software Engineering Tools with . . .

18
19 A n a l y s i s o f V a r i a n c e Tab le
20
21 Response : r e s p
22 Df Sum Sq Mean Sq F v a l u e Pr (>F)
23 FO(a lpha , p e n a l t y , s t a r t , l e v e l) 4 2 .234 0 .55859 45 .789 < 2 . 2 e−16
24 R e s i d u a l s 3425 41 .782 0 .01220
25 Lack of f i t 3425 41 .782 0 .01220
26 Pure e r r o r 0 0 .000

The second order model fits the response better than the first order model; the
lack of fit sum of squares is 29.1841 versus 41.782 (cf. Listing V.3:62 and List-
ing V.2:25). Moreover, Listing V.3:44-47 show that the parameters PENALTY ,
START , and LEV EL have a quadratic effect on the response. Also, interac-
tion effects are significant, as shown by alpha:start, penalty:start, and start:level
(cf. Listing V.3:38-43). Figure 5 visualizes3 how the second order model fits the
response, divided into the four parameters. As each data point represents an exper-
imental run, we conclude that there is a large spread in the response. For most indi-
vidual parameter values, there are experimental runs that yield an Rc@20 between
approximately 0.1 and 0.4. Also, in line with Listing V.3, we see that increasing
START appears to improve the response, but the second order model does not fit
particularly well.

Listing V.3: Fitting a second-order polynomial model with rsm [294]. The results
are truncated.

27 > SO_model <− rsm (r e s p ~ SO(a lpha , p e n a l t y , s t a r t , l e v e l) , d a t a = s c r e e n i n g)
28 > summary (SO_model)
29 C a l l :
30 rsm (f o r m u l a = r e s p ~ SO(a lpha , p e n a l t y , s t a r t , l e v e l) , d a t a = s c r e e n i n g)
31
32 E s t i m a t e S td . E r r o r t v a l u e Pr (> | t |)
33 (I n t e r c e p t) 2 .1502 e−01 6 .1700 e−03 34 .8493 < 2 . 2 e−16 ∗∗∗
34 a l p h a 2 .6868 e−02 1 .8997 e−02 1 .4143 0 .1573604
35 p e n a l t y 4 .1253 e−03 2 .4574 e−03 1 .6787 0 .0932935 .
36 s t a r t 1 .2814 e−03 4 .1704 e−05 30 .7247 < 2 . 2 e−16 ∗∗∗
37 l e v e l 1 .2045 e−03 3 .2053 e−04 3 .7579 0 .0001742 ∗∗∗
38 a l p h a : p e n a l t y −4.5460e−04 1 .7894 e−03 −0.2541 0 .7994640
39 a l p h a : s t a r t 3 .3458 e−04 3 .0698 e−05 10 .8993 < 2 . 2 e−16 ∗∗∗
40 a l p h a : l e v e l 5 .5608 e−05 2 .2620 e−04 0 .2458 0 .8058257
41 p e n a l t y : s t a r t 3 .3783 e−06 3 .7573 e−06 0 .8991 0 .3686588
42 p e n a l t y : l e v e l 6 .7390 e−05 2 .7687 e−05 2 .4340 0 .0149839 ∗
43 s t a r t : l e v e l −4.9485e−06 4 .7499 e−07 −10.4182 < 2 . 2 e−16 ∗∗∗
44 a l p h a ^2 −1.1659e−02 1 .7181 e−02 −0.6786 0 .4974522
45 p e n a l t y ^2 −5.8485e−04 2 .7071 e−04 −2.1604 0 .0308128 ∗
46 s t a r t ^2 −2.5851e−06 7 .3816 e−08 −35.0212 < 2 . 2 e−16 ∗∗∗
47 l e v e l ^2 −1.2702e−05 4 .4041 e−06 −2.8840 0 .0039508 ∗∗
48 −−−
49 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
50

3R command: > visreg(SO_model)

5 TuneR: An Experiment Framework and a Hands-on Example 265

51 M u l t i p l e R−s q u a r e d : 0 . 3 3 7 , A d j u s t e d R−s q u a r e d : 0 .3342
52 F− s t a t i s t i c : 124 on 14 and 3415 DF , p−v a l u e : < 2 . 2 e−16
53
54 A n a l y s i s o f V a r i a n c e Tab le
55
56 Response : r e s p
57 Df Sum Sq Mean Sq F v a l u e Pr (>F)
58 FO(a lpha , p e n a l t y , s t a r t , l e v e l) 4 2 .2343 0 .55859 65 .363 < 2 . 2 e−16
59 TWI(a lpha , p e n a l t y , s t a r t , l e v e l) 6 2 .0014 0 .33356 39 .032 < 2 . 2 e−16
60 PQ(a lpha , p e n a l t y , s t a r t , l e v e l) 4 10 .5963 2 .64907 309 .983 < 2 . 2 e−16
61 R e s i d u a l s 3415 29 .1841 0 .00855
62 Lack of f i t 3415 29 .1841 0 .00855
63 Pure e r r o r 0 0 .0000

Listing V.3 suggests that all four parameters are important when modelling the
response surface. The statistical significance of the two parameters START and
LEV EL is stronger than for ALPHA and PENALTY . However, ALPHA
is involved in a highly significant interaction effect (alpha:start in Listing V.3:39).
Also, the quadratic effect of PENALTY on the response is significant (penaltyˆ2
in Listing V.3:45). Consequently, we do not simplify the second order model of
the ImpRec response by reducing the number of parameters.

266 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Figure 5: Visualization of the second order model using visreg [84].

Figure 6 displays boxplots of the response per parameter, generated with ggplot24

[470]. Based on the boxplots, we decide that a promising region for further tun-
ing appears to involve high ALPHA values, START between 32 and 128, and
LEV EL = 4. The parameter value of PENALTY however, does not matter
much, as long as it is not too small, thus we consider values around 1 promis-
ing. An experimental run with the setting ALPHA = 0.9, PENALTY =
1, START = 64, LEV EL = 4 gives a response of Rc@20=0.46875, compared
to 0.41875 for the default setting. Thus, this 11.9% increase of the response con-
firms the choice of a promising region.

We summarize the results from screening the ImpRec parameters as follows:

• Centrality values of artifacts are more important than textual similarity when
predicting impact (ALPHA close to 1). Thus, previously impacted artifacts

4R commands for the START parameter:
> start_box < − ggplot(screening, aes(factor(start), resp))
> start_box+ geom_boxplot()

5 TuneR: An Experiment Framework and a Hands-on Example 267

Figure 6: Value of the response for different parameter settings. Note that the
x-axis is only linear in the first plot (ALPHA).

(i.e., artifacts with high centrality in the network) are likely to be impacted
again.

• The low accuracy of the textual similarity is also reflected by the high pa-
rameter value of START ; many starting points should be used as compen-
sation.

• Regarding LEV EL and PENALTY we observe that following a handful
of issue-issue links is beneficial, trying even broader searches however is
not worthwhile.

• Also, severely penalizing distant artifacts does not benefit the approach, i.e.,
most related issues are meaningful to consider.

268 TuneR: A Framework for Tuning Software Engineering Tools with . . .

• A promising region, i.e., a suitable start setting for Phase 3, appears to be
around ALPHA = 0.9, PENALTY = 1, START = 64, LEV EL = 4.

5.3 Phase 3: Apply Response Surface Methodology

The third phase in TuneR uses RSM to identify the optimal setting. The first
part of RSM is an iterative process. We use a factorial design to fit a first-order
model to the response surface, and then gradually modify the settings along the
most promising direction, i.e., the path of the steepest ascent. Then, once further
changes along that path do not yield improved responses, the intention is to pin-
point the optimal setting in the vicinity. The pin-pointing is based on analyzing
the stationary points of a second-order fit of that particular region of the response
surface, determined by applying an experiment using CCD (cf. Fig. 1). We de-
scribe Step A and B (i.e., the iterative part) together in the following subsection,
and present Step C and D in the subsequent subsections.

When applying RSM, an important aspect is to use an appropriate coding
transformation. The way the data are coded affects the results of the steepest
ascent analysis. If all coded variables in the experiment vary over the same range,
typically -1 and 1, each parameter gets an equal share in potentially determining
the steepest ascent path [294].

A and B: Factorial designs, First-order Models, and Iteration

Iteration of the first two steps is intended to quickly move toward the optimum. To
find the direction, we design an experiment using 2k factorial design and fit a first-
order model of the response surface. The factorial design uses the outcome from
Phase 2 as the center point, and for each parameter, we select a high value and a
low value, referred to as the factorial range [165]. Selecting a feasible factorial
range is one of the major challenges in RSM, another one is to select an appropriate
step size.

Selecting a suitable factorial range for a computer experiment is a bit different
than for a physical experiment. In traditional DoE, a too narrow range generates a
factorial experiment dominated by noise. While noise is not a threat in experiments
aimed at tuning SE tools, a too narrow range will instead not show any difference
in the response at all. On the other hand, the range can also be too broad, as the
response surface might then be generalized too much. Dunn reports that selecting
extreme values is a common mistake in DoE, and suggests selecting 25% of the
extreme range as a rule-of-thumb [165]. Since the number of tuning experiments
typically is not limited in the same way as physical experiments, it is possible to
gradually increase the factorial range until there is a difference in the response.

The factorial experiment yields the direction of the steepest ascent, but the
next question is how much to adjust the setting in that direction, i.e., the step
size. Again we want the difference to be large enough to cause a change in the

5 TuneR: An Experiment Framework and a Hands-on Example 269

Table 3: First RSM iteration, 2k factorial design for the four parameters
ALPHA, PENALTY , START , and LEV EL.

Coded variables Natural variables
Exp. Run x1 x2 x3 x4 ALPHA PENALTY START LEVEL Resp.

1 -1 -1 -1 -1 0.85 0.8 60 3 0.468750
2 1 -1 -1 -1 0.95 0.8 60 3 0.481250
3 -1 1 -1 -1 0.85 1.2 60 3 0.468750
4 1 1 -1 -1 0.95 1.2 60 3 0.478125
5 -1 -1 1 -1 0.85 0.8 68 3 0.478125
6 1 -1 1 -1 0.95 0.8 68 3 0.484375
7 -1 1 1 -1 0.85 1.2 68 3 0.475000
8 1 1 1 -1 0.95 1.2 68 3 0.484375
9 -1 -1 -1 1 0.85 0.8 60 5 0.471875

10 1 -1 -1 1 0.95 0.8 60 5 0.478125
11 -1 1 -1 1 0.85 1.2 60 5 0.471875
12 1 1 -1 1 0.95 1.2 60 5 0.478125
13 -1 -1 1 1 0.85 0.8 68 5 0.468750
14 1 -1 1 1 0.95 0.8 68 5 0.484375
15 -1 1 1 1 0.85 1.2 68 5 0.468750
16 1 1 1 1 0.95 1.2 68 5 0.481250

response in a reasonable amount of experiments, but not so large that we move
over an optimum. A good decision relies on the experimenter’s understanding of
the parameters involved in the SE tool. Otherwise, a rule-of-thumb is to choose a
step size equal to the value of the largest coefficient describing the direction of the
steepest ascent [40].

For tuning ImpRec, we decide to fit a first-order model in the region: ALPHA =
0.9± 0.05, PENALTY = 1± 0.5, START = 64± 4, LEV EL = 4± 1. Our
experience from the screening experiments suggests that these levels should result
in a measurable change in the response. Table 3 shows the 2k factorial design we
apply, and the results from the 16 experimental runs. We report the experimental
runs in Yates’ standard order according to the DoE convention, i.e., starting with
low values, and then alternating the sign of the first variable the fastest, and the last
variable the slowest [342, pp. 237]. Finally, we store the table, except the coded
variables, in rsm1_factorial.csv. Listing V.4 shows the analysis of the results,
conducted in coded variables. The standard coding transformation from a natural
variable vN to a coded variable vC in DoE is [165, pp. 245]:

vc =
vn − centerv

∆v/2
(2)

where ∆v is the factorial range of vn, and centerv is its center point. For the four
parameters of ImpRec, the coding is presented in Listing V.4 on line 2.

270 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Listing V.4 reveals that x1 and x3 (i.e., ALPHA and START in coded val-
ues) affect the response the most. As visualizing the response surface in more
than two variables is difficult, Figure 7 shows the contour plot5 wrt. x1 and x3,
generated using visreg [84]. Our experiments suggest that higher responses can be
achieved if we increase ALPHA and START , and decrease PENALTY and
LEV EL. We decide to use the step size provided by the direction of the steepest
ascent in original units, as it already constitutes actionable changes to the param-
eters (cf. Listing V.4:95). Table 4 shows the experimental results when gradually
changing the ImpRec settings in the direction: (+0.046,−0.0223,+1.338,−0.111).
Note that START and LEV EL are integer parameters and thus rounded off ac-
cordingly (highlighted in italic font), and that ALPHA has a maximum value of
1 (or 0.99 for practical reasons). We observe that the response continuously im-
proves until step 10 (in bold font in Table 4). Two additional steps in the same
direction confirm the decreased response.

Figure 7: Contour plot displaying the two most important parameters (ALPHA
and START) in coded variables, generated using visreg [84]. We have added an
arrow showing the direction of the steepest ascent.

Listing V.4: Using rsm [294] to find the direction of the steepest ascent.
64 > rsm1 <− r e a d . csv (" r s m 1 _ f a c t o r i a l . c sv ")
65 > rsm1_coded <− coded . d a t a (rsm1 , x1 ~(a lpha −0 . 9) / 0 . 0 5 ,
66 x2 ~(p e n a l t y −1) / 0 . 2 , x3 ~(s t a r t −64) /4 , x4 ~(l e v e l −4) /1)
67 > rsm1_model <− rsm (r e s p ~FO(x1 , x2 , x3 , x4) , d a t a =rsm1_coded)
68 > summary (rsm1_model)
69
70 C a l l :
71 rsm (f o r m u l a = r e s p ~ FO(x1 , x2 , x3 , x4) , d a t a = rsm1_coded)
72
73 E s t i m a t e S td . E r r o r t v a l u e Pr (> | t |)
74 (I n t e r c e p t) 0 .47636719 0 .00069429 686 .1210 < 2 . 2 e−16 ∗∗∗

5R command: > visreg(rsm1_model, ”x1”, ”x3”)

5 TuneR: An Experiment Framework and a Hands-on Example 271

Table 4: Iterative exploration along the direction of the steepest ascent. The tenth
step, presented in bold font, results in a decreased response. Values in italic font
are rounded off to the nearest integer value.

Step ALPHA PENALTY START LEV EL Resp.
0 0.9 1 64 4 0.46875
1 0.946456 0.977701 65.33793 3.888506 0.471875
2 0.992912 0.955402 66.67586 3.777012 0.4875
3 0.99 0.933104 68.01379 3.665518 0.4875
4 0.99 0.910805 69.35172 3.554024 0.4875
5 0.99 0.888506 70.68965 3.442529 0.490625
6 0.99 0.866207 72.02758 3.331035 0.49375
7 0.99 0.843908 73.36551 3.219541 0.5
8 0.99 0.821609 74.70344 3.108047 0.50625
9 0.99 0.799311 76.04137 2.996553 0.50625

10 0.99 0.777012 77.37929 2.885059 0.49375
11 0.99 0.754713 78.71722 2.773565 0.490625
12 0.99 0.732414 80.05515 2.662071 0.490625

75 x1 0 .00488281 0 .00069429 7 .0328 2 .175 e−05 ∗∗∗
76 x2 −0.00058594 0 .00069429 −0.8439 0 .41668
77 x3 0 .00175781 0 .00069429 2 .5318 0 .02788 ∗
78 x4 −0.00058594 0 .00069429 −0.8439 0 .41668
79 −−−
80 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
81
82 M u l t i p l e R−s q u a r e d : 0 . 8 3 8 9 , A d j u s t e d R−s q u a r e d : 0 .7804
83 F− s t a t i s t i c : 14 .32 on 4 and 11 DF , p−v a l u e : 0 .0002442
84
85 A n a l y s i s o f V a r i a n c e Tab le
86
87 Response : r e s p
88 Df Sum Sq Mean Sq F v a l u e Pr (>F)
89 FO(x1 , x2 , x3 , x4) 4 0 .00044189 1 .1047 e−04 14 .324 0 .0002442
90 R e s i d u a l s 11 0 .00008484 7 .7130 e−06
91 Lack of f i t 11 0 .00008484 7 .7130 e−06
92 Pure e r r o r 0 0 .00000000
93
94 D i r e c t i o n o f s t e e p e s t a s c e n t (a t r a d i u s 1) :
95 x1 x2 x3 x4
96 0 .9291177 −0.1114941 0 .3344824 −0.1114941
97
98 C o r r e s p o n d i n g i n c r e m e n t i n o r i g i n a l u n i t s :
99 a l p h a p e n a l t y s t a r t l e v e l

100 0 .04645588 −0.02229882 1 .33792946 −0.11149412

The second iteration starts where the first ended, i.e., using the tenth step in Ta-
ble 4 as its center point. The parameter ALPHA is already at its maximum value,

272 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Table 5: Second RSM iteration, 2k factorial design for the three parameters
PENALTY , START , and LEV EL.

Coded variables Natural variables
Exp. Run x1 x2 x3 PENALTY START LEV EL Resp.

1 -1 -1 -1 0.76 76 2 0.465625
2 1 -1 -1 0.84 76 2 0.5
3 -1 1 -1 0.76 80 2 0.4625
4 1 1 -1 0.84 80 2 0.490625
5 -1 -1 1 0.76 76 4 0.465625
6 1 -1 1 0.84 76 4 0.5
7 -1 1 1 0.76 80 4 0.4625
8 1 1 1 0.84 80 4 0.490625

thus we focus on PENALTY , START , and LEV EL. We decide to use the
following factorial ranges: PENALTY = 0.80± 0.04, START = 78± 2, and
LEV EL = 3 ± 1. Table 5 shows the corresponding 2k factorial experiment. We
store the table, except the coded variables, in rsm2_factorial.csv. Listing V.5
shows the analysis of the results, including the coding transformation of the pa-
rameters.

Listing V.5 shows that the direction of the steepest ascent involves changing
the value of START and LEV EL, but not PENALTY . We also know that the
setting (0.99, 0.80, 76, 3) yields 0.50625 (cf., step 9 in Table 4). Table 6 shows the
results from iteratively moving from this setting along the direction of the steepest
ascent. As we do not observe any increases in the response when changing the two
integer parameters START and LEV EL, we conclude that this ImpRec setting
is in the region of the maximum. In the next TuneR step, the goal is to pin-point
the exact position of the stationary point.

Listing V.5: Second RSM iteration, using rsm [294] to find a new direction of the
steepest ascent.

101 > rsm2 <− r e a d . csv (" r s m 2 _ f a c t o r i a l . c sv ")
102 > rsm2_coded <− coded . d a t a (rsm2 , x2 ~(p e n a l t y −0 . 8 0) / 0 . 0 4 ,
103 x3 ~(s t a r t −78) /2 , x4 ~(l e v e l −3) /1)
104 > rsm2_model <− rsm (r e s p ~FO(x2 , x3 , x4) , d a t a =rsm2_coded)
105 > summary (rsm2_model)
106
107 C a l l :
108 rsm (f o r m u l a = r e s p ~ FO(x2 , x3 , x4) , d a t a = rsm2_coded)
109
110 E s t i m a t e S td . E r r o r t v a l u e Pr (> | t |)
111 (I n t e r c e p t) 4 .7969 e−01 7 .8125 e−04 614 4 .222 e−11 ∗∗∗
112 x2 6 .7465 e−18 7 .8125 e−04 0 1 .00000
113 x3 −3.1250e−03 7 .8125 e−04 −4 0 .01613 ∗
114 x4 1 .5625 e−02 7 .8125 e−04 20 3 .688 e−05 ∗∗∗
115 −−−

5 TuneR: An Experiment Framework and a Hands-on Example 273

Table 6: Iterative exploration along the new direction of the steepest ascent. No
changes result in an increased response, indicating that the current ImpRec setting
is close to the optimum. Values in italic font are rounded off to the nearest integer
value.

Step ALPHA PENALTY START LEV EL Resp.
0 0.99 0.80 76 3 0.50625
1 0.99 0.80 75.60777 3.980581 0.5
2 0.99 0.80 75.21554 4.961161 0.5
3 0.99 0.80 74.8233 5.941742 0.48125
4 0.99 0.80 74.43107 6.922323 0.45625

116 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
117
118 M u l t i p l e R−s q u a r e d : 0 . 9 9 0 5 , A d j u s t e d R−s q u a r e d : 0 .9833
119 F− s t a t i s t i c : 138 .7 on 3 and 4 DF , p−v a l u e : 0 .0001695
120
121 A n a l y s i s o f V a r i a n c e Tab le
122
123 Response : r e s p
124 Df Sum Sq Mean Sq F v a l u e Pr (>F)
125 FO(x2 , x3 , x4) 3 0 .00203125 0 .00067708 138 .67 0 .0001695
126 R e s i d u a l s 4 0 .00001953 0 .00000488
127 Lack of f i t 4 0 .00001953 0 .00000488
128 Pure e r r o r 0 0 .00000000
129
130 D i r e c t i o n o f s t e e p e s t a s c e n t (a t r a d i u s 1) :
131 x2 x3 x4
132 4 .233906 e−16 −1.961161 e−01 9 .805807 e−01
133
134 C o r r e s p o n d i n g i n c r e m e n t i n o r i g i n a l u n i t s :
135 p e n a l t y s t a r t l e v e l
136 0 .0000000 −0.3922323 0 .9805807

C: CCD and a Second-order Polynomial Model

The final step in RSM is to fit a second-order polynomial model to the region close
to the maximum, and to locate the stationary point. The most popular design for
fitting a second-order model is CCD [342, pp. 501] (cf. C in Fig. 1). In traditional
DoE, it is recommended to conduct three to five experimental runs at the center
point. When tuning an SE tool, we do not need more than one, thus the only
choice for the experimental design is the distance of the axial runs. As presented
in Figure 1, we recommend a rotatable design, i.e., that all settings in the tuning
experiment should be at the same distance from the center point.

In the CCD experiment for tuning ImpRec, we focus on the two parameters
START and LEV EL. Listing V.5:134 shows that these two parameters dwarf
PENALTY in this region. Furthermore, the parameter ALPHA is already at

274 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Table 7: Central composite design for the two parameters START andLEV EL.
Values in italic font are rounded off to the nearest integer value.

Coded variables Natural variables
Exp. Run x3 x4 START LEV EL Resp.

1 -1 -1 72 2 0.453125
2 1 -1 80 2 0.4625
3 -1 1 72 4 0.490625
4 1 1 80 4 0.490625
5 0 0 76 3 0.50625
6 -1.414 0 70.344 3 0.490625
7 +1.414 0 81.656 3 0.48125
8 0 -1.414 76 4.414 0.5
9 0 +1.414 76 1.586 0.465625

its maximum value. Table 7 shows the CCD experiment and the corresponding
responses. We store the table, except the coded variables, in ccd.csv. Listing V.6
shows the analysis of the results, including the coding transformation of the param-
eters. In the final step in Phase 3 of TuneR, the outcome of the CCD experiment is
analyzed.

Listing V.6: Using rsm [294] to fit a second-order model of the response surface
in the vicinity of the optimal response.

137 > ccd <− r e a d . csv (" ccd . csv ")
138 > ccd_coded <− coded . d a t a (ccd , x3 ~(s t a r t −76) /2 , x4 ~(l e v e l −3) /1)
139 > ccd_model <− rsm (r e s p ~SO(x3 , x4) , d a t a = ccd_coded)
140 > summary (ccd_model)
141
142 C a l l :
143 rsm (f o r m u l a = r e s p ~ SO(x3 , x4) , d a t a = ccd_coded)
144
145 E s t i m a t e S td . E r r o r t v a l u e Pr (> | t |)
146 (I n t e r c e p t) 0 .50614821 0 .00268418 188 .5672 4 .745 e−09 ∗∗∗
147 x3 −0.00027574 0 .00068784 −0.4009 0 .7090065
148 x4 0 .01666667 0 .00163740 10 .1788 0 .0005247 ∗∗∗
149 x3 : x4 −0.00117188 0 .00100270 −1.1687 0 .3074152
150 x3 ^2 −0.00223432 0 .00039648 −5.6354 0 .0048794 ∗∗
151 x4 ^2 −0.02310668 0 .00268905 −8.5929 0 .0010078 ∗∗
152 −−−
153 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 0 01 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
154
155 A n a l y s i s o f V a r i a n c e Tab le
156
157 Response : r e s p
158 Df Sum Sq Mean Sq F v a l u e Pr (>F)
159 FO(x3 , x4) 2 0 .00166925 0 .00083463 5 .1884 e +01 0 .001378
160 TWI(x3 , x4) 1 0 .00002197 0 .00002197 1 .3659 e +00 0 .307415
161 PQ(x3 , x4) 2 0 .00137822 0 .00068911 4 .2838 e +01 0 .001990

5 TuneR: An Experiment Framework and a Hands-on Example 275

162 R e s i d u a l s 4 0 .00006435 0 .00001609
163 Lack of f i t 3 0 .00006435 0 .00002145 4 .4547 e +29 1 .101 e−15
164 Pure e r r o r 1 0 .00000000 0 .00000000
165
166 S t a t i o n a r y p o i n t o f r e s p o n s e s u r f a c e :
167 x3 x4
168 −0.1573278 0 .3646356
169
170 S t a t i o n a r y p o i n t i n o r i g i n a l u n i t s :
171 s t a r t l e v e l
172 75 .685344 3 .364636
173
174 E i g e n a n a l y s i s :
175 $ v a l u e s
176 [1] −0.002217888 −0.023123113
177
178 $ v e c t o r s
179 [, 1] [, 2]
180 x3 −0.9996068 0 .0280393
181 x4 0 .0280393 0 .9996068

D: Evaluate Stationary Point

The purpose of the previous TuneR step was to locate a stationary point in the
vicinity of the optimal setting. The stationary point can either represent a maxi-
mum response, a minimum response, or a saddle point. The nature of the station-
ary point is given by the signs of the eigenvalues: for a maximum response all are
negative, and for a minimum response all are positive. Thus, if the eigenanalysis
resulted in a maximum point, the tuning experiments have resulted in a pin-pointed
optimal setting for the SE tool. If the eigenvalues have different signs on the other
hand, then the CCD experiment located a saddle point. The experimenter should
then perform ridge analysis [357], i.e., conducting additional experimental runs
following the ridge in both directions.

Regarding the stationary point identified for the tuning of ImpRec, it is located
close to START = 76, LEV EL = 3 as shown in Listing V.6:170. The eigen-
analysis gives that it represents a maximum point (cf. Listing V.6:174). Figure 8
shows a visualization6 using visreg [84] of the response surface in this region. vi-
sualizes the response surface in this region, confirming that a setting representing
a maximum response has been identified. Thus, we conclude the parameter tun-
ing of ImpRec as follows: ALPHA = 0.99, PENALTY = 0.80, START =
76, LEV EL = 3. Using the new parameter setting of ImpRec, we obtainRc@20 =
0.50625 compared to Rc@20 = 0.41875 using the default settings of ImpRec
(ALPHA = 0.83, PENALTY = 0.2, START = 17, LEV EL = 7). Apply-
ing TuneR has thus improved the Rc@20 for ImpRec by 20.9% on this particular
dataset.

6R command: > visreg2d(ccd_model, ”x3”, ”x4”, plot.type = ”persp”)

276 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Figure 8: Visualization of the response surface wrt. x3 and x4, i.e., START and
LEV EL in coded variables. ALPHA and PENALTY are fixed to 0.99 and
0.80, respectively. f(x3, x4) shows the response.

5.4 Evaluate the Setting

The final activity in TuneR is to perform an evaluation of the new parameter set-
ting. Optimization based on a single response metric might result in a far too naïve
perspective, thus a more holistic analysis must be employed to determine the value
of the new parameter setting. Numbers typically do not cover all aspects of a stud-
ied phenomenon [324], and there is a risk that the experimenter pushes the setting
too much based on quantitative metrics, squeezing percentages without consid-
ering overall values of the process the SE tool is intended to support. The final
activity of TuneR aims at taking a step back, and considering the bigger picture.

Figure 9 shows a comparison of the ImpRec evaluation using the default setting
(dashed line) and the tuned setting (solid line). The four subplots show the cut-off,
N, of the ranked output list on the x-axis, and the following IR measures:

A: Precision, displaying the decrease that is characteristic to IR evaluations [89].

B: Recall, including the target metric for the tuning experiments: Rc@20.

C: F1-score, the (balanced) harmonic mean of recall and precision.

D: MAP, an IR measure that combines recall with the performance of ranking.

The evaluation reveals that while the tuning has resulted in increases with re-
gard to recall (cf. Fig. 9, subplot B), the improvements have been paid by other
metrics. Indeed, TuneR has increased the target metric Rc@20 by 20.9%. More-
over, the response for higher N is even higher, reaching as high as 0.544 for

6 Tuning ImpRec Using Exhaustive Search 277

Rc@43-50 (an increase by 27.0%). However, at low N the default setting actu-
ally reaches a higher recall, and first at Rc@11 the tuned setting becomes becomes
better. To further add to the discussion, the three subplots A, C, and D all show
that the default setting outperforms the tuned setting. For MAP@N, the difference
between the default setting and the tuned setting actually increases for large N.

The evaluation of the tuned parameter setting for ImpRec, and the identified
trade-off, show the importance of the final step in TuneR. It is not at all clear from
Figure 9 whether the new parameter setting would benefit an engineer working
with ImpRec. While we have carefully selected the response metrics, the trade-
off appears to be bigger than expected. Not only is the trade-off between recall
and precision evident, but also the trade-off within Rc@N; only after the cut-off
N = 11 the recall benefits from the new setting. Our work is an example of a
purely quantitative in silico evaluation, conducted as computer experiments with-
out considering the full operational context of ImpRec [77]. To fully understand
how switching between the two settings affect the utility [32] of ImpRec, human
engineers actually working with the tool must be studied. We report from such
an in situ study in another paper [80], in which we deployed ImpRec in two de-
velopment teams in industry, one with the default setting and one with the tuned
setting.

6 Tuning ImpRec Using Exhaustive Search

If the screening experiments of TuneR (Phase 2) fails to identify actionable regu-
larities in the response surface, i.e., there is considerable lack of fit for both first
and second-order models, the experimenter might decide to design an experiment
of a more exhaustive nature. However, as an exhaustive amount of experimental
runs is likely to be computationally expensive, a first try should be to investigate
if a low-order polynomial model fit for the promising part of the response surface.
If that is the case, Phase 3 could still be applicable in that specific region of the
response surface. Otherwise, at least if the set of critical parameters has been re-
duced, a more exhaustive space-filling design (i.e., a brute force approach [358])
might be the remaining option to find a tuned setting. The purpose of this section is
twofold. First, we present the design of a fine-granular space-filling design for tun-
ing ImpRec. Second, the result of the exhaustive search acts as a proof-of-concept
of TuneR, as we compare the results to the outcome from Phase 3.

For tuning of ImpRec, we design a uniform space-filling design. Table 8 shows
the levels we explore in the experimental runs. The screening experiment de-
scribed in Section 5.2 shows that ALPHA appears to be more important than
PENALTY , thus we study it with a finer granularity. START and LEV EL are
both positive integer parameters, and we choose to explore them starting from their
lowest possible values. As the nature of the issue-issue links is unlikely to result in
issue chains longer than five, setting the highest value to 9 is already a conservative

278 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Figure 9: Comparison of ImpRec output with default settings (dashed line) and
tuned settings (solid line). Subplots clockwise from the first quadrant: Recall@N,
MAP@N, F1-score@N, and Precision@N,

choice. The potential of large START on the other hand is less clear, but Figure 6
suggests that values between 16 and 128 result in the best Rc@20. However, large
START require infeasible execution times, thus we restrict the parameter to 90
for practical reasons.

Table 9 shows the best results from running the exhaustive tuning experiments.
In total, the experiments required 1,253 hours (about 52 days) to complete on a
desktop computer7, with an average of 24 s per experimental run. The best result
we obtain in the exhaustive experiments is Rc@20=0.5375, a response we get from

7Intel Core i5-2500K quad-core CPU 3.30 GHz with 8 GB RAM.

7 Discussion 279

Table 8: Uniform space-filling design for exhaustive approach to tuning of Imp-
Rec. The design requires 187,110 experimental runs, compared to 3,430 in the
screening experiment (cf. Table 2).

Parameter #Levels Values
ALPHA 21 0.01, 0.05, 0.10, 0.15, . . . , 0.95, 0.99
PENALTY 11 0.01, 0.5, 1, 1.5, . . . , 5
START 90 1, 2, 3, . . . , 90
LEV EL 9 1, 2, . . . , 9

Table 9: Top 10 results from the exhaustive experiment. The third column shows
how many different settings that yield the response.

Rc@20 #Settings
1 0.5375 12
2 0.534375 72
3 0.53125 60
4 0.528125 72
5 0.525 108
6 0.521875 238
7 0.51875 96
8 0.515625 120
9 0.5125 238
10 0.509375 83

12 different settings, a value that is 6.2% better than what we found using the three
main phases of TuneR (Rc@20=0.50625). By looking at the 12 settings yielding
Rc@20=0.5375, we note that START = 51 and LEV EL = 3 provide the best
results. However, regarding the two remaining parameters, the pattern is less clear;
ALPHA varies from 0.6 to 0.99, and PENALTY is either at low range (0.5 or
1.5) or at high range (4.5 or 5). Figure 10 summarizes the exhaustive experiment
by presenting the distribution of responses per setting, as well as the execution
times.

7 Discussion

Finding feasible parameter settings for SE tools is a challenging, but important,
activity. SE tools are often highly configurable through parameters, but there is
typically no silver bullet; there is not one default parameter setting that is opti-
mal for all contexts. However, often advanced approaches are implemented in
state-of-the-art SE tools. As a result of the tools’ inherent complexity, academic
researchers have published numerous papers on how to improve tool output by

280 TuneR: A Framework for Tuning Software Engineering Tools with . . .

Figure 10: Distribution of results from the exhaustive experiment. The y-axes
show the number of settings that resulted in the output. The left figure displays
Rc@20, and the right figure shows the execution time.

trying different settings and tuning internal algorithms. Consequently, SE tool
developers cannot expect end users to understand all the intricate details of their
implementations. Instead we argue that applied researchers need to provide guide-
lines to stimulate dissemination of SE tools in industry, i.e., to support transfer of
research prototypes from academia to industry.

An established approach to improve processes is to use experiments. How-
ever, traditional DoE was developed for physical processes, much different from
the application of SE tools. In this paper we introduced TuneR, a framework
for tuning SE tools, using a combination of space-filling designs and RSM. Sev-
eral researchers have presented advice and guidelines on how to tune various SE
tools, but they typically address a specific family of tools, e.g., SBSE [25, 188],
evolutionary software testing [130], LDA for feature location [58], and trace re-
trieval [313]. TuneR is instead a general framework, that can be applied for most
types of SE tools.

As a proof-of-concept, and as a demonstration of TuneR’s ease of use, we
presented a detailed step-by-step tuning of the RSSE ImpRec. Using TuneR we
obtain a considerable increase in the response variable of ImpRec, even though we
considered the default setting already good enough for tool deployment in industry
(see our industrial case study for further details [80]). We selected the default
setting8 based on ad hoc tuning during development of ImpRec, but using TuneR
resulted in a 20.9% higher response, i.e., an improvement from Rc@20=0.41875 to
Rc@20=0.50625. Thus, in contrast to the Arcuri and Fraser’s inconclusive results
from tuning an SBSE tool [25], we demonstrate that RSM can be a component in
successful tuning of SE tools.

8Default setting: ALPHA = 0.83, PENALTY = 0.2, START = 17, LEV EL = 7

7 Discussion 281

Applying TuneR to tune an SE tool provides insights beyond what a feasible
parameter setting. Thanks to the screening phase, TuneR identifies the most impor-
tant parameters, both in terms of main effects and interaction effects. Especially
interaction effects is missed when tuning tools using less structured experimental
designs, e.g., COST analysis and ad hoc tuning [165, pp. 211] [342, pp. 4]. Dur-
ing tuning of ImpRec, we found that two interactions were significant: 1) positive
interaction between ALPHA and START , and 2) negative interaction between
START and LEV EL. Thus, if a high number of issue reports are used as starting
points, then the ranking function should give more weight to the centrality measure
than the textual similarity. Furthermore, if the number of starting points is high,
then the number of links to follow in the knowledge base should be decreased.

Although resulting in a considerable improvement in the response, we found
that the tuned setting9 obtained from TuneR still was not optimal. Using exhaus-
tive experiments, we identified settings that yield even higher responses, reaching
as high as Rc@20=0.5375. However, running exhaustive experiments come at a
high computational cost, and it is not certain that there is enough return on invest-
ment. In our example, we used more than 50 days of computation time for the
exhaustive experiments, in total conducting 187,110 experimental runs, to find a
6.2% higher response (Rc@0=0.5375) compared to the TuneR setting. Further-
more, we explored only four parameters in the exhaustive experiments. For other
SE tools the number of parameters might be higher, and the combinatorial explo-
sion would quickly lead to infeasible exhaustive experimental designs. To mitigate
this problem, the screening phase of TuneR could be used to identify the dominat-
ing parameters, in line with common practice in traditional DoE [165, 342].

The exhaustive experiments revealed 12 different settings yielding the top re-
sponse. A clear pattern in the 12 settings was found; to obtain the best results,
START and LEV EL were set to 51 and 3, respectively. At the same time how-
ever, ALPHA and PENALTY could be set to several different combinations
of values. Based on the screening phase of TuneR, we concluded that ALPHA
should be set to high values, as “centrality values are more important than textual
similarity, i.e., previously impacted artifacts are likely to be impacted again” (see
Section 5.2). In hindsight, with the knowledge obtained from the exhaustive exper-
iment, it appears that early fixing ALPHA to 0.99 was not necessarily the right
decision, as high responses apparently can be obtained for a range of ALPHA
values. Experimentation is an iterative process, and the experimenter’s knowledge
gradually increases. Based on the updated understanding of ALPHA, a next step
could be to do another TuneR screening focusing on 0.6 ≤ ALPHA ≤ 0.99.

We acknowledge two main threats to the validity of the tuned ImpRec setting
we obtain through TuneR. First, there is always a threat that focusing on a single
response metric might be an oversimplification, as discussed in Section 5.1. In
Section 5.4, we show that while the tuned setting leads to an improved response
in Rc@20, with regard to most other metrics we study in the evaluation of the

9Tuned setting: ALPHA = 0.99, PENALTY = 0.80, START = 76, LEV EL = 3

282 TuneR: A Framework for Tuning Software Engineering Tools with . . .

new setting, the output was better for the default setting. Whether Rc@20 is the
best target metric is not certain, even though we posit that it reflects an impor-
tant quality aspect of ImpRec, resulting in maximization of true impact among a
manageable amount of recommendations. An alternative response metric could be
MAP@20, also reported in the evaluation in Section 5.4, a metric that also consid-
ers the ranking of the true output among the top-20 recommendations. We stress
that it is important to validate the response metric from the start, otherwise TuneR
will move the setting in a direction that does not bring value.

Second, while we carefully selected four parameters for the tuning experi-
ments, there might be additional important parameters at play. For example, the
IR approach we apply in ImpRec could be adjusted in numerous ways, yet we
consider the involved variation points as fixed. Apache Lucene, the integrated IR
solution, is highly configurable, but as we have successfully used it for a similar
task before (duplicate detection of issue reports [78]), we made the assumption that
it performs well out-of-the-box. Other potentially useful approaches related to IR,
which we did not explore in this paper, is to perform further preprocessing, e.g.,
stop word removal, stemming, and dimensionality reduction. However, as TuneR
resulted in an increased response, also close to what the exhaustive experiment
yielded, we argue that our selection of parameters was valid.

Furthermore, there are also some threats to the validity of the overall TuneR
framework. While our goal when developing TuneR was to present a framework
generally applicable to tuning of SE tools, the external validity [477] of the ap-
proach is still uncertain. We have only presented one single proof-of-concept,
i.e., the tuning of the RSSE ImpRec, thus we need to conduct additional tuning
experiments, with other SE tools, to verify the generalizability. We plan to con-
tinue evolving TuneR, and two involved activities we particularly want to focus
on improving are: 1) guidelines regarding parameter subset selection when fitting
low-order polynomial models during screening (Section 5.2), and 2) the step size
selection in the RSM phase (Section 5.3). Finally, we argue that TuneR is easy
to use, especially since we present hands-on examples in R, but the only way to
validate the usability is by letting others try the framework.

8 Conclusion

In this paper we have presented TuneR, an experiment framework for tuning Soft-
ware Engineering (SE) tools. TuneR build on methods from Design of Experi-
ments (DoE) and Design of Computer Experiments (DoCE), two established fields
with numerous successful applications in various engineering disciplines [236].
However, both DoE and DoCE have been developed to address experiments on
phenomena with a representation in the physical world, either directly (DoE) or
indirectly through computer models (DoCE). We have discussed how tuning of

8 Conclusion 283

SE tools is different from traditional experimentation, and how TuneR combines
space-filling designs and factorial designs to identify a feasible parameter setting.

As a proof-of-concept, we applied TuneR to tune ImpRec, a recommendation
system for change impact analysis, to a specific proprietary context. For all TuneR
steps, we have provided detailed instructions on how to analyze the experimen-
tal output using various R packages. Using TuneR, we increased the accuracy
of the ImpRec recommendations by 20.9% with regard to recall among the top-
20 candidates. To validate the tuned setting, we also applied a more exhaustive
space-filling design, trying in total 187,110 parameter settings. We found param-
eter settings yielding a 6% higher response, but running the experiment required
more than 50 days of computation time. Thus, we consider the proof-of-concept
successful, as TuneR resulted in a similar response in a fraction of the time.

A major threat when tuning an SE tool is that the selected response metric, i.e.,
the target for optimization, does not fully capture the overall value of the tool. Op-
timizing a response might come at a price; increases in one metric might be paid
by decreases in other metrics. The tuning of ImpRec is an example of this trade-
off, and we show how precision, F1-score, and mean average precision decrease
with the new tuned setting. Even recall at lower cut-off points, i.e., when consid-
ering ten or fewer recommendations from ImpRec, yields decreased results with
the tuned parameter setting. From this observation, we stress the importance of
carefully selecting the response metric, and to properly evaluate the consequences
of the tuned parameter setting, before deploying the tuned SE tool.

Acknowledgements
This work was funded by the Industrial Excellence Center EASE - Embedded
Applications Software Engineering10.

10http://ease.cs.lth.se

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] A. Abadi, M. Nisenson, and Y. Simionovici. A Traceability Technique for
Specifications. In Proc. of the International Conference on Program Com-
prehension, pages 103–112, 2008.

[2] W. AbdelMoez, M. Kholief, and F. Elsalmy. Improving Bug Fix-Time Pre-
diction Model by Filtering Out Outliers. In Proc. of the 1st International
Conference on Technological Advances in Electrical, Electronics and Com-
puter Engineering, pages 359–364, 2013.

[3] M. Aberdour. Achieving Quality in Open-Source Software. IEEE Software,
24(1):58–64, 2007.

[4] R. Abreu, P. Zoeteweij, and A. van Gemund. An Evaluation of Similar-
ity Coefficients for Software Fault Localization. In Proc. of the 12th Pa-
cific Rim International Symposium on Dependable Computing, pages 39–
46, 2006.

[5] M. Acharya and B. Robinson. Practical Change Impact Analysis Based on
Static Program Slicing for Industrial Software Systems. In Proc. of the 33rd
International Conference on Software Engineering, pages 746–755, 2011.

[6] S. Ahsan, J. Ferzund, and F. Wotawa. Automatic Software Bug Triage Sys-
tem (BTS) Based on Latent Semantic Indexing and Support Vector Ma-
chine. In Proc. of the 4h International Conference on Software Engineering
Advances, pages 216–221, 2009.

[7] J. Aitchison, A. Gilchrist, and D. Bawden. Thesaurus Construction and
Use: A Practical Manual. Routledge, 4th edition, 2000.

[8] M. Alenezi, K. Magel, and S. Banitaan. Efficient Bug Triaging Using Text
Mining. Journal of Software, 8(9):2185–2190, 2013.

[9] N. Ali, Y. Guéhéneuc, and G. Antoniol. Trust-Based Requirements Trace-
ability. In Proc. of the 19th International Conference on Program Compre-
hension, pages 111–120, 2011.

290 BIBLIOGRAPHY

[10] N. Ali, Y. Guéhéneuc, and G. Antoniol. Factors Impacting the Inputs
of Traceability Recovery Approaches. In J. Cleland-Huang, O. Gotel,
and A. Zisman, editors, Software and Systems Traceability, pages 99–127.
Springer, 2012.

[11] R. Alshammari and A. Zincir-Heywood. Machine Learning Based En-
crypted Traffic Classification: Identifying SSH and Skype. In Proc. of the
2nd Symposium on Computational Intelligence for Security and Defense
Applications, pages 1–8, 2009.

[12] M. Alvesson and K. Sköldberg. Reflexive Methodology: New Vistas for
Qualitative Research. Sage Publications, 2000.

[13] A. Amamra, C. Talhi, J. Robert, and M. Hamiche. Enhancing Smartphone
Malware Detection Performance by Applying Machine Learning Hybrid
Classifiers. In Proc. of the International Conference on Advanced Software
Engineering & Its Applications and Proc. of the International Conference
on Disaster Recovery and Business Continuity, pages 131–137, 2012.

[14] C. Andersen and R. Bro. Variable Selection in Regression - A Tutorial.
Journal of Chemometrics, 24(11-12):728–737, 2010.

[15] N. Ansari and E. Hou. Computational Intelligence for Optimization.
Springer, 2012.

[16] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Information Re-
trieval Models for Recovering Traceability Links between Code and Docu-
mentation. In Proc. of the 16th International Conference on Software Main-
tenance, pages 40–49, 2000.

[17] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Tracing
Object-Oriented Code Into Functional Requirements. In Proc. of the 8th
International Workshop on Program Comprehension, pages 79–86, 2000.

[18] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-
ing Traceability Links between Code and Documentation. Transactions on
Software Engineering, 28(4):970–983, 2002.

[19] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering Code to
Documentation Links in OO Systems. In Proc. of the 6th Working Confer-
ence on Reverse Engineering, pages 136–144, 1999.

[20] G. Antoniol, A. Potrich, P. Tonella, and R. Fiutem. Evolving Object Ori-
ented Design to Improve Code Traceability. In Proc. of the 7th International
Workshop on Program Comprehension, pages 151–160, 1999.

[21] J. Anvik. Assisting Bug Report Triage through Recommendation. PhD
Thesis, University of British Columbia, 2007.

BIBLIOGRAPHY 291

[22] J. Anvik, L. Hiew, and G. Murphy. Coping with an Open Bug Repository.
In Proc. of the 2005 OOPSLA Workshop on Eclipse Technology eXchange,
pages 35–39, 2005.

[23] J. Anvik, L. Hiew, and G. Murphy. Who Should Fix this Bug? In Proc.
of the 28th International Conference on Software Engineering, pages 361–
370, 2006.

[24] J. Anvik and G. Murphy. Reducing the Effort of Bug Report Triage: Recom-
menders for Development-Oriented Decisions. Transactions on Software
Engineering and Methodology, 20(3):1–35, 2011.

[25] A. Arcuri and G. Fraser. Parameter Tuning or Default Values? An Empirical
Investigation in Search-based Software Engineering. Empirical Software
Engineering, 18(3):594–623, 2013.

[26] S. Arlot and A. Celisse. A Survey of Cross-Validation Procedures for Model
Selection. Statistics Surveys, 4:40–79, 2010.

[27] R. Arnold and S. Bohner. Impact Analysis - Towards a Framework for Com-
parison. In Proc. of the 9th Conference on Software Maintenance, pages
292–301, 1993.

[28] U. Asklund and L. Bendix. A Study of Configuration Management in Open
Source Software Projects. IEE Proceedings - Software, 149(1):40–46, 2002.

[29] N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej. Ontology-
Based Multiperspective Requirements Traceability Framework. Knowledge
and Information Systems, 25(3):493–522, 2010.

[30] H. Asuncion, F. François, and R. Taylor. An End-to-End Industrial Soft-
ware Traceability Tool. In Proc. of the 6th Joint Meeting of the European
Software Engineering Conference and the Symposium on The Foundations
of Software Engineering, pages 115–124, 2007.

[31] H. Asuncion and R. Taylor. Automated Techniques for Capturing Custom
Traceability Links Across Heterogeneous Artifacts. In J. Cleland-Huang,
O. Gotel, and A. Zisman, editors, Software and Systems Traceability, pages
129–146. Springer, 2012.

[32] I. Avazpour, T. Pitakrat, L. Grunske, and J. Grundy. Dimensions and Met-
rics for Evaluating Recommendation Systems. In M. Robillard, W. Maalej,
R. Walker, and T. Zimmermann, editors, Recommendation Systems in Soft-
ware Engineering, pages 245–273. Springer, 2014.

[33] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats on Build-
ing Models from CVS and Bugzilla Repositories: The Mozilla Case Study.

292 BIBLIOGRAPHY

In Proc. of the 17th Conference of the Center for Advanced Studies on Col-
laborative Research, pages 215–228, 2007.

[34] N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix, and W. Pugh. Using
Static Analysis to Find Bugs. IEEE Software, 25(5):22–29, 2008.

[35] A. Bacchelli, M. Lanza, and R. Robbes. Linking E-mails and Source Code
Artifacts. In Proc. of the 32nd International Conference on Software Engi-
neering, pages 375–384, 2010.

[36] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The
Concepts and Technology behind Search. Addison-Wesley, 2nd edition,
2011.

[37] M. Banko and E. Brill. Scaling to Very Very Large Corpora for Natural Lan-
guage Disambiguation. In Proc. of the 39th Annual Meeting on Association
for Computational Linguistics, pages 26–33, 2001.

[38] A. Barbolla and J. Corredera. Critical Factors for Success in University-
Industry Research Projects. Technology Analysis & Strategic Management,
21(5):599–616, 2009.

[39] Z. Barmi, A. Ebrahimi, and R. Feldt. Alignment of Requirements Speci-
fication and Testing: A Systematic Mapping Study. In Proc. of the ICST
Workshop on Requirements and Validation, Verification and Testing, pages
476–485, 2011.

[40] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. The Sequential Parameter
Optimization Toolbox. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete,
and M. Preuss, editors, Experimental Methods for the Analysis of Optimiza-
tion Algorithms, pages 337–362. Springer, 2010.

[41] V. Basili. Software Modeling and Measurement: The Goal/Question/Metric
Paradigm. Technical Report CS-TR-2956, University of Maryland, 1992.

[42] V. Basili. The Role of Controlled Experiments in Software Engineering Re-
search. In V. Basili, D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl,
and R. Selby, editors, Empirical Software Engineering Issues. Critical As-
sessment and Future Directions, pages 33–37. Springer, 2007.

[43] V. Basili, R. Selby, and D. Hutchens. Experimentation in Software Engi-
neering. Transactions on Software Engineering, 12(7):733–743, 1986.

[44] O. Baysal, M. Godfrey, and R. Cohen. A Bug You Like: A Framework for
Automated Assignment of Bugs. In Proc. of the 17th International Confer-
ence on Program Comprehension, pages 297–298, 2009.

BIBLIOGRAPHY 293

[45] M. Baz, B. Hunsaker, P. Brooks, and A. Gosavi. Automated Tuning of
Optimization Software Parameters. Technical Report, Dept. of Industrial
Engineering, University of Pittsburgh, 2007.

[46] K. Beck. Test-Driven Development: By Example. Addison-Wesley, 2003.

[47] E. Ben Charrada, D. Caspar, C. Jeanneret, and M. Glinz. Towards A Bench-
mark for Traceability. In Proc. of the 12th International Workshop on Prin-
ciples on Software Evolution, pages 21–30, 2011.

[48] J. Berlik, S. Dharmadhikari, M. Harding, and N. Singh. System and Method
for Maintaining Requirements Traceability, US Patent 8191044 B1, 2012.

[49] R. Berntsson Svensson, Y. Sprockel, B. Regnell, and S. Brinkkemper. Set-
ting Quality Targets for Coming Releases with QUPER: An Industrial Case
Study. Requirements Engineering, 17(4):283–298, 2012.

[50] D. Berry. The Philosophy of Software: Code and Mediation in the Digital
Age. Palgrave Macmillan, 2011.

[51] D. Bertram, A. Voida, S. Greenberg, and R. Walker. Communication, Col-
laboration, and Bugs: The Social Nature of Issue Tracking in Small, Col-
located Teams. In Proc. of the 13th Conference on Computer Supported
Cooperative Work, pages 291–300, 2010.

[52] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmer-
mann. What Makes a Good Bug Report? In Proc. of the 16th International
Symposium on Foundations of Software Engineering, pages 308–318, 2008.

[53] N. Bettenburg, R. Premraj, T. Zimmermann, and K. Sunghun. Duplicate
Bug Reports Considered Harmful... Really? In Proc. of the 24th Interna-
tional Conference on Software Maintenance, pages 337–345, 2008.

[54] J. Bezanson, S. Karpinski, V. Shah, and A. Edelman. Julia: A Fast Dynamic
Language for Technical Computing. 2012. arXiv: 1209.5145.

[55] P. Bhattacharya, I. Neamtiu, and C. Shelton. Automated, Highly-accurate,
Bug Assignment Using Machine Learning and Tossing Graphs. Journal of
Systems and Software, 85(10):2275–2292, 2012.

[56] A. Bianchi, A. Fasolino, and G. Visaggio. An Exploratory Case Study of
the Maintenance Effectiveness of Traceability Models. In Proc. of the 8th
International Workshop on Program Comprehension, pages 149–158, 2000.

[57] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online
Analysis. Journal of Machine Learning Research, 11:1601–1604, 2010.

294 BIBLIOGRAPHY

[58] L. Biggers, C. Bocovich, R. Capshaw, B. Eddy, L. Etzkorn, and N. Kraft.
Configuring Latent Dirichlet Allocation Based Feature Location. Empirical
Software Engineering, 19(3):465–500, 2014.

[59] D. Binkley and D. Lawrie. Information Retrieval Applications in Software
Maintenance and Evolution. In J. Marciniak, editor, Encyclopedia of Soft-
ware Engineering. Taylor & Francis, 2nd edition, 2010.

[60] D. Binkley and D. Lawrie. Learning to Rank Improves IR in SE. In Proc. of
the 30th International Conference on Software Maintenance and Evolution,
pages 441–445, 2014.

[61] M. Birattari. Tuning Metaheuristics - A Machine Learning Perspective.
Springer, 2009.

[62] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[63] E. Bjarnason, K. Smolander, E. Engström, and P. Runeson. Alignment Prac-
tices Affect Distances in Software Development: A Theory and a Model. In
Proc. of the 3rd SEMAT Workshop on General Theories of Software Engi-
neering, pages 21–31, 2014.

[64] D. Blei and J. Lafferty. A Correlated Topic Model of Science. Annals of
Applied Statistics, 1(1):17–35, 2007.

[65] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. The Journal of
Machine Learning Research, 3(4-5):993–1022, 2003.

[66] B. Boehm. Software Engineering. Transactions on Computers,
25(12):1226–1241, 1976.

[67] S. Bohner. Software Change Impact Analysis. IEEE Computer Society
Press, 1996.

[68] S. Bohner. Software Change Impacts - An Evolving Perspective. In Proc.
of the 18th International Conference on Software Maintenance, pages 263–
272, 2002.

[69] M. Borg. In Vivo Evaluation of Large-Scale IR-Based Traceability Recov-
ery. In Proc. of the 15th European Conference on Software Maintenance
and Reengineering, pages 365–368, 2011.

[70] M. Borg. TuneR: A Framework for Tuning Software Engineering Tools
with Hands-On Instructions in R. Submitted to a journal, 2015.

[71] M. Borg, O. Gotel, and K. Wnuk. Enabling Traceability Reuse for Im-
pact Analyses: A Feasibility Study in a Safety Context. In Proc. of the
7th International Workshop on Traceability in Emerging Forms of Software
Engineering, 2013.

BIBLIOGRAPHY 295

[72] M. Borg and D. Pfahl. Do Better IR Tools Improve the Accuracy of En-
gineers’ Traceability Recovery? In Proc. of the International Workshop
on Machine Learning Technologies in Software Engineering, pages 27–34,
2011.

[73] M. Borg, D. Pfahl, and P. Runeson. Analyzing Networks of Issue Reports.
In Proc. of the 17th European Conference on Software Maintenance and
Reengineering, pages 79–88, 2013.

[74] M. Borg and P. Runeson. IR in Software Traceability: From a Bird’s Eye
View. In Proc of the 7th International Symposium on Empirical Software
Engineering and Measurement, pages 243–246, 2013.

[75] M. Borg and P. Runeson. Changes, Evolution and Bugs - Recommendation
Systems for Issue Management. In M. Robillard, W. Maalej, R. Walker, and
T. Zimmermann, editors, Recommendation Systems in Software Engineer-
ing, pages 477–509. Springer, 2014.

[76] M. Borg, P. Runeson, and A. Ardö. Recovering from a Decade: A System-
atic Mapping of Information Retrieval Approaches to Software Traceability.
Empirical Software Engineering, 19(6):1565–1616, 2014.

[77] M. Borg, P. Runeson, and L. Brodén. Evaluation of Traceability Recov-
ery in Context: A Taxonomy for Information Retrieval Tools. In Proc. of
the 16th International Conference on Evaluation & Assessment in Software
Engineering, pages 111–120, 2012.

[78] M. Borg, P. Runeson, J. Johansson, and M. Mäntylä. A Replicated Study
on Duplicate Detection: Using Apache Lucene to Search Among Android
Defects. In Proc. of the 8th International Symposium on Empirical Software
Engineering and Measurement, 2014.

[79] M. Borg, K. Wnuk, and D. Pfahl. Industrial Comparability of Student Arti-
facts in Traceability Recovery Research - An Exploratory Survey. In Proc.
of the 16th European Conference on Software Maintenance and Reengi-
neering, pages 181–190, 2012.

[80] M. Borg, K. Wnuk, B. Regnell, and P. Runeson. Supporting Change Impact
Analysis Using a Recommendation System - An Industrial Case Study in a
Safety-Critical Context. Submitted to a journal, 2015.

[81] M. Borillo, A. Borillo, N. Castell, D. Latour, Y. Toussaint, and M. Fe-
lisa Verdejo. Applying Linguistic Engineering to Spatial Software Engi-
neering: The Traceability Problem. In Proc. of the 10th European Confer-
ence on Artificial Intelligence, pages 593–595, 1992.

296 BIBLIOGRAPHY

[82] G. Box, S. Hunter, and W. Hunter. Statistics for Experimenters: Design,
Innovation, and Discovery. Wiley, 2nd edition, 2005.

[83] M. Bras and Y. Toussaint. Artificial Intelligence Tools for Software Engi-
neering: Processing Natural Language Requirements. In Applications of
Artificial Intelligence in Engineering, pages 275–290, 1993.

[84] P. Breheny and W. Burchett. Visualization of Regression Models Using
visreg. Technical Report, University of Kentucky, 2013.

[85] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

[86] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons
from Applying the Systematic Literature Review Process within the Soft-
ware Engineering Domain. Journal of Systems and Software, 80(4):571–
583, 2007.

[87] L. Briand, Y. Labiche, L. O’Sullivan, and M. Sówka. Automated Impact
Analysis of UML Models. Journal of Systems and Software, 79(3):339–
352, 2006.

[88] M. Brown and D. Goldenson. Measurement and Analysis: What Can and
Does Go Wrong? In Proc. of the 10th International Symposium on Software
Metrics, pages 131–138, 2004.

[89] M. Buckland and F. Gey. The Relationship between Recall and Preci-
sion. Journal of the American Society for Information Science, 45(1):12–19,
1994.

[90] P. Burman, E. Chow, and D. Nolan. A Cross-Validatory Method for Depen-
dent Data. Biometrika, 81(2):351–358, 1994.

[91] G. Canfora and L. Cerulo. Impact Analysis by Mining Software and Change
Request Repositories. In Proc. of the 11th International Symposium on
Software Metrics, pages 9–29, 2005.

[92] G. Canfora and L. Cerulo. Fine Grained Indexing of Software Repositories
to Support Impact Analysis. In Proc. of the International Workshop on
Mining Software Repositories, pages 105–111, 2006.

[93] G. Canfora and L. Cerulo. Supporting Change Request Assignment in Open
Source Development. In Proc. of the 21st Symposium on Applied Comput-
ing, pages 1767–1772, 2006.

[94] L. Cao and B. Ramesh. Agile Requirements Engineering Practices: An
Empirical Study. IEEE Software, 25(1):60–67, 2008.

BIBLIOGRAPHY 297

[95] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella.
On the Role of the Nouns in IR-based Traceability Recovery. In Proc. of
the 17th International Conference on Program Comprehension, pages 148–
157, 2009.

[96] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella.
Traceability Recovery Using Numerical Analysis. In Proc. of the 16th
Working Conference on Reverse Engineering, pages 195–204, 2009.

[97] Carnegie Mellon Software Engineering Institute. CMMI for Development,
Version 1.3. 2010.

[98] A. Casamayor, D. Godoy, and M. Campo. Identification of Non-Functional
Requirements in Textual Specifications: A Semi-Supervised Learning Ap-
proach. Information and Software Technology, 52(4):436–445, 2010.

[99] N. Castell, O. Slavkova, Y. Toussaint, and A. Tuells. Quality Control of
Software Specifications Written in Natural Language. In Proc. of the 7th
International Conference on Industrial and Engineering Applications of Ar-
tificial Intelligence and Expert Systems, pages 37–44, 1994.

[100] Y. Cavalcanti, P. Silveira Neto, I. Machado, T. Vale, E. Almeida, and
S. Meira. Challenges and Opportunities for Software Change Request
Repositories: A Systematic Mapping Study. Journal of Software: Evolution
and Process, 26(7):620–653, 2014.

[101] J. Chang and D. Blei. Hierarchical Relational Models for Document Net-
works. The Annals of Applied Statistics, 4(1):124–150, 2010.

[102] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental Cluster-
ing and Dynamic Information Retrieval. In Proc. of the 29th Annual ACM
Symposium on Theory of Computing, pages 626–635, 1997.

[103] K. Chen and V. Rajlich. RIPPLES: Tool for Change in Legacy Software. In
Proc. of the 17th International Conference on Software Maintenance, pages
230–239, 2001.

[104] L. Chen, X. Wang, and C. Liu. An Approach to Improving Bug Assign-
ment with Bug Tossing Graphs and Bug Similarities. Journal of Software,
6(3):421–427, 2011.

[105] X. Chen. Extraction and Visualization of Traceability Relationships be-
tween Documents and Source Code. In Proc. of the 25th International
Conference on Automated Software Engineering, pages 505–509, 2010.

298 BIBLIOGRAPHY

[106] X. Chen and J. Grundy. Improving Automated Documentation to Code
Traceability by Combining Retrieval Techniques. In Proc. of the 26th Inter-
national Conference on Automated Software Engineering, pages 223–232,
2011.

[107] X. Chen, J. Hosking, and J. Grundy. A Combination Approach for Enhanc-
ing Automated Traceability. In Proc. of the 33rd International Conference
on Software Engineering, pages 912–915, 2011.

[108] B. Cheng and J. Atlee. Research Directions in Requirements Engineering.
In Proc. of the Future of Software Engineering, pages 285–303, 2007.

[109] I. Chou. Secure Software Configuration Management Processes for Nuclear
Safety Software Development Environment. Annals of Nuclear Energy,
38(10):2174–2179, 2011.

[110] J. Cleland-Huang. Traceability in Agile Projects. In J. Cleland-Huang,
O. Gotel, and A. Zisman, editors, Software and Systems Traceability, pages
265–275. Springer, 2012.

[111] J. Cleland-Huang, C. Chang, and M. Christensen. Event-Based Traceability
for Managing Evolutionary Change. Transactions on Software Engineering,
29(9):796–810, 2003.

[112] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, O. Gotel, J. Huffman Hayes,
E. Keenan, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G. Antoniol,
B. Berenbach, A. Egyed, and P. Mäder. Grand Challenges, Benchmarks,
and TraceLab: Developing Infrastructure for the Software Traceability Re-
search Community. In Proc. of the 6th International Workshop on Trace-
ability in Emerging Forms of Software Engineering, pages 17–23, 2011.

[113] J. Cleland-Huang, O. Gotel, and A. Zisman, editors. Software and Systems
Traceability. Springer, 2012.

[114] J. Cleland-Huang and J. Guo. Towards More Intelligent Trace Retrieval Al-
gorithms. In Proc. of the 3rd Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering, 2014.

[115] J. Cleland-Huang, M. Heimdahl, J. Huffman Hayes, R. Lutz, and P. Mäder.
Trace Queries for Safety Requirements in High Assurance Systems. In
Proc. of the 18th International Working Conference Requirements Engi-
neering: Foundation for Software Quality, pages 179–193, 2012.

[116] J. Cleland-Huang, J. Huffman Hayes, and A. Dekhtyar. Center of Excel-
lence for Traceability: Problem Statement and Grand Challenges in Trace-
ability (v0.1). Technical Report COET-GCT-06-01-0.9, 2006.

BIBLIOGRAPHY 299

[117] J. Cleland-Huang, W. Marrero, and B. Berenbach. Goal-Centric Trace-
ability: Using Virtual Plumblines to Maintain Critical Systemic Qualities.
Transactions on Software Engineering, 34(5):685–699, 2008.

[118] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou. Utilizing Supporting
Evidence to Improve Dynamic Requirements Traceability. In Proc. of the
13th International Conference on Requirements Engineering, pages 135–
144, 2005.

[119] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna, G. Leach, E. Moritz,
M. Gethers, D. Poshyvanyk, J. Huffman Hayes, and W. Li. Toward Action-
able, Broadly Accessible Contests in Software Engineering. In Proc. of the
34th International Conference on Software Engineering, pages 1329–1332,
2012.

[120] C. Cleverdon. The Significance of the Cranfield Tests on Index Languages.
In Proc. of the 14th Annual International SIGIR Conference on Research
and Development in Information Retrieval, pages 3–12, 1991.

[121] R. Cooper. Stage-Gate Systems: A New Tool for Managing New Products.
Business Horizons, 33(3):44–54, 1990.

[122] B. Croft, H. Turtle, and D. Lewis. The Use of Phrases and Structured
Queries in Information Retrieval. In Proc. of the 14th Annual International
Conference on Research and Development in Information Retrieval, pages
32–45, 1991.

[123] D. Cruzes and T. Dybå. Recommended Steps for Thematic Synthesis in
Software Engineering. In Proc. of the 5th International Symposium on Em-
pirical Software Engineering and Measurement, pages 275–284, 2011.

[124] D. Cruzes and T. Dybå. Research Synthesis in Software Engineering: A Ter-
tiary Study. Information and Software Technology, 53(5):440–455, 2011.

[125] D. Cubranić. Automatic Bug Triage Using Text Categorization. In Proc. of
the 16th International Conference on Software Engineering & Knowledge
Engineering, pages 92–97, 2004.

[126] D. Cubranić. Project History as a Group Memory: Learning From the Past.
PhD Thesis, University of British Columbia, 2004.

[127] D. Cubranić, G. Murphy, J. Singer, and K. Booth. Hipikat: A Project
Memory for Software Development. Transactions on Software Engineer-
ing, 31(6):446–465, 2005.

[128] D. Cuddeback, A. Dekhtyar, and J. Huffman Hayes. Automated Require-
ments Traceability: The Study of Human Analysts. In Proc. of the 18th
International Requirements Engineering Conference, pages 231–240, 2010.

300 BIBLIOGRAPHY

[129] G. Cumming. Understanding The New Statistics: Effect Sizes, Confidence
Intervals, and Meta-Analysis. Routledge, 2012.

[130] L. Da Costa and M. Schoenauer. Bringing Evolutionary Computation to In-
dustrial Applications with GUIDE. In Proc. of the 11th Annual Conference
on Genetic and Evolutionary Computation, pages 1467–1474, 2009.

[131] F. da Silva, A. Santos, S. Soares, C. Franca, C. Monteiro, and F. Maciel.
Six Years of Systematic Literature Reviews in Software Engineering: An
Updated Tertiary Study. Information and Software Technology, 53(9):899–
913, 2011.

[132] B. Dagenais, H. Ossher, R. Bellamy, M. Robillard, and J. de Vries. Moving
Into A New Software Project Landscape. In Proc. of the 32nd International
Conference on Software Engineering, pages 275–284, 2010.

[133] D. Damian and J. Chisan. An Empirical Study of the Complex Relation-
ships between Requirements Engineering Processes and Other Processes
that Lead to Payoffs in Productivity, Quality, and Risk Management. Trans-
actions on Software Engineering and Methodology, 32(7):433–453, 2006.

[134] D. Damian, J. Chisan, L. Vaidyanathasamy, and Y. Pal. Requirements En-
gineering and Downstream Software Development: Findings from a Case
Study. Empirical Software Engineering, 10(3):255–283, 2005.

[135] C. Dantas, L. Murta, and C. Werner. Mining Change Traces from Versioned
UML Repositories. In Proc. of the Brazilian Symposium of Software Engi-
neering, pages 236–252, 2007.

[136] J. de la Vara, M. Borg, K. Wnuk, and L. Moonen. Survey on Safety Evi-
dence Change Impact Analysis in Practice: Detailed Description and Anal-
ysis. Technical Report 18, Simula Research Laboratory, 2014.

[137] A. De Lucia, M. Di Penta, and R. Oliveto. Improving Source Code Lexi-
con via Traceability and Information Retrieval. Transactions on Software
Engineering, 37(2):205–227, 2011.

[138] A. De Lucia, M. Di Penta, R. Oliveto, and F. Zurolo. COCONUT: COde
COmprehension Nurturant Using Traceability. In Proc. of the 22nd Inter-
national Conference on Software Maintenance, pages 274–275, 2006.

[139] A. De Lucia, M. Di Penta, R. Oliveto, and F. Zurolo. Improving Com-
prehensibility of Source Code via Traceability Information: A Controlled
Experiment. In Proc. of the International Conference on Program Compre-
hension, pages 317–326, 2006.

BIBLIOGRAPHY 301

[140] A. De Lucia, F. Fasano, and R. Oliveto. Traceability Management for Im-
pact Analysis. In Proc. of the Frontiers of Software Maintenance, pages
21–30, 2008.

[141] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an Artefact
Management System with Traceability Recovery Features. In Proc. of the
20th International Conference on Software Maintenance, pages 306–315,
2004.

[142] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. ADAMS Re-Trace: A
Traceability Recovery Tool. In Proc. of the 9th European Conference on
Software Maintenance and Reengineering, pages 32–41, 2005.

[143] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Can Information Re-
trieval Techniques Effectively Support Traceability Link Recovery? In
Proc. of the 14th International Conference on Program Comprehension,
pages 307–316, 2006.

[144] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering Traceabil-
ity Links in Software Artifact Management Systems Using Information Re-
trieval Methods. Transactions on Software Engineering and Methodology,
16(4:13), 2007.

[145] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk. Information
Retrieval Methods for Automated Traceability Recovery. In J. Cleland-
Huang, O. Gotel, and A. Zisman, editors, Software and Systems Traceabil-
ity. Springer, 2012.

[146] A. De Lucia, R. Oliveto, and P. Sgueglia. Incremental Approach and User
Feedbacks: A Silver Bullet for Traceability Recovery? In Proc. of the 22nd
International Conference on Software Maintenance, pages 299–308, 2006.

[147] A. De Lucia, R. Oliveto, and G. Tortora. IR-based Traceability Recov-
ery Processes: An Empirical Comparison of "One-Shot" and Incremental
Processes. In Proc. of the 23rd International Conference on Automated
Software Engineering, pages 39–48, 2008.

[148] A. De Lucia, R. Oliveto, and G. Tortora. Assessing IR-Based Traceabil-
ity Recovery Tools Through Controlled Experiments. Empirical Software
Engineering, 14(1):57–92, 2009.

[149] A. De Lucia, R. Oliveto, and G. Tortora. The Role of the Coverage Analysis
during IR-based Traceability Recovery: A Controlled Experiment. In Proc.
of the 25th International Conference on Software Maintenance, pages 371–
380, 2009.

302 BIBLIOGRAPHY

[150] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. In-
dexing by Latent Semantic Analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

[151] A. Dekhtyar, O. Dekhtyar, J. Holden, J. Huffman Hayes, D. Cuddeback, and
W. Kong. On Human Analyst Performance in Assisted Requirements Trac-
ing: Statistical Analysis. In Proc. of the 19th International Requirements
Engineering Conference, pages 111–120, 2011.

[152] A. Dekhtyar and J. Huffman Hayes. Good Benchmarks are Hard To Find:
Toward the Benchmark for Information Retrieval Applications in Software
Engineering. Proc. of the 22nd International Conference on Software Main-
tenance, 2006.

[153] A. Dekhtyar, J. Huffman Hayes, and G. Antoniol. Benchmarks for Trace-
ability? In Proc. of the International Symposium on Grand Challenges in
Traceability, 2007.

[154] A. Dekhtyar, J. Huffman Hayes, and J. Larsen. Make the Most of Your
Time: How Should the Analyst Work with Automated Traceability Tools?
In Proc. of the 3rd International Workshop on Predictor Models in Software
Engineering, page 4, 2007.

[155] A. Dekhtyar, J. Huffman Hayes, S. Sundaram, A. Holbrook, and O. Dekht-
yar. Technique Integration for Requirements Assessment. In Proc. of the
15th International Requirements Engineering Conference, pages 141–152,
2007.

[156] C. Dekkers and P. McQuaid. The Dangers of Using Software Metrics to
(Mis) Manage. IT Professional, 4(2):24–30, 2002.

[157] F. Di and M. Zhang. An Improving Approach for Recovering
Requirements-to-Design Traceability Links. In Proc. of the 1stInterna-
tional Conference on Computational Intelligence and Software Engineer-
ing, pages 1–6, 2009.

[158] A. Dias Neto, R. Subramanyan, M. Vieira, and G. Travassos. A Survey on
Model-based Testing Approaches: A Systematic Review. In Proc. of the 1st
International Workshop on Empirical Assessment of Software Engineering
Languages and Technologies, pages 31–36, 2007.

[159] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature Location in
Source Code: A Taxonomy and Survey. Journal of Software Maintenance
and Evolution: Research and Practice, 25(1):53–95, 2011.

[160] R. Dömges and K. Pohl. Adapting Traceability Environments to Project-
Specific Needs. Communications of the ACM, 41(12):54–62, 1998.

BIBLIOGRAPHY 303

[161] P. Domingos. A Few Useful Things to Know About Machine Learning.
Communications of the ACM, 55(10):78–87, 2012.

[162] M. Dorfman. Standards, Guidelines, and Examples on System and Software
Requirements Engineering. IEEE Computer Society Press, 1994.

[163] C. Duan and J. Cleland-Huang. Clustering Support for Automated Trac-
ing. In Proc. of the 22nd International Conference on Automated Software
Engineering, pages 244–253, 2007.

[164] A. Dubey and J. Hudepohl. Towards Global Deployment of Software En-
gineering Tools. In Proc. of the 8th International Conference on Global
Software Engineering, pages 129–133, 2013.

[165] K. Dunn. Design and Analysis of Experiments. In Process Improvement
Using Data, pages 207–288. 294-34b8 edition, 2014.

[166] T. Dybå and T. Dingsøyr. Strength of Evidence in Systematic Reviews in
Software Engineering. In Proc. of the 2nd International Symposium on
Empirical Software Engineering and Measurement, pages 178–187, 2008.

[167] S. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting Empirical
Methods for Software Engineering Research. In F. Shull, J. Singer, and
D. Sjøberg, editors, Guide to Advanced Empirical Software Engineering,
pages 285–311. Springer, 2008.

[168] A. Egyed and P. Grünbacher. Automating Requirements Traceability: Be-
yond the Record Replay Paradigm. In Proc. of the 17th International Con-
ference on Automated Software Engineering, pages 163–171, 2002.

[169] T. Eisenbarth, R. Koschke, and D. Simon. Locating Features in Source
Code. Transactions on Software Engineering, 29(3):210–224, 2003.

[170] S. Eldh, J. Brandt, M. Street, H. Hansson, and S. Punnekkat. Towards
Fully Automated Test Management for Large Complex Systems. In Proc.
of the 3rd International Conference on Software Testing, Verification and
Validation, pages 412–420, 2010.

[171] E. Engström, P. Runeson, and M. Skoglund. A Systematic Review on Re-
gression Test Selection Techniques. Information and Software Technology,
52(1):14–30, 2010.

[172] M. Eppler and J. Mengis. The Concept of Information Overload: A Review
of Literature from Organization Science, Accounting, Marketing, MIS, and
Related Disciplines. The Information Society, 20(5):325–344, 2004.

304 BIBLIOGRAPHY

[173] J. Estublier. Software Configuration Management: A Roadmap. In Proc.
of the Conference on The Future of Software Engineering, pages 279–289,
2000.

[174] European Committee for Electrotechnical Standardisation. Railway Appli-
cations - Safety Related Electronic Systems for Signaling. 1999.

[175] D. Falessi, G. Cantone, and G. Canfora. A Comprehensive Characterization
of NLP Techniques for Identifying Equivalent Requirements. In Proc. of
the 4th International Symposium on Empirical Software Engineering and
Measurement, pages 100–110, 2010.

[176] K. Fang, R. Li, and A. Sudjianto. Design and Modeling for Computer Ex-
periments. CRC Press, 2006.

[177] R. Feldt. Do System Test Cases Grow Old? In Proc. of the 7th. International
Conference on Software Testing, Verification and Validation, pages 343–
352, 2014.

[178] R. Feldt and P. Nordin. Using Factorial Experiments to Evaluate the Effect
of Genetic Programming Parameters. In Proc. of the 3rd European Confer-
ence on Genetic Programming, pages 271–282, 2000.

[179] A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, S. Reiterer, and M. Stet-
tinger. Basic Approaches in Recommendation Systems. In M. Robillard,
W. Maalej, R. Walker, and T. Zimmermann, editors, Recommendation Sys-
tems in Software Engineering, pages 15–37. Springer, 2014.

[180] K. Felizardo, N. Salleh, R. Martins, E. Mendes, S. MacDonell, and J. Mal-
donado. Using Visual Text Mining to Support the Study Selection Activity
in Systematic Literature Reviews. In Proc. of the 5th International Sympo-
sium on Empirical Software Engineering and Measurement, pages 77–86,
2011.

[181] R. Ferguson and G. Lami. An Empirical Study on the Relationship between
Defective Requirements and Test Failures. In Proc. of the 30th Software
Engineering Workshop, pages 7–10, 2006.

[182] A. Fisher. CASE: Using Software Development Tools. Wiley, 2nd edition,
1991.

[183] R. Fiutem and G. Antoniol. Identifying Design-Code Inconsistencies in
Object-Oriented Software: A Case Study. In Proc. of the 14th International
Conference on Software Maintenance, pages 94–102, 1998.

[184] N. Fogelström and T. Gorschek. Test-Case Driven Versus Checklist-Based
Inspections of Software Requirements - An Experimental Evaluation. In
Proc. of the 10th Workshop on Requirements Engineering. 2007.

BIBLIOGRAPHY 305

[185] E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. Witten, and
L. Trigg. Weka - A Machine Learning Workbench for Data Mining. In
O. Maimon and L. Rokach, editors, Data Mining and Knowledge Discovery
Handbook, pages 1305–1314. Springer, 2005.

[186] E. Frank, M. Hall, L. Trigg, G. Holmes, and I. Witten. Data Mining in
Bioinformatics Using Weka. Bioinformatics, 20(15):2479–2481, 2004.

[187] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite Generation for
Object-oriented Software. In Proc. of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineer-
ing, pages 416–419, 2011.

[188] G. Fraser and A. Arcuri. The Seed is Strong: Seeding Strategies in Search-
Based Software Testing. In Proc. of the 5th International Conference on
Software Testing, Verification and Validation, pages 121–130, 2012.

[189] L. Freund, E. Toms, and J. Waterhouse. Modeling the Information Be-
haviour of Software Engineers Using a Work-Task Framework. Proceedings
of the American Society for Information Science and Technology, 42(1),
2005.

[190] Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

[191] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On the Use of Relevance
Feedback in IR-based Concept Location. In Proc. of the 25th International
Conference on Software Maintenance, pages 351–360, 2009.

[192] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk. Integrated Impact Anal-
ysis for Managing Software Changes. In Proc. of the 34th International
Conference on Software Engineering, pages 430–440, 2012.

[193] M. Gethers, H. Kagdi, B. Dit, and D. Poshyvanyk. An Adaptive Approach
to Impact Analysis from Change Requests to Source Code. In Proc. of the
26th International Conference on Automated Software Engineering, pages
540–543, 2011.

[194] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia. On Integrating
Orthogonal Information Retrieval Methods to Improve Traceability Recov-
ery. In Proc. of the 27th International Conference on Software Maintenance,
pages 133–142, 2011.

[195] L. Getoor and C. Diehl. Link Mining: A Survey. SIGKDD Explorations
Newsletter, 7(2):3–12, 2005.

306 BIBLIOGRAPHY

[196] S. Ghosh, S. Ramaswamy, and R. Jetley. Towards Requirements Change
Decision Support. In Proc. of the 20th Asia-Pacific Software Engineering
Conference, pages 148–155, 2013.

[197] M. Gibiec, A. Czauderna, and J. Cleland-Huang. Towards Mining Re-
placement Queries for Hard-To-Retrieve Traces. In Proc. of the 25th Inter-
national Conference on Automated Software Engineering, pages 245–254,
2010.

[198] T. Gorschek and A. Davis. Requirements Engineering: In Search of the
Dependent Variables. Information and Software Technology, 50(1-2):67–
75, 2008.

[199] T. Gorschek and C. Wohlin. Packaging Software Process Improvement Is-
sues - A Method and A Case Study. Software: Practice & Experience,
34(14):1311–1344, 2004.

[200] T. Gorschek and C. Wohlin. Requirements Abstraction Model. Require-
ments Engineering, 11(1):79–101, 2006.

[201] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson. A Model for Technology
Transfer in Practice. IEEE Software, 23(6):88–95, 2006.

[202] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, and J. Maletic. The Grand Chal-
lenge of Traceability (v1.0). In J. Cleland-Huang, O. Gotel, and A. Zisman,
editors, Software and Systems Traceability, pages 343–409. Springer, 2012.

[203] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mäder. Trace-
ability Fundamentals. In J. Cleland-Huang, O. Gotel, and A. Zisman, edi-
tors, Software and Systems Traceability, pages 3–22. Springer, 2012.

[204] O. Gotel and C. Finkelstein. An Analysis of the Requirements Traceability
Problem. In Proc. of the 1st International Conference on Requirements
Engineering, pages 94–101, 1994.

[205] D. Graham. Requirements and Testing: Seven Missing-link Myths. IEEE
Software, 19(5):15–17, 2002.

[206] S. Green. How Many Subjects Does It Take To Do A Regression Analysis.
Multivariate Behavioral Research, 26(3):499–510, 1991.

[207] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman. Model-based
Quality Assurance of Protocol Documentation: Tools and Methodology.
Software Testing, Verification and Reliability, 21(1):55–71, 2011.

BIBLIOGRAPHY 307

[208] K. Grimm. Software Technology in an Automotive Company: Major Chal-
lenges. In Proc. of the 25th International Conference on Software Engi-
neering, pages 498–503, 2003.

[209] E. Gummesson. Qualitative Methods in Management Research. SAGE
Publications, 1999.

[210] I. Habli, R. Hawkins, and T. Kelly. Software Safety: Relating Software As-
surance and Software Integrity. International Journal of Critical Computer-
Based Systems, 1(4):364–383, 2010.

[211] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten.
The WEKA Data Mining Software: An Update. SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[212] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A Systematic Lit-
erature Review on Fault Prediction Performance in Software Engineering.
Transactions on Software Engineering, 38(6):1276–1304, 2012.

[213] M. Harman. The Current State and Future of Search Based Software En-
gineering. In Proc. of the Future of Software Engineering, pages 342–357,
2007.

[214] B. Hasling, H. Götz, and K. Beetz. Model Based Testing of System Re-
quirements using UML Use Case Models. In Proc. of the 1st International
Conference on Software Testing, Verification, and Validation, pages 367–
376, 2008.

[215] E. Hatcher and O. Gospodnetic. Lucene in Action. Manning Publications,
2004.

[216] M. Heindl and S. Biffl. A Case Study on Value-Based Requirements Trac-
ing. In Proc. of the 10th European Software Engineering Conference, pages
60–69, 2005.

[217] J. Helming, H. Arndt, Z. Hodaie, M. Koegel, and N. Narayan. Automatic
Assignment of Work Items. In Proc. of the 5th International Conference on
Evaluation of Novel Approaches to Software Engineering, pages 236–250,
2011.

[218] K. Herzig and A. Zeller. Mining Bug Data. In M. Robillard, W. Maalej,
R. Walker, and T. Zimmermann, editors, Recommendation Systems in Soft-
ware Engineering, pages 131–171. Springer, 2014.

[219] A. Hevner, S. March, J. Park, and S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, 2004.

308 BIBLIOGRAPHY

[220] Hewlett Packard Development Company. HP Quality Center Software.
Data sheet 4AA0-9587ENW rev. 3, 2009.

[221] T. Hofman. Unsupervised Learning by Probabilistic Latent Semantic Anal-
ysis. Machine Learning, 42(1-2):177–196, 2001.

[222] M. Hofmann and R. Klinkenberg, editors. RapidMiner: Data Mining Use
Cases and Business Analytics Applications. Chapman & Hall/CRC Press,
2013.

[223] D. Hopwood. Forty Years of Genetics with Streptomyces: From In Vivo
Through In Vitro to In Silico. Microbiology, 145(9):2183–2202, 1999.

[224] M. Höst, R. Feldt, and F. Luders. Support for Different Roles in Soft-
ware Engineering Master’s Thesis Projects. Transactions on Education,
53(2):288–296, 2010.

[225] M. Höst, B. Regnell, and C. Wohlin. Using Students as Subjects - A Com-
parative Study of Students and Professionals in Lead-Time Impact Assess-
ment. Empirical Software Engineering, 5(3):201–214, 2000.

[226] G. Huang, D. Wang, and Y. Lan. Extreme Learning Machines: A Survey.
International Journal of Machine Learning and Cybernetics, 2(2):107–122,
2011.

[227] J. Huang, R. White, and S. Dumais. No Clicks, No Problem: Using Cur-
sor Movements to Understand and Improve Search. In Proc. of the 29th
Conference on Human Factors in Computing Systems, pages 1225–1234,
2011.

[228] J. Huffman Hayes, G. Antoniol, and Y. Guéhéneuc. PREREQIR: Recov-
ering Pre-Requirements via Cluster Analysis. In Proc. of the 15th Working
Conference on Reverse Engineering, pages 165–174, 2008.

[229] J. Huffman Hayes and A. Dekhtyar. A Framework for Comparing Require-
ments Tracing Experiments. International Journal of Software Engineering
and Knowledge Engineering, 15(5):751–781, 2005.

[230] J. Huffman Hayes and A. Dekhtyar. Humans in the Traceability Loop:
Can’t Live With ’em, Can’t Live Without ’em. In Proc. of the 3rd Inter-
national Workshop on Traceability in Emerging Forms of Software Engi-
neering, pages 20–23, 2005.

[231] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram. Advancing Candidate
Link Generation for Requirements Tracing: The Study of Methods. Trans-
actions on Software Engineering, 32(1):4–19, 2006.

BIBLIOGRAPHY 309

[232] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook, S. Vadlamudi,
and A. April. REquirements TRacing On target (RETRO): Improving soft-
ware maintenance through traceability recovery. Innovations in Systems and
Software Engineering, 3(3):193–202, 2007.

[233] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, and S. Howard. Helping An-
alysts Trace Requirements: An Objective Look. In Proc. of the 12th Inter-
national Conference on Requirements Engineering, pages 249–259, 2004.

[234] J. Huffman Hayes, H. Sultanov, W. Kong, and W. Li. Software Verification
and Validation Research Laboratory (SVVRL) of the University of Ken-
tucky: Traceability Challenge 2011: Language Translation. In Proc. of the
6th International Workshop on Traceability in Emerging Forms of Software
Engineering, pages 50–53, 2011.

[235] IEEE Computer Society. 610.12-1990 IEEE Standard Glossary of Software
Engineering Terminology. Technical report, 1990.

[236] L. Ilzarbe, M. Álvarez, E. Viles, and M. Tanco. Practical Applications of
Design of Experiments in the Field of Engineering: A Bibliographical Re-
view. Quality and Reliability Engineering International, 24(4):417–428,
2008.

[237] P. Ingwersen and K. Järvelin. The Turn: Integration of Information Seeking
and Retrieval in Context. Springer, 2005.

[238] International Electrotechnical Commission. IEC 61511-1 ed 1.0, Safety In-
strumented Systems for the Process Industry Sector. 2003.

[239] International Electrotechnical Commission. IEC 61508 ed 1.0, Electrical/-
Electronic/Programmable Electronic Safety-Related Systems. 2010.

[240] International Electrotechnical Commission. IEC 61131-3 ed 3.0, Pro-
grammable Controllers - Part 3: Programming Languages. 2013.

[241] International Organization for Standardization. ISO/IEC 9126-1:2001(E)
International Standard Software Engineering Product Quality Part 1: Qual-
ity Model. Technical report, ISO/IEC, 2001.

[242] International Organization for Standardization. ISO 26262-1:2011 Road
Vehicles - Functional Safety. 2011.

[243] N. Jalbert and W. Weimer. Automated Duplicate Detection for Bug Track-
ing Systems. In Proc. of the 38th International Conference on Dependable
Systems and Networks, pages 52–61, 2008.

[244] B. Jansen. Search Log Analysis: What It Is, What’s Been Done, How To
Do It. Library & Information Science Research, 28(3):407–432, 2006.

310 BIBLIOGRAPHY

[245] M. Jarke. Requirements Tracing. Communications of the ACM, 41(12):32–
36, 1998.

[246] K. Järvelin and J. Kekälainen. IR Evaluation Methods for Retrieving Highly
Relevant Documents. In Proc. of the 23rd Annual International SIGIR Con-
ference on Research and Development in Information Retrieval, pages 41–
48, 2000.

[247] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting Experiments in
Software Engineering. In F. Shull, J. Singer, and D. Sjøberg, editors, Guide
to Advanced Empirical Software Engineering, pages 201–228. Springer,
2008.

[248] G. Jeong, S. Kim, and T. Zimmermann. Improving Bug Triage with Bug
Tossing Graphs. In Proc. of the the 7th Joint Meeting of the European
Software Engineering Conference and the Symposium on The Foundations
of Software Engineering, pages 111–120, 2009.

[249] H. Jiang, T. Nguyen, I. Chen, H. Jaygarl, and C. Chang. Incremental La-
tent Semantic Indexing for Automatic Traceability Link Evolution Manage-
ment. In Proc. of the 23rd International Conference on Automated Software
Engineering, pages 59–68, 2008.

[250] J. Johansson. Beyond Textual Information in Defect Duplicate Detection:
An Exploratory Study in the Android Issue Tracker. MSc Thesis, Lund
University, http://sam.cs.lth.se/ExjobGetFile?id=628, 2014.

[251] D. Jones. A Taxonomy of Global Optimization Methods Based on Response
Surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

[252] J. Jones, M. Grechanik, and A. van der Hoek. Enabling and Enhancing Col-
laborations between Software Development Organizations and Independent
Test Agencies. In Proc. of the 2nd Workshop on Cooperative and Human
Aspects on Software Engineering, pages 56–59, 2009.

[253] H. Jonsson, S. Larsson, and S. Punnekkat. Agile Practices in Regulated
Railway Software Development. In Proc. of the 23rd International Sympo-
sium on Software Reliability Engineering Workshops, pages 355–360, 2012.

[254] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson.
Automated Bug Assignment: Ensemble-based Machine Learning in Large
Scale Industrial Contexts. Under revision in Empirical Software Engineer-
ing, 2015.

[255] L. Jonsson, D. Broman, K. Sandahl, and S. Eldh. Towards Automated
Anomaly Report Assignment in Large Complex Systems Using Stacked
Generalization. In Proc. of the 5th International Conference on Software
Testing, Verification and Validation, pages 437–446, 2012.

BIBLIOGRAPHY 311

[256] Z. Jourdan, K. Rainer, and T. Marshall. Business Intelligence: An Analysis
of the Literature. Information Systems Management, 25(2):121–131, 2008.

[257] S. Just, R. Premraj, and T. Zimmermann. Towards the Next Generation
of Bug Tracking Systems. In Proc. of the 24th Symposium on Visual Lan-
guages and Human-Centric Computing, pages 82–85, 2008.

[258] H. Kagdi, M. Collard, and J. Maletic. A Survey and Taxonomy of Ap-
proaches for Mining Software Repositories in the Context of Software Evo-
lution. Journal of Software Maintenance and Evolution: Research and
Practice, 19(2):77–131, 2007.

[259] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard. Blending Con-
ceptual and Evolutionary Couplings to Support Change Impact Analysis in
Source Code. In Proc. of the 17th Working Conference on Reverse Engi-
neering, pages 119–128, 2010.

[260] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad. Assigning Change
Requests to Software Developers. Journal of Software: Evolution and Pro-
cess, 24(1):3–33, 2012.

[261] H. Kagdi, J. Maletic, and B. Sharif. Mining Software Repositories for
Traceability Links. In Proc. of the 15th International Conference on Pro-
gram Comprehension, pages 145–154, 2007.

[262] C. Kaner and W. Bond. Software Engineering Metrics: What Do They
Measure and How Do We Know? In Proc. of 10th International Symposium
on Software Metrics, 2004.

[263] P. Karr-Wisniewski and Y. Lu. When More is Too Much: Operationaliz-
ing Technology Overload and Exploring Its Impact on Knowledge Worker
Productivity. Computers in Human Behavior, 26(5):1061–1072, 2010.

[264] V. Katta and T. Stålhane. A Conceptual Model of Traceability for Safety
Systems. In Proc. of the 2nd Conference on Complex Systems Design &
Management, pages 1–12, 2011.

[265] N. Kaushik, L. Tahvildari, and M. Moore. Reconstructing Traceability Be-
tween Bugs and Test Cases: An Experimental Study. In Proc. of the 20th
Working Conference on Reverse Engineering, pages 411–414, 2011.

[266] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin, E. Moritz,
M. Gethers, D. Poshyvanyk, J. Maletic, J. Huffman Hayes, A. Dekhtyar,
D. Manukian, S. Hossein, and D. Hearn. TraceLab: An Experimental Work-
bench for Equipping Researchers to Innovate, Synthesize, and Compara-
tively Evaluate Traceability Solutions. In Proc. of the 34th International
Conference on Software Engineering, pages 1375–1378, 2012.

312 BIBLIOGRAPHY

[267] J. Kekälainen and K. Järvelin. Evaluating Information Retrieval Systems
Under the Challenges of Interaction and Multidimensional Dynamic Rele-
vance. In Proc. of the 4th CoLIS Conference, pages 253–270, 2002.

[268] T. Kelly. Arguing Safety - A Systematic Approach to Managing Safety
Cases. PhD Thesis, University of York, 1999.

[269] M. Kersten and G. Murphy. Using Task Context to Improve Programmer
Productivity. In Proc. of the 14th International Symposium on Foundations
of Software Engineering, pages 1–11, 2006.

[270] M. Kilpinen. The Emergence of Change at the Systems Engineering and
Software Design Interface. PhD thesis, University of Cambridge, 2008.

[271] M. Kilpinen, C. Eckert, and P. Clarkson. Assessing Impact Analysis Prac-
tice to Improve Change Management Capability. In Proc. of the 17th Inter-
national Conference on Engineering Design, pages 205–216, 2009.

[272] B. Kitchenham, D. Budgen, and P. Brereton. Using Mapping Studies as the
Basis for Further Research - A Participant-Observer Case Study. Informa-
tion and Software Technology, 53(6):638–651, 2011.

[273] B. Kitchenham and S. Charters. Guidelines for Performing Systematic Lit-
erature Reviews in Software Engineering. EBSE Technical Report, 2007.

[274] B. Kitchenham, T. Dybå, and M. Jørgensen. Evidence-based Software En-
gineering. In Proc. of the 26th International Conference on Software Engi-
neering, pages 273–281, 2004.

[275] B. Kitchenham, S. Pfleeger, L Pickard, P. Jones, D. Hoaglin, K. El Emam,
and J. Rosenberg. Preliminary Guidelines for Empirical Research in Soft-
ware Engineering. Transactions on Software Engineering and Methodol-
ogy, 28(8):721–734, 2002.

[276] J. Kleijnen. Low-Order Polynomial Regression Metamodels and Their De-
signs: Basics. In Design and Analysis of Simulation Experiments, pages
15–71. Springer, 2008.

[277] J. Kleijnen. Screening Designs. In Design and Analysis of Simulation Ex-
periments, pages 157–173. Springer, 2008.

[278] H. Klein and M. Myers. A Set of Principles for Conducting and Evalu-
ating Interpretive Field Studies in Information Systems. MIS Quarterly,
23(1):67–93, 1999.

[279] A. Klevin. People, Process and Tools: A Study of Impact
Analysis in a Change Process. Master Thesis, Lund University,
http://sam.cs.lth.se/ExjobGetFile?id=434, 2012.

BIBLIOGRAPHY 313

[280] J. Kodovsky. On Dangers of Cross-Validation in Steganalysis. Technical
report, Birmingham University, 2011.

[281] R. Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Esti-
mation and Model Selection. In Proc. of the 14th International Joint Con-
ference on Artificial Intelligence, pages 1137–1143, 1995.

[282] L. Kong, J. Li, Y. Li, Y. Yang, and Q. Wang. A Requirement Traceability
Refinement Method Based on Relevance Feedback. In Proc. of the 21st
International Conference on Software Engineering and Knowledge Engi-
neering, pages 37–42, 2009.

[283] R. Kraut and L. Streeter. Coordination in Software Development. Commu-
nications of the ACM, 38(3):69–81, 1995.

[284] P. Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley Professional, 2004.

[285] J. Kruschke. Doing Bayesian Data Analysis: A Tutorial Introduction with
R. Academic Press, 2010.

[286] J. Kukkanen, K. Vakevainen, M. Kauppinen, and E. Uusitalo. Applying
a Systematic Approach to Link Requirements and Testing: A Case Study.
In Proc. of the 16th Asia-Pacific Software Engineering Conference, pages
482–488, 2009.

[287] L. Kuncheva and C. Whitaker. Measures of Diversity in Classifier Ensem-
bles and Their Relationship with the Ensemble Accuracy. Machine Learn-
ing, 51(2):181–207, 2003.

[288] K. Lalit Narayan, K. Mallikarjuna Rao, and M. Sarcar. Computer Aided
Design and Manufacturing. Prentice-Hall, 2008.

[289] A. Lamkanfi and S. Demeyer. Filtering Bug Reports for Fix-Time Analysis.
In Proc. of the 16th European Conference on Software Maintenance and
Reengineering, pages 379–384, 2012.

[290] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the Severity
of a Reported Bug. In Proc. of the 7th Working Conference on Mining
Software Repositories, pages 1–10, 2010.

[291] N. Lavesson and P. Davidsson. Quantifying the Impact of Learning Al-
gorithm Parameter Tuning. In Proc. of the 21st National Conference on
Artificial Intelligence, pages 395–400, 2006.

[292] S. Lehnert. A Review of Software Change Impact Analysis. Technical
report, Ilmenau University of Technology, 2011.

314 BIBLIOGRAPHY

[293] S. Lehnert. A Taxonomy for Software Change Impact Analysis. In Proc.
of the 12th International Workshop on Principles of Software Evolution
and the 7th Annual ERCIM Workshop on Software Evolution, pages 41–50,
2011.

[294] R. Lenth. Response-Surface Methods in R, Using rsm. Journal of Statistical
Software, 32(7):1–17, 2009.

[295] T. Lethbridge, S. Sim, and J. Singer. Studying Software Engineers: Data
Collection Techniques for Software Field Studies. Empirical Software En-
gineering, 10(3):311–341, 2005.

[296] D. Lettner, F. Angerer, H. Prähofer, and P. Grünbacher. A Case Study on
Software Ecosystem Characteristics in Industrial Automation Software. In
Proc. of the 3rd International Conference on Software and System Process,
pages 40–49, 2014.

[297] J. Leuser. Challenges for Semi-Automatic Trace Recovery in the Automo-
tive Domain. In Proc. of the 7th International Workshop on Traceability in
Emerging Forms of Software Engineering, pages 31–35, 2009.

[298] J. Leuser and D. Ott. Tackling Semi-Automatic Trace Recovery for Large
Specifications. In Proc. of the 16th International Working Conference on
Requirements Engineering: Foundation for Software Quality, pages 203–
217, 2010.

[299] S. Levy and D. Steinberg. Computer Experiments: A Review. Advances in
Statistical Analysis, 94(4):311–324, 2010.

[300] D. Lewis. Naïve (Bayes) at Forty: The Independence Assumption in Infor-
mation Retrieval. In Machine Learning, volume 1398, pages 4–15. 1998.

[301] B. Li, X. Sun, H. Leung, and S. Zhang. A Survey of Code-Based Change
Impact Analysis Techniques. Software Testing, Verification and Reliability,
23(8):613–646, 2013.

[302] N. Li, Z. Li, Y. Nie, X. Sun, and X. Li. Predicting Software Black-Box
Defects Using Stacked Generalization. In Proc. of the 6th International
Conference on Digital Information Management, pages 294–299, 2011.

[303] Q. Li, Q. Wang, Y. Yang, and M. Li. Reducing Biases in Individual Software
Effort Estimations: A Combining Approach. In Proc. of the 2nd Interna-
tional Symposium on Empirical Software Engineering and Measurement,
pages 223–232, 2008.

[304] Y. Li, J. Li, Y. Yang, and M. Li. Requirement-Centric Traceability for
Change Impact Analysis: A Case Study. In Proc. of the 2nd International
Conference on Software Process, pages 100–111, 2008.

BIBLIOGRAPHY 315

[305] Z. Li, M. Harman, and R. Hierons. Search Algorithms for Regression Test
Case Prioritization. Transactions on Software Engineering, 33(4):225–237,
2007.

[306] E. Liddy. Natural Language Processing. Encyclopedia of Library and In-
formation Science. Marcel Decker, 2nd edition, 2001.

[307] J. Lin, L. Chan, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford,
B. Berenbach, O. BenKhadra, D. Chuan, and X. Zou. Poirot: A Distributed
Tool Supporting Enterprise-Wide Automated Traceability. In Proc. of the
14th International Conference on Requirements Engineering, pages 363–
364, 2006.

[308] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang. An Empirical Study on Bug
Assignment Automation Using Chinese Bug Data. In Proc. of the 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement,
pages 451–455, 2009.

[309] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk. Triaging incoming change requests: Bug or commit his-
tory, or code authorship? In Proc. of the 28th International Conference on
Software Maintenance, pages 451–460, 2012.

[310] M. Lindvall, R. Feldmann, G. Karabatis, Z. Chen, and V. Janeja. Searching
for Relevant Software Change Artifacts Using Semantic Networks. In Proc.
of the 24th Symposium on Applied Computing, pages 496–500, 2009.

[311] T. Liu. Learning to Rank for Information Retrieval. Foundations and Trends
in Information Retrieval, 3(3):225–331, 2009.

[312] T. Liu. Learning to Rank for Information Retrieval. Springer, 2011.

[313] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang. Im-
proving Trace Accuracy Through Data-driven Configuration and Composi-
tion of Tracing Features. In Proc. of the 9th Joint Meeting on Foundations
of Software Engineering, pages 378–388, 2013.

[314] M. Lormans and A. van Deursen. Reconstructing Requirements Coverage
Views from Design and Test Using Traceability Recovery via LSI. In Proc.
of the 3rd International Workshop on Traceability in Emerging Forms of
Software Engineering, pages 37–42, 2005.

[315] M. Lormans and A. van Deursen. Can LSI Help Reconstructing Require-
ments Traceability in Design and Test? In Proc. of the 10th European Con-
ference on Software Maintenance and Reengineering, pages 45–54, 2006.

316 BIBLIOGRAPHY

[316] M. Lormans, A. van Deursen, and H. Gross. An Industrial Case Study
in Reconstructing Requirements Views. Empirical Software Engineering,
13(6):727–760, 2008.

[317] M. Lubars, C. Potts, and C. Richter. A Review of the State of the Practice
in Requirements Modeling. In Proc. of the 1st International Symposium on
Requirements Engineering, pages 2–14, 1993.

[318] P. Lukacs, K. Burnham, and D. Anderson. Model Selection Bias and
Freedman’s Paradox. Annals of the Institute of Statistical Mathematics,
62(1):117–125, 2010.

[319] C. Macdonald, R. Santos, and I. Ounis. The Whens and Hows of Learning
to Rank for Web Search. Information Retrieval, 16(5):584–628, 2013.

[320] R. Madachy. Software Process Dynamics. Wiley, 2007.

[321] A. Mahmoud and N. Niu. Using Semantics-Enabled Information Retrieval
in Requirements Tracing: An Ongoing Experimental Investigation. In Proc.
of the 34th International Computer Software and Applications Conference,
pages 246–247, 2010.

[322] A. Mahmoud and N. Niu. Source Code Indexing for Automated Tracing. In
Proc. of the 6th International Workshop on Traceability in Emerging forms
of Software Engineering, pages 3–9, 2011.

[323] A. Maiga, A. Hamou-Lhadj, and A. Larsson. ReCRAC: A Recommender
System for Crash Reports Assignment and Correction. In Proc. of the 1st
International Conference on Intelligent Systems, Data Mining and Informa-
tion Technology, pages 13–16, 2014.

[324] K. Malterud. The Art and Science of Clinical Knowledge: Evidence Be-
yond Measures and Numbers. The Lancet, 358(9279):397–400, 2001.

[325] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[326] A. Marcus and J. Maletic. Recovering Documentation-to-Source-Code
Traceability Links Using Latent Semantic Indexing. In Proc. of the 25th
International Conference on Software Engineering, pages 125–135, 2003.

[327] A. Marcus, J. Maletic, and A. Sergeyev. Recovery of Traceability Links Be-
tween Software Documentation and Source Code. International Journal of
Software Engineering and Knowledge Engineering, 15(5):811–836, 2005.

[328] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An Information Re-
trieval Approach to Concept Location in Source Code. In Proc. of the 11th
Working Conference on Reverse Engineering, pages 214–223, 2004.

BIBLIOGRAPHY 317

[329] M. Maron and J. Kuhns. On Relevance, Probabilistic Indexing and Infor-
mation Retrieval. Journal of the ACM, 7(3):216–244, 1960.

[330] R. Martin and G. Melnik. Tests and Requirements, Requirements and Tests:
A Möbius Strip. IEEE Software, 25(1):54–59, 2008.

[331] J. Matejka, E. Li, T. Grossman, and G. Fitzmaurice. Community-
Commands: Command Recommendations for Software Applications. In
Proc. of the 22nd Annual Symposium on User Interface Software and Tech-
nology, pages 193–202, 2009.

[332] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning Bug Reports Using a
Vocabulary-Based Expertise Model of Developers. In Proc. of the 6th In-
ternational Working Conference on Mining Software Repositories, pages
131–140, 2009.

[333] H. Mauritzon. Automated Analysis of Large-scale Customer Support Issues.
MSc Thesis, to be submitted, Lund University, 2015.

[334] A. McCallum. MALLET: A Machine Learning for Language Toolkit. Tech-
nical report, 2002.

[335] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action. Man-
ning Publications, 2nd edition, 2010.

[336] G. Melnik, F. Maurer, and M. Chiasson. Executable Acceptance Tests for
Communicating Business Requirements: Customer Perspective. In Proc. of
the 6th Agile Conference, pages 12–46, 2006.

[337] T. Mens. Introduction and Roadmap: History and Challenges of Software
Evolution. In T. Mens and S. Demeyer, editors, Software Evolution, pages
1–11. Springer, 2008.

[338] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and
M. Jazayeri. Challenges in Software Evolution. In Proc. of the 8th In-
ternational Workshop on Principles of Software Evolution, pages 13–22,
2005.

[339] T. Menzies and M. Shepperd. Special Issue on Repeatable Results in Soft-
ware Engineering Prediction. Empirical Software Engineering, 17(1-2):1–
17, 2012.

[340] A. Miller. Subset Selection in Regression. CRC Press, 2002.

[341] P. Mohagheghi and V. Dehlen. Where Is the Proof? - A Review of Ex-
periences from Applying MDE in Industry. In Proc. of the 4th European
Conference on Model Driven Architecture: Foundations and Applications,
pages 432–443, 2008.

318 BIBLIOGRAPHY

[342] D. Montgomery. Design and Analysis of Experiments. Wiley, 8th edition,
2013.

[343] K. Moon. The Nature of Computer Programs: Tangible? Goods? Personal
Property? Intellectual Property? European Intellectual Property Review,
31(8):396–407, 2009.

[344] P. Morville. Ambient Findability: What We Find Changes Who We Become.
O’Reilly Media, 2005.

[345] Mozilla Foundation. Bugzilla 5.1 Documentation, 2.4.4 Life Cycle of a
Bug. Technical report.

[346] E. Murphy-Hill and G. Murphy. Recommendation Delivery. In M. Robil-
lard, W. Maalej, R. Walker, and T. Zimmermann, editors, Recommendation
Systems in Software Engineering, pages 223–242. Springer, 2014.

[347] R. Myers, D. Montgomery, and C. Anderson-Cook. Response Surface
Methodology: Process and Product Optimization Using Designed Exper-
iments. Wiley, 2009.

[348] T. Myklebust, T. Stålhane, G. Hanssen, and B. Haugset. Change Impact
Analysis as Required by Safety Standards, What To Do? In Proc. of the
12th Probabilistic Safety Assessment and Management Conference, 2014.

[349] N. Nagwani and S. Verma. Predicting Expert Developers for Newly Re-
ported Bugs Using Frequent Terms Similarities of Bug Attributes. In Proc.
of the 9th International Conference on ICT and Knowledge Engineering,
pages 113–117, 2012.

[350] S. Nair, J. de la Vara, M. Sabetzadeh, and L. Briand. An Extended System-
atic Literature Review on Provision of Evidence for Safety Certification.
Information and Software Technology, 56(7):689–717, 2014.

[351] M. Nandagopal, K. Gala, and V. Premnath. Improving Technology Com-
mercialization at Research Institutes: Practical Insights from NCL Innova-
tions. In Proc. of the Innovation Educators’ Conference, 2011.

[352] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. Speeding
Up Requirements Management in a Product Software Company: Linking
Customer Wishes to Product Requirements through Linguistic Engineering.
In Proc. of the 12th International Requirements Engineering Conference,
pages 283–294, 2004.

[353] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. A Linguistic-
Engineering Approach to Large-Scale Requirements Management. IEEE
Software, 22(1):32–39, 2005.

BIBLIOGRAPHY 319

[354] J. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson.
A Feasibility Study of Automated Natural Language Requirements Analy-
sis in Market-Driven Development. Requirements Engineering, 7(1):20–33,
2002.

[355] J. Natt och Dag, T. Thelin, and B. Regnell. An Experiment on Linguis-
tic Tool Support for Consolidation of Requirements from Multiple Sources
in Market-Driven Product Development. Empirical Software Engineering,
11(2):303–329, 2006.

[356] C. Nebut, F. Fleurey, Y. Le Traon, and J. Jezequel. Automatic Test Genera-
tion: A Use Case Driven Approach. Transactions on Software Engineering,
32(3):140–155, 2006.

[357] G. Neddermeijer, G. van Oortmarssen, N. Piersma, and R. Dekker. A
Framework for Response Surface Methodology for Simulation Optimiza-
tion. In Proc. of the 32nd Conference on Winter Simulation, pages 129–136,
2000.

[358] J. Nievergelt. Exhaustive Search, Combinatorial Optimization and Enumer-
ation: Exploring the Potential of Raw Computing Power. In Proc. of the
27th Conference on Current Trends in Theory and Practice of Informatics,
pages 18–35, 2000.

[359] R. Oliveto. Traceability Management Meets Information Retrieval Meth-
ods: Strengths and Limitations. PhD Thesis, University of Salerno, 2008.

[360] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the Equiv-
alence of Information Retrieval Methods for Automated Traceability Link
Recovery. In Proc. of the 18th International Conference on Program Com-
prehension, pages 68–71, 2010.

[361] L. Olofsson and P. Gullin. Development of a Decision Sup-
port System for Defect Reports. MSc Thesis, Lund University,
http://sam.cs.lth.se/ExjobGetFile?id=658, 2014.

[362] T. Olsson. Software Information Management in Requirements and Test
Documentation. Licentiate Thesis, Lund University, 2002.

[363] A. Orso, T. Apiwattanapong, and M. Harrold. Leveraging Field Data for
Impact Analysis and Regression Testing. In Proc. of the 9th European Soft-
ware Engineering Conference, pages 128–137, 2003.

[364] S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in Action. Man-
ning Publications, 2011.

320 BIBLIOGRAPHY

[365] F. Paci, F. Massacci, F. Bouquet, and S. Debricon. Managing Evolution by
Orchestrating Requirements and Testing Engineering Processes. In Proc.
of the 5th International Conference on Software Testing, Verification and
Validation, pages 834–841, 2012.

[366] S. Panichella. Supporting Newcomers in Software Development Projects.
PhD thesis, University of Sannio, 2014.

[367] R. Parasuraman, T. Sheridan, and C. Wickens. A Model for Types and
Levels of Human Interaction with Automation. Transactions on Systems,
Man and Cybernetics, 30(3):286–297, 2000.

[368] J. Park, M. Lee, J. Kim, S. Hwang, and S. Kim. COSTRIAGE: A Cost-
Aware Triage Algorithm for Bug Reporting Systems. In Proc. of the 25th
AAAI Conference on Artificial Intelligence, 2011.

[369] S. Park, H. Kim, Y. Ko, and J. Seo. Implementation of an Efficient Require-
ments Analysis Supporting System Using Similarity Measure Techniques.
Information and Software Technology, 42(6):429–438, 2000.

[370] A. Parvathy, B. Vasudevan, and R. Balakrishnan. A Comparative Study
of Document Correlation Techniques for Traceability Analysis. In Proc.
of the 10th International Conference on Enterprise Information Systems,
Information Systems Analysis and Specification, pages 64–69, 2008.

[371] J. Paulson, G. Succi, and A. Eberlein. An Empirical Study of Open-Source
and Closed-Source Software Products. Transactions on Software Engineer-
ing, 30(4):246–256, 2004.

[372] D. Perry, A. Porter, and L. Votta. Empirical Studies of Software Engineer-
ing: A Roadmap. In Proc. of 22nd International Conference on Software
Engineering, pages 345–355, 2000.

[373] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic Mapping
Studies in Software Engineering. In Proc. of the 12th International Confer-
ence on Evaluation and Assessment in Software Engineering, pages 71–80,
2008.

[374] K. Petersen and C. Wohlin. Context in Industrial Software Engineering Re-
search. In Proc. of the 3rd International Symposium on Empirical Software
Engineering and Measurement, pages 401–404, 2009.

[375] F. Pettersson, M. Ivarsson, T. Gorschek, and P. Öhman. A Practitioner’s
Guide to Light Weight Software Process Assessment and Improvement
Planning. Journal of Systems and Software, 81(6):972–995, 2008.

[376] S. Pfleeger. Experimental Design and Analysis in Software Engineering.
Annals of Software Engineering, 1(1):219–253, 1995.

BIBLIOGRAPHY 321

[377] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engi-
neering: Foundations, Principles, and Techniques. Birkhäuser, 2005.

[378] J. Ponte and B. Croft. A Language Modeling Approach to Information
Retrieval. In Proc. of the 21st Annual International SIGIR Conference on
Research and Development in Information Retrieval, pages 275–281, 1998.

[379] H. Post, C. Sinz, F. Merz, T. Gorges, and T. Kropf. Linking Functional
Requirements and Software Verification. In Proc. of the 17th Requirements
Engineering Conference, pages 295–302, 2009.

[380] D. Power. Understanding Data-Driven Decision Support Systems. Infor-
mation Systems Management, 25(2):149–154, 2008.

[381] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, 2008.

[382] Radio Technical Commission for Aeronautics. DO-178C Software Con-
siderations in Airborne Systems and Equipment Certification. Technical
report, 2012.

[383] B. Ramesh. Factors Influencing Requirements Traceability Practice. Com-
munications of the ACM, 41(12):37–44, 1998.

[384] B. Ramesh and M. Jarke. Toward Reference Models for Requirements
Traceability. Transactions on Software Engineering, 27(1):58–93, 2001.

[385] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards. Requirements Trace-
ability: Theory and Practice. Annals of Software Engineering, 3(1):397–
415, 1997.

[386] B. Randall. Towards a Methodology of Computing System Design. In
P. Naur and B. Randall, editors, NATO Working Conference on Software
Engineering 1968, Report on a Conference Sponsored by NATO Scientific
Committee, pages 204–208. 1969.

[387] J. Randolph. Free-Marginal Multirater Kappa: An Alternative to Fleiss’
Fixed-Marginal Multirater Kappa. In Joensuu Learning and Instruction
Symposium, 2005.

[388] R. Rao, G. Fung, and R. Rosales. On the Dangers of Cross-Validation. An
Experimental Evaluation. In Proc. of the 8th SIAM International Confer-
ence on Data Mining, pages 588–596, 2008.

[389] S. Rao and A. Kak. Retrieval from Software Libraries for Bug Localization:
A Comparative Study of Generic and Composite Text Models. In Proc. of
the 8th Working Conference on Mining Software Repositories, pages 43–52,
2011.

322 BIBLIOGRAPHY

[390] B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting Roadmap-
ping of Quality Requirements. IEEE Software, 25(2):42–47, 2008.

[391] B. Regnell, R. Berntsson Svensson, and K. Wnuk. Can We Beat the Com-
plexity of Very Large-Scale Requirements Engineering? In Proc. of the 14th
International Working Conference on Requirements Engineering: Founda-
tion for Software Quality, pages 123–128, 2008.

[392] B. Regnell and P. Runeson. Combining Scenario-based Requirements with
Static Verification and Dynamic Testing. In Proc. of the 4th International
Workshop on Requirements Engineering: Foundation for Software Quality,
pages 195–206, 1998.

[393] B. Regnell, P. Runeson, and C. Wohlin. Towards Integration of Use Case
Modelling and Usage-based Testing. Journal of Systems and Software,
50(2):117–130, 2000.

[394] P. Rempel, P. Mäder, T. Kuschke, and J. Cleland-Huang. Mind the Gap:
Assessing the Conformance of Software Traceability to Relevant Guide-
lines. In Proc. of the 36th International Conference on Software Engineer-
ing, pages 943–954, 2014.

[395] A. Rencher. Methods of Multivariate Analysis. Wiley, 2002.

[396] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, and P. Tonella. Using
Acceptance Tests as a Support for Clarifying Requirements: A Series of
Experiments. Information and Software Technology, 51(2):270–283, 2009.

[397] S. Robertson. The Probability Ranking Principle in IR. Journal of Docu-
mentation, 33(4):294–304, 1977.

[398] S. Robertson and S. Jones. Relevance Weighting of Search Terms. Journal
of the American Society for Information Science, 27(3):129–146, 1976.

[399] S. Robertson and J. Robertson. Mastering the Requirements Process.
Addison-Wesley Professional, 1999.

[400] S. Robertson and H. Zaragoza. The Probabilistic Relevance Framework:
BM25 and Beyond. Foundation and Trends in Information Retrieval,
3(4):333–389, 2009.

[401] M. Robillard, W. Maalej, R. Walker, and T. Zimmermann, editors. Recom-
mendation Systems in Software Engineering. Springer, 2014.

[402] M. Robillard and R. Walker. An Introduction to Recommendation Sys-
tems in Software Engineering. In M. Robillard, W. Maalej, R. Walker, and
T. Zimmermann, editors, Recommendation Systems in Software Engineer-
ing, pages 1–11. Springer, 2014.

BIBLIOGRAPHY 323

[403] M. Robillard, R. Walker, and T. Zimmermann. Recommendation Systems
for Software Engineering. IEEE Software, 27(4):80–86, 2010.

[404] B. Robinson and P. Francis. Improving Industrial Adoption of Software En-
gineering Research: A Comparison of Open and Closed Source Software.
In Proc. of the International Symposium on Empirical Software Engineering
and Measurement, volume 21, pages 1–10, 2010.

[405] H. Robinson, J. Segal, and H. Sharp. Ethnographically-Informed Empir-
ical Studies of Software Practice. Information and Software Technology,
49(6):540–551, 2007.

[406] G. Robles and J. González-Barahona. Contributor Turnover in Libre Soft-
ware Projects. In E. Damiani, B. Fitzgerald, W. Scacchi, M. Scotto, and
G. Succi, editors, Open Source Systems, pages 273–286. Springer, 2006.

[407] B. Robson. Real World Research. Blackwell, 2nd edition, 2002.

[408] J. Rocchio. Relevance Feedback in Information Retrieval. In G. Salton,
editor, The SMART Retrieval System: Experiments in Automatic Document
Processing, pages 313–323. Prentice-Hall, 1971.

[409] P. Rovegård, L. Angelis, and C. Wohlin. An Empirical Study on Views of
Importance of Change Impact Analysis Issues. Transactions on Software
Engineering, 34(4):516–530, 2008.

[410] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of Duplicate
Defect Reports Using Natural Language Processing. In Proc. of the 29th
International Conference on Software Engineering, pages 499–510, 2007.

[411] P. Runeson, C. Andersson, and M. Höst. Test Processes in Software Prod-
uct Evolution: A Qualitative Survey on the State of Practice. Journal of
Software Maintenance, 15(1):41–59, 2003.

[412] P. Runeson and M. Höst. Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[413] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research in
Software Engineering. Guidelines and Examples. Wiley, 2012.

[414] G. Sabaliauskaite, A. Loconsole, E. Engström, M. Unterkalmsteiner,
B. Regnell, P. Runeson, T. Gorschek, and R. Feldt. Challenges in Align-
ing Requirements Engineering and Verification in a Large-Scale Industrial
Context. In Proc. of the 16th International Working Conference on Re-
quirements Engineering: Foundation for Software Quality, pages 128–142,
2010.

324 BIBLIOGRAPHY

[415] A. Said, D. Tikk, and P. Cremonesi. Benchmarking. In M. Robillard,
W. Maalej, R. Walker, and T. Zimmermann, editors, Recommendation Sys-
tems in Software Engineering, pages 275–300. Springer, 2014.

[416] G. Salton and C. Buckley. Term-Weighting Approaches in Automatic Text
Retrieval. Information Processing and Management, 24(5):513–523, 1988.

[417] G. Salton, A. Wong, and C. Yang. A Vector Space Model for Automatic
Indexing. Communications of the ACM, 18(11):613–620, 1975.

[418] T. Santner, B. Williams, and W. Notz. The Design and Analysis of Computer
Experiments. Springer, 2003.

[419] W. Scacchi. Understanding the Requirements for Developing Open Source
Software Systems. IEEE Software, 149(1):24–39, 2002.

[420] B. Schaffer and C. Riordan. A Review of Cross-Cultural Methodologies
for Organizational Research: A Best-Practices Approach. Organizational
Research Methods, 6(2):169–215, 2003.

[421] D. Sculley. Large Scale Learning to Rank. In Proc. of the Workshop on
Advances in Ranking at the 23rd NIPS Conference, pages 1–6, 2009.

[422] C. Seaman. Qualitative Methods in Empirical Studies of Software Engi-
neering. Transactions on Software Engineering, 25(4):557–572, 1999.

[423] C. Seiffert, T. Khoshgoftaar, J. Van Hulse, and A. Folleco. An Empiri-
cal Study of the Classification Performance of Learners on Imbalanced and
Noisy Software Quality Data. Information Sciences, 259:571–595, 2014.

[424] F. Servant and J. Jones. WhoseFault: Automatic Developer-to-Fault As-
signment Through Fault Localization. In Proc. of the 34th International
Conference on Software Engineering, pages 36–46, 2012.

[425] R. Settimi, J. Cleland-Huang, O. BenKhadra, J. Mody, W. Lukasik, and
C. De Palma. Supporting Software Evolution Through Dynamically Re-
trieving Traces to UML Artifacts. In Proc. of the 7th International Workhop
on Principles of Software Evolution, pages 49–54, 2004.

[426] M. Shepperd, C. Schofield, and B. Kitchenham. Effort Estimation Using
Analogy. In Proc. of the 18th International Conference on Software Engi-
neering, pages 170–178, 1996.

[427] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data Quality: Some Com-
ments on the NASA Software Defect Datasets. Transactions on Software
Engineering, 39(9):1208–1215, 2013.

BIBLIOGRAPHY 325

[428] R. Shokripour, Z. Kasirun, S. Zamani, and J. Anvik. Automatic Bug As-
signment Using Information Extraction Methods. In Proc. of the 1st In-
ternational Conference on Advanced Computer Science Applications and
Technologies, pages 144–149, 2012.

[429] F. Shull, J. Carver, S. Vegas, and N. Juristo. The Role of Replications in Em-
pirical Software Engineering. Empirical Software Engineering, 13(2):211–
218, 2008.

[430] F. Shull, J. Singer, and D. Sjøberg. Guide to Advanced Empirical Software
Engineering. Springer, 2010.

[431] E. Sikora, B. Tenbergen, and K. Pohl. Industry Needs and Research Direc-
tions in Requirements Engineering for Embedded Systems. Requirements
Engineering, 17(1):57–78, 2012.

[432] J. Sill, G. Takács, L. Mackey, and D. Lin. Feature-Weighted Linear Stack-
ing. http://arxiv.org/abs/0911.0460, 2009.

[433] A. Singhal. Modern Information Retrieval: A Brief Overview. Data Engi-
neering Bulletin, 24(2):1–9, 2001.

[434] A. Smeaton and D. Harman. The TREC Experiments and Their Impact on
Europe. Journal of Information Science, 23(2):169–174, 1997.

[435] J. Sowa. Semantic Networks. In Encyclopedia of Cognitive Science. Wiley,
2006.

[436] G. Spanoudakis, A. d’Avila Garcez, and A. Zisman. Revising Rules to Cap-
ture Requirements Traceability Relations: A Machine Learning Approach.
In Proc. of the 15th International Conference in Software Engineering and
Knowledge Engineering, pages 570–577, 2003.

[437] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause. Rule-Based
Generation of Requirements Traceability Relations. Journal of Systems and
Software, 72(2):105–127, 2004.

[438] K. Spärck Jones, S. Walker, and S. Robertson. A Probabilistic Model of
Information Retrieval: Development and Comparative Experiments. Infor-
mation Processing and Management, 36(6):779–808, 2000.

[439] A. Stone and P. Sawyer. Using Pre-Requirements Tracing to Investigate
Requirements Based on Tacit Knowledge. In Proc. of the 1st International
Conference on Software and Data Technologies, pages 139–144, 2006.

[440] T. Stålhane, G. Hanssen, T. Myklebust, and B. Haugset. Agile Change
Impact Analysis of Safety Critical Software. In Proc. of the International
Workshop on Next Generation of System Assurance Approaches for Safety-
Critical Systems, pages 444–454, 2014.

326 BIBLIOGRAPHY

[441] S. Sulaman Muhammad, A. Oručević-Alagic, M. Borg, K. Wnuk, M. Höst,
and J. de la Vara. Development of Safety-Critical Software Systems Using
Open Source Software - A Systematic Map. In Proc. of the 40th Euromi-
cro Conference on Software Engineering and Advanced Applications, pages
17–24, 2014.

[442] H. Sultanov and J. Huffman Hayes. Application of Swarm Techniques to
Requirements Engineering: Requirements Tracing. In Proc. of the 18th
International Requirements Engineering Conference, pages 211–220, 2010.

[443] S. Sundaram, J. Huffman Hayes, A. Dekhtyar, and A. Holbrook. Assessing
Traceability of Software Engineering Artifacts. Requirements Engineering,
15(3):313–335, 2010.

[444] A. Tamrawi, T. Nguyen, J. Al-Kofahi, and T. Nguyen. Fuzzy Set and Cache-
Based Approach for Bug Triaging. In Proc. of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering, pages 365–375, 2011.

[445] P. Teetor. R Cookbook. O’Reilly Media, 2011.

[446] S. Thomas, M. Nagappan, D. Blostein, and A. Hassan. The Impact of
Classifier Configuration and Classifier Combination on Bug Localization.
Transactions on Software Engineering, 39(10):1427–1443, 2013.

[447] R. Tibshirani, G. Walther, and T. Hastie. Estimating the Number of Clusters
in a Data Set via the Gap Statistic. Journal of the Royal Statistical Society,
63(2):411–423, 2001.

[448] M. Torchiano and F. Ricca. Impact Analysis by Means of Unstructured
Knowledge in the Context of Bug Repositories. In Proc. of the 4th Inter-
national Symposium on Empirical Software Engineering and Measurement,
pages 1–4, 2010.

[449] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. Raja, and K. Kamran.
Requirements Traceability: A Systematic Review and Industry Case Study.
International Journal of Software Engineering and Knowledge Engineer-
ing, 22(3):1–49, 2012.

[450] A. Tosun Misirli, A. Bener, B. Caglayan, G. Calikli, and B. Turhan. Field
Studies - A Methodology for Construction and Evaluation of Recommen-
dation Systems in Software Engineering. In M. Robillard, W. Maalej,
R. Walker, and T. Zimmermann, editors, Recommendation Systems in Soft-
ware Engineering, pages 329–355. Springer, 2014.

[451] G. Travassos and M. Barros. Contributions of In Virtuo and In Silico Ex-
periments for the Future of Empirical Studies in Software Engineering. In

BIBLIOGRAPHY 327

Proc. of the 2nd Workshop on Empirical Studies in Software Engineering,
pages 117–130, 2003.

[452] G. Travassos, P. dos Santos, P. Neto, and J. Biolchini. An Environment to
Support Large Scale Experimentation in Software Engineering. In Proc.
of the 13th International Conference on Engineering of Complex Computer
Systems, pages 193–202, 2008.

[453] M. Tsunoda and K. Ono. Pitfalls of Analyzing a Cross-Company Dataset of
Software Maintenance and Support. In Proc. of the 15th International Con-
ference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, pages 1–6, 2014.

[454] B. Turhan. On the Dataset Shift Problem in Software Engineering Predic-
tion Models. Empirical Software Engineering, 17(1-2):62–74, 2012.

[455] H. Turtle and B. Croft. Evaluation of an Inference Network-Based Retrieval
Model. Transactions on Information Systems, 9(3):187–222, 1991.

[456] M. Unterkalmsteiner, R. Feldt, and T. Gorschek. A Taxonomy for Require-
ments Engineering and Software Test Alignment. Transactions on Software
Engineering Methodology, 23(2):16:1–38, 2014.

[457] J. Urbano. Information Retrieval Meta-Evaluation: Challenges and Oppor-
tunities in the Music Domain. In Proc. of the 12th International Society for
Music Information Retrieval Conference, pages 597–602, 2011.

[458] E. Uusitalo, M. Komssi, M. Kauppinen, and A. Davis. Linking Require-
ments and Testing in Practice. In Proc. of the 16th International Require-
ments Engineering Conference, pages 265–270, 2008.

[459] S. Vaidhyanathan. The Googlization of Everything: (And Why We Should
Worry). University of California Press, 2012.

[460] C.J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

[461] B. Van Rompaey and S. Demeyer. Establishing Traceability Links between
Unit Test Cases and Units under Test. In Proc. of the 13th European Confer-
ence on Software Maintenance and Reengineering, pages 209–218, 2009.

[462] M. Vierhauser, R. Rabiser, and P. Grünbacher. A Case Study on Testing,
Commissioning, and Operation of Very-Large-Scale Software Systems. In
Proc. of the 36th International Conference on Software Engineering, pages
125–134, 2014.

[463] G. Vining. Adapting Response Surface Methodology for Computer and
Simulation Experiments. In H. Tsubaki, S. Yamada, and K. Nishina, editors,
The Grammar of Technology Development, pages 127–134. Springer, 2008.

328 BIBLIOGRAPHY

[464] A. von Knethen and M. Grund. QuaTrace: A Tool Environment for (Semi)-
Automatic Impact Analysis Based on Traces. In Proc. of the 19th Interna-
tional Conference on Software Maintenance, pages 246–255, 2003.

[465] E. Voorhees. TREC: Experiment and Evaluation in Information Retrieval.
MIT Press, 2005.

[466] R. Walker and R. Holmes. Simulation - A Methodology to Evaluate Recom-
mendation Systems in Software Engineering. In M. Robillard, W. Maalej,
R. Walker, and T. Zimmermann, editors, Recommendation Systems in Soft-
ware Engineering, pages 301–327. Springer, 2014.

[467] X. Wang, G. Lai, and C. Liu. Recovering Relationships between Docu-
mentation and Source Code based on the Characteristics of Software Engi-
neering. Electronic Notes in Theoretical Computer Science, 243:121–137,
2009.

[468] R. Watkins and M. Neal. Why and How of Requirements Tracing. IEEE
Software, 11(4):104–106, 1994.

[469] T. Wetzlmaier and R. Ramler. Improving Manual Change Impact Analysis
with Tool Support: A Study in an Industrial Project. In Proc. of the 7th
Software Quality Days, pages 47–66, 2015.

[470] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, 2009.

[471] R. Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Springer, 2014.

[472] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist. Can We Do Useful
Industrial Software Engineering Research in the Shadow of Lean and Agile?
In Proc. of the 1st International Workshop on Conducting Empirical Studies
in Industry, pages 67–68, 2013.

[473] S. Winkler and J. Pilgrim. A Survey of Traceability in Requirements En-
gineering and Model-Driven Development. Software & Systems Modeling,
9(4):529–565, 2010.

[474] I. Witten, E. Frank, and M. Hall. Data Mining. Morgan Kaufmann, 2011.

[475] K. Wnuk, T. Gorschek, and S. Zahda. Obsolete Software Requirements.
Information and Software Technology, 55(6):921–940, 2013.

[476] C. Wohlin. Guidelines for Snowballing in Systematic Literature Studies and
a Replication in Software Engineering. In Proc. of the 18th International
Conference on Evaluation and Assessment in Software Engineering, pages
1–10, 2014.

BIBLIOGRAPHY 329

[477] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering: A Practical Guide. Springer,
2012.

[478] D. Wolpert. Stacked Generalization. Neural Networks, 5(2):241–259, 1992.

[479] D. Wolpert and W. Macready. No Free Lunch Theorems for Optimization.
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[480] W. Wong, V. Debroy, A. Surampudi, H. Kim, and M. Siok. Recent Catas-
trophic Accidents: Investigating How Software was Responsible. In Proc.
of the 4th International Conference on Secure Software Integration and Re-
liability Improvement, pages 14–22, 2010.

[481] W. Wu, W. Zhang, Y. Yang, and Q. Wang. DREX: Developer Recommen-
dation with K-Nearest-Neighbor Search and Expertise Ranking. In Proc.
of the 18th Asia Pacific Software Engineering Conference, pages 389–396,
2011.

[482] X. Xia, D. Lo, X. Wang, and B. Zhou. Accurate Developer Recommen-
dation for Bug Resolution. In Proc. of the 20th Working Conference on
Reverse Engineering, pages 72–81, 2013.

[483] J. Xiao, R. Catrambone, and J. Stasko. Be Quiet? Evaluating Proactive
and Reactive User Interface Assistants. In Proc. of the 10th International
Conference on Human-Computer Interaction, pages 383–390, 2003.

[484] X. Xie, W. Zhang, Y. Yang, and Q. Wang. DRETOM: Developer Recom-
mendation Based on Topic Models for Bug Resolution. In Proc. of the 8th
International Conference on Predictive Models in Software Engineering,
pages 19–28, 2012.

[485] R. Yin. Case Study Research: Design and Methods. Sage Publications, 3rd
edition, 2003.

[486] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting Source Code
Changes by Mining Change History. Transactions on Software Engineer-
ing, 30(9):574–586, 2004.

[487] T. Yue, L. Briand, and Y. Labiche. A Systematic Review of Transformation
Approaches between User Requirements and Analysis Models. Require-
ments Engineering, 16(2):75–99, 2011.

[488] M. Zaharia, N. Mosharaf Chowdhury, M. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster Computing with Working Sets. Technical report, EECS
Department, University of California, Berkeley, California, 2010.

330 BIBLIOGRAPHY

[489] H. Zaragoza and M. Najork. Web Search Relevance Ranking. In L. Liu
and T. Oszu, editors, Encyclopedia of Database Systems, pages 3497–3501.
Springer, 2009.

[490] C. Zhai. A Brief Review of Information Retrieval Models. Technical Re-
port, University of Illinois at Urbana-Champaign, 2007.

[491] C. Zhai. Statistical Language Models for Information Retrieval A Critical
Review. Foundations and Trends in Information Retrieval, 2(3):137–213,
2008.

[492] C. Zhai and J. Lafferty. Model-Based Feedback in the Language Model-
ing Approach to Information Retrieval. In Proc. of the 10th International
Conference on Information and Knowledge Management, pages 403–410,
2001.

[493] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei. A Survey
on Bug-report Analysis. Science China Information Sciences, 58(2):1–24,
2015.

[494] W. Zhao, L. Zhang, Y. Liu, J. Luo, and J. Sun. Understanding How the
Requirements are Implemented in Source Code. In Proc. of the 10th Asia-
Pacific Software Engineering Conference, pages 68–77, 2003.

[495] Y. Zhao and Y. Zhang. Comparison of Decision Tree Methods for Finding
Active Objects. Advances in Space Research, 41(12):1955–1959, 2008.

[496] X. Zhou and H. Yu. A Clustering-Based Approach for Tracing Object-
Oriented Design to Requirement. In Proc. of the 10th International Confer-
ence on Fundamental Approaches to Software Engineering, pages 412–422,
2007.

[497] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller. Mining Version
Histories to Guide Software Changes. In Proc. of the 26th International
Conference on Software Engineering, pages 563 – 572, 2004.

[498] X. Zou, R. Settimi, and J. Cleland-Huang. Phrasing in Dynamic Require-
ments Trace Retrieval. In Proc. of the 30th International Computer Software
and Applications Conference, pages 265–272, 2006.

[499] X. Zou, R. Settimi, and J. Cleland-Huang. Evaluating the Use of Project
Glossaries in Automated Trace Retrieval. In Proc. of the International Con-
ference on Software Engineering Research and Practice, pages 157–163,
2008.

[500] X. Zou, R. Settimi, and J. Cleland-Huang. Improving Automated Require-
ments Trace Retrieval: A Study of Term-Based Enhancement Methods. Em-
pirical Software Engineering, 15(2):119–146, 2010.

